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Abstract: Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads
to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the
effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We
conducted a sugarcane cultivation experiment with drainage lysimeters and different N application
rates in three cropping seasons (three years). N loads were reduced by reducing the first N application
rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application
was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application
(T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1).
N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1).
Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three
years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the
first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However,
application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons.
Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by
9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N
used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.

Keywords: lysimeter; groundwater pollution; nitrogen load; nitrogen fertilizer; tropical and subtrop-
ical island

1. Introduction

Nitrogen (N) is an important plant nutrient. However, 50% of the N fertilizers applied
to agricultural fields end up as pollution or are wasted due to denitrification that results
in the release of N2 [1]. Excess use of N can cause soil acidification by nitrification and
the loss of nitrate (NO3

−) by leaching into groundwater. In particular, N leaching into
downstream watersheds, including surface waters, affects drinking water supplies and
poses a considerable risk to human health [2]. The World Health Organization (WHO)
guideline value for nitrate of 50 mg L−1 as NO3

− (or 11 mg L−1 if reported as nitrate–N
[NO3-N]) in drinking water [3] is acceptable for adults as well as bottle-fed infants. This
guideline reported that NO3

− levels in drinking water derived from surface water do not
exceed 10 mg L−1 in most countries, although NO3

− levels in well water often exceed
50 mg L−1 [3]. Therefore, it is crucial to improve N use efficiency for crops and reduce N
loads to groundwater.

On small islands, groundwater is an essential resource for agricultural and domestic
use because of the limitations on available water. In recent years, NO3−N contamination of
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groundwater from agricultural activities has become a critical issue on small islands in the
humid Asian Pacific [4–6]. The islands located in southwestern Japan can be divided into
two geographic groups: “low” and “high” islands [7]. Mountainous “high” islands have
well-developed river systems with a high annual precipitation of approximately 2000 mm
due to the monsoon and typhoons. On “low” islands, the majority of the rainfall percolates
immediately into the ground because of the low-lying topography and highly permeable
limestone. Groundwater in “low” islands is highly susceptible to eutrophication due to
anthropogenic effects. One such island is Miyako Island, which, owing to the flatness of the
landscape and the lack of mountainous terrain, is characterized by intensive land use, and
the rate of cultivation and population density are high [8]. NO3–N from human activities,
such as fertilizer use and domestic wastewater discharge, becomes a source of N loads to
the groundwater and, thus, to coastal areas.

Sugarcane cultivation in Japan is concentrated on the islands of Okinawa and Kagoshima
prefectures, i.e., the southwestern islands [9]. Sugarcane is highly adaptable to the severe
weather conditions of the southwestern islands, such as typhoons and droughts [10]. The
sugarcane industry plays a key role in the local economy. In sugarcane cultivation in Oki-
nawa prefecture, N fertilizers are commonly used in the range of 190–270 kg ha−1 season−1

in three split applications (1 or 1.5 years) [11]. Nakanishi [12] reported that the timing
of elevated NO3–N concentrations in groundwater in Miyako Island coincided with the
period of intensive chemical fertilizer application in the early sugarcane growth stages.
Yamane et al. [13] investigated the NO3–N concentrations in groundwater in the Amami
region and reported high concentrations on islands with high sugarcane cultivation rates.
These results suggest that N fertilizers applied to sugarcane fields are a source of under-
ground N loads on small and “low” islands.

Sugarcane growth is slow and N uptake by plants is low during the early growth
stage [14–16]. Numerous reports show that sugarcane does not efficiently recover the ap-
plied N fertilizer, with recovery values ranging from 23–45% [17]. Kaji and Nagatomo [18]
found that the N use efficiency of sugarcane varied between a basal N utilization of 26%
and a supplemental N fertilizer utilization of 64% in spring planting. The N fertilizer uti-
lization efficiency of the first application, which is applied immediately after planting, was
as low as 4%, and the NO3–N concentration in the soil solution became high in deeper soil
layers below the root zone before the second application in the Philippines [19]. Sugarcane
cultivation is practiced in a 2 to 3-year cycle (plant crop to ratoon or plant crop to first and
second ratooning) in the typhoon-prone southwestern islands of Japan; however, there is
limited information on N leaching during a multi-year fertilization cycle.

In the present study, the lysimeter method was used for direct measurements of
the water balance and water-soluble substances in the soil and for the development of
a sustainable fertilizer and irrigation management in the agricultural field. Drainage
lysimeters, i.e., large soil tanks, allow for an accurate calculation of the water lost from the
soil. Martin et al. [20] presented the usefulness of drainage lysimeters in evaluating N and
irrigation management strategies with respect to soil water drainage and N leaching. The
aim of the present study was to examine the effect of reducing N fertilizer application rates
on sugarcane yield, N leaching, and the N balance. Lysimeter experiments were conducted
on sugarcane cultivation under different N management and N leaching observations. The
amount of applied N was based on the current N fertilization application rate (230 kg ha−1)
used in Okinawa prefecture. We evaluated the effects of reductions in the N application
rates of the first, second, and third applications on sugarcane growth and N leaching.

2. Materials and Methods
2.1. Study Site and Lysimeters

Our research site was the Japan International Research Center for Agricultural Sciences
of Tropical Agricultural Research Front (JIRCAS–TARF, N 24◦2243′′, E 124◦1141′′), located
on Ishigaki Island, Japan. According to meteorological observations from 2004 to 2019 in
the JIRCAS-TARF, a considerable amount of rainfall occurs throughout the year on Ishigaki
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Island, i.e., above 150 mm per month, even in the driest month (March) (Figure 1). The
mean daily maximum and minimum temperatures and solar radiation reached a maximum
in July and a minimum in January. This climate is classified as a humid subtropical climate
(Cfa) in the Köppen classification. The average annual rainfall was 2500 mm and the
average annual temperature was 24.0 ◦C.
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Figure 1. Average monthly climate data of the Japan International Research Center for Agricultural
Sciences of Tropical Agricultural Research Front (JIRCAS–TARF) (2004–2019); rain, mean monthly
rainfall (mm); radn, mean daily solar radiation (MJ m−2); Tmax, mean daily maximum temperature
(◦C); Tmin, mean daily minimum temperature (◦C).

The JIRCAS-TARF has 14 units of concrete outdoor lysimeters with a 10 m2 area
and a 2-m depth. Each lysimeter was filled with dark red soil, i.e., Shimajiri Maji [21].
The physical and chemical soil characteristics are given in Table 1. The side-top of the
lysimeters was approximately 15 cm above the ground. Surface runoff did not occur during
the experimental period, based on the observation of short-term maximum rainfall events
(78 mm h−1).

Table 1. Bulk density (BD), hydraulic conductivity (KS), particle size distribution (sand, silt, clay),
total carbon (C), and total N of soil samples.

Depth BD KS Sand Silt Clay Total C Total N

(cm) (g cm−3) (cm sec−1) (%) (%) (%) (%) (%)

0–15 1.53 1.28 × 10−2 68 20 12 0.417 0.040
15–30 1.52 1.07 × 10−2 71 17 12 0.433 0.040
30–60 1.34 1.57 × 10−2 57 17 26 0.353 0.034
60–90 1.26 9.41 × 10−3 55 18 27 0.252 0.036
90–120 1.34 5.53 × 10−3 53 17 30 0.304 0.039

2.2. Sugarcane Cultivation

Sugarcane cultivation experiments were conducted using drainage lysimeters during
three cropping seasons under different N fertilizer application rates. Sugarcane (variety
NiF-8) was planted at 1.2-m spacings (five plants per line) in December 2016 and grown
without irrigation. Harvest dates were 16 January 2018, in the plant cropping season
(season 1), 4 December 2018, in the first ratooning season (season 2), and 29 October 2019,
in the second ratooning season (season 3). Fertilizer was applied on 16 January, 12 April,
and 12 June in 2017 in season 1; on 12 February, 12 April, and 12 May in 2018 in season
2; and on 9 January, 4 March, and 4 April in 2019 in season 3. The average temperature
and solar radiation during the cultivation experiment were 23.4 ◦C and 13.3 MJ m−2 in
season 1, 24.3 ◦C and 15.6 MJ m−2 in season 2, and 24.7 ◦C and 14.2 MJ m−2 in season 3,
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respectively. Seven treatments were prepared for the experiment. The experimental design
was a randomized block with two replications of a 3× 2 factorial design and an unfertilized
control (i.e., without N fertilizer), totaling 14 plots (Figure 2). The first factor was the N rates
of the first application (0, 35, or 70 kg N ha−1) and the second factor was the total N rates of
the second and third applications (80 or 160 kg N ha−1) (Table 2). The standard amount of
N fertilizer (urea; 46% N) used in this study was 230 kg ha−1 (T1), which is approximately
half of the standard N fertilizer application amount used in spring and summer plantings
according to the Okinawa prefectural sugarcane fertilization rates. Lime superphosphate
and potassium chloride were applied at the same rates, i.e., 34 kg ha−1 and 30 kg ha−1 for
the first application, 23 kg ha−1 and 24 kg ha−1 for the second application, and 46 kg ha−1

and 42 kg ha−1 for the third application, respectively. All fertilizers were applied at a 10-cm
depth on one side of the line where sugarcane was planted and were covered with soil.
We measured the fresh weight, dry weight, and N uptake of sugarcane stalks, leaves, and
tops at harvest. Four stems were collected from each of the two sugarcane plants from
each lysimeter. Dry matter and partial weight were measured from two stems, and the
N content was measured from the remaining two stems using an NC analyzer (NC22-F,
SUMIGRAF). The fresh weight of stems (yield) was also measured for all sugarcane plants
in each lysimeter. Prior to the experiment, sugarcane was harvested in February 2016, and
the lysimeter was then fallowed for 10 months. To remove as much of the NO3-N derived
from the previous cultivation as possible, all lysimeters were waterlogged and drained
three times during the fallow period until the NO3-N concentration in drainage water was
<1 mg L−1.
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Figure 2. Layout of lysimeters with N treatments. Treatments (T1–T7) refer to the different N fertilizer
application treatments shown in Table 2.

Table 2. N fertilizer application rates used in the first, second, and third applications for each
treatment (T1–T7).

Treatment
N Application Rate (kg ha−1)

1st 2nd 3rd Total

T1 70 60 100 230
T2 35 60 100 195
T3 0 60 100 160
T4 70 30 50 150
T5 35 30 50 115
T6 0 30 50 80
T7 0 0 0 0

2.3. Observations of Water and NO3-N Movement in Lysimeters

The time domain reflectometry (TDR) sensors (CS616, Campbell Sci. Inc., Logan,
UT, USA) were used to monitor soil moisture changes in seasons 1, 2, and 3, and were
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installed at depths of 60, 90, 120, and 150 cm in the lysimeters (Figure 3). Soil moisture
change was calculated from the difference in the average volumetric water content of all
layers between planting and harvesting. Drainage water from the bottom of the lysimeters
was received by a cylindrical column equipped with a solenoid valve (AB41-04-08-D2G-
DC12V, CKD Corporation, Komaki, Japan). We installed a water level meter (GYLT-01-
300-BR-M8-CN, SANTEST. Co. Ltd., Osaka, Japan) inside the column. Soil moisture and
drainage water data were recorded by a data logger (CR10X, Campbell Sci., Inc.) at 1-h
intervals. Samples of drainage water for NO3–N analysis were collected daily in 50-mL
poly bottles. The collected samples were transported to the JIRCAS-TARF laboratory, and
the NO3–N concentrations (mg L−1) were measured using a spectrophotometer (Hitachi
U-2000, Hitachi, Tokyo, Japan). N loads in the groundwater (kg ha−1) were calculated from
the NO3–N concentration, volume of drainage water, and area of lysimeters.
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2.4. Estimation of N Balance and N Use Efficiency

The seasonal N balance (kg ha−1) was calculated as follows:

∆N soil = N rain + N fertilizer-N uptake-N load (1)

where ∆N is the soil nitrogen balance (kg ha−1); N fertilizer is the amount of applied
N fertilizer (kg ha−1); N uptake is the N uptake by plants (kg ha−1); and N load is the
NO3–N in deep drainage water from the bottom of the lysimeter (kg ha−1). The NO3–N
concentration in rainfall was regarded as 0.5 mg L−1 [22] and was multiplied by the amount
of precipitation to calculate N rain. N fixation, and N emissions from denitrification were
included in ∆N soil. Therefore, the N balance in Equation (1) is a partial N balance. N
recovery (%) was calculated as follows [23]:

N recovery = ([N uptakeT1–T6-N uptakeT7]/N fertilizer) × 100, (2)

where N uptake T1–T6 is the total N uptake (kg ha−1) in sugarcane crops from N-fertilized
treatments (T1–T6); N uptakeT7 is the total N uptake (kg ha−1) in sugarcane crops from the
0 N treatment (T7); and N fertilizer is the N fertilizer application rate (kg ha−1).

2.5. Statistical Analysis

Statistical indices were calculated on a seasonal basis. Analysis of variance (ANOVA)
was used to test for significant differences in drainage water, soil water change, and N
loadings over the seasonal and whole periods, as measured by each N fertilizer application.
Statistical analyses were performed using the R software version 3.6.1 [24].

3. Results
3.1. Deep Drainage and Soil Moisture

The rainfall for each season ranged from 2332 to 2797 mm, which is comparable to the
research center’s average annual rainfall of 2501 mm (Tables 3–5). The rainfall patterns for
seasons 1 and 3 coincided well, with rainfall evenly distributed throughout the cropping
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season (Figure 4). On the other hand, in season 2, the average daily rainfall was much lower
at 2.7 mm day−1 from the first to the third fertilization day (116DAP). In the following
period of season 2, six typhoons occurred at the study site (4.3 annual average), resulting in
a higher average daily rainfall of 9.25 mm d−1. In contrast, the amount of rainfall from the
first to the third applications was 6.9 mm day−1 in season 1 and 6.7 mm day−1 in season 3.

The 2-m deep drainage for each treatment ranged from 1522 to 1769 mm in season 1,
1548–1786 mm in season 2, and 1815–2094 mm in season 3 (Tables 3–5). The amounts of
drainage water in T1–T6 were lower than those in the control treatment (T7) in all seasons.
Significant differences in the infiltration water could not be detected by ANOVA among
the different N fertilizer treatments during the three cropping seasons. However, in the
medium-term (whole period), reductions in the second and third applications of N affected
the infiltration rates (Table 6). During the entire period, deep drainage was synchronized
with an increasing accumulated rainfall. Figure 4 shows that most of the rainfall drained
into the deep layers, especially until the 3rd application.

Table 3. Effects of reductions of the first, second, and third N fertilizer application rates on drainage,
initial soil water at the beginning of the season (Initial SW), soil water change (SW change), and N
load in season 1.

Rainfall and Fertilization Conditions Drainage Initial SW SW Change N Load

Total Rainfall (mm) Treatments (mm) (mm) (mm) (kg ha−1)

2550

T1 1579 446 −63 61.1
T2 1522 414 −56 48.4
T3 1549 417 −44 41.8
T4 1586 438 −45 50.9
T5 1587 426 −28 49.5
T6 1600 442 −46 42.2
T7 1769 462 −16 37.4

Analysis of variance
First N rates N.S. N.S. N.S. *

Second and third N rates N.S. N.S. N.S. N.S.
First N rates × second and third N rates N.S. N.S. N.S. N.S.

Treatments (T1–T7) refer to the different N application rates shown in Table 2. N.S. represents non-significant. *,
**, and *** indicate significant differences at p < 0.05, p < 0.01, and p < 0.001, respectively.

Table 4. Effects of reductions of the first, second, and third N fertilizer application rates on drainage,
initial soil water at the beginning of the season (Initial SW), soil water change (SW change), and N
load in season 2.

Rainfall and Fertilization Conditions Drainage Initial SW SW Change N Load

Total Rainfall (mm) Treatments (mm) (mm) (mm) (kg ha−1)

2332

T1 1612 412 33 1.4
T2 1548 387 30 0.9
T3 1611 401 27 1.6
T4 1655 411 26 0.9
T5 1661 417 30 0.8
T6 1690 420 18 0.9
T7 1786 433 22 0.7

Analysis of variance
First N rates N.S. N.S. N.S. **

Second and third N rates N.S. N.S. N.S. ***
First N rates × second and third N rates N.S. N.S. N.S. **

Treatments (T1–T7) refer to the different N application rates shown in Table 2. N.S. represents non-significant. *,
**, and *** indicate significant differences at p < 0.05, p < 0.01, and p < 0.001, respectively.
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Table 5. Effects of reductions of the first, second, and third N fertilizer application rates on drainage,
initial soil water at the beginning of the season (Initial SW), soil water change (SW change), and N
load in season 3.

Rainfall and Fertilization Conditions Drainage Initial SW SW Change N Load

Total Rainfall (mm) Treatment (mm) (mm) (mm) (kg ha−1)

2797

T1 1815 386 −35 16.1
T2 1834 365 −30 2.9
T3 2026 381 −27 2.4
T4 1906 387 −28 13.5
T5 2060 390 −27 3.5
T6 2029 407 −29 1.1
T7 2094 416 −22 0.9

Analysis of variance
First N rates N.S. N.S. N.S. ***

Second and third N rates N.S. N.S. N.S. N.S.
First N rates × second and third N rates N.S. N.S. N.S. N.S.

Treatments (T1–T7) refer to the different N application rates shown in Table 2. N.S. represents non-significant. *,
**, and *** indicate significant differences at p < 0.05, p < 0.01, and p < 0.001, respectively.
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The differences in soil moisture in each treatment at the beginning and end of the
cropping seasons were not largely affected by differences in the N fertilization rates over
the whole period. Soil moisture decreased in season 1 (−63 to −16 mm), increased in
season 2 (18 to 33 mm), and decreased in season 3 (−35 to −22 mm). These slight increases
or decreases may have been caused by rainfall just prior to planting and harvesting. The
soil moisture change in relation to total rainfall (7679 mm) ranged from 0.8 to 1.2% (−63
to −16 mm). In short- and medium-terms, differences in N fertilizer application practices
appeared to have little effect on changes in soil moisture, but had a significant impact on
the amount of drainage of sugarcane fields.
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Table 6. Effects of reductions of the first, second, and third N fertilizer application rates on drainage,
initial soil water in the beginning of the season (initial SW), soil water change (SW change), and N
load in the whole season.

Rainfall and Fertilization Conditions Drainage Initial SW SW Change N Load

Total Rainfall (mm) Treatments (mm) (mm) (mm) (kg ha−1)

7679

T1 5006 446 −63 78.7
T2 4904 414 −56 52.2
T3 5185 417 −44 45.8
T4 5147 438 −45 65.3
T5 5308 426 −28 53.7
T6 5319 442 −46 44.1
T7 5649 462 −16 38.9

Analysis of variance
First N rates N.S. N.S. N.S. **

Second and third N rates ** N.S. N.S. N.S.
First N rates × second and third N rates N.S. N.S. N.S. N.S.

Treatments (T1–T7) refer to the different N application rates shown in Table 2. N.S. represents non-significant. *,
**, and *** indicate significant differences at p < 0.05, p < 0.01 and p < 0.001, respectively.

3.2. NO3–N Concentrations and N Loads in Deep Drainage

NO3–N concentrations in the deep drainage were widely distributed from 0.0 mg L−1

to 14.8 mg L−1 (daily data not shown). The time course of the NO3–N concentration in each
treatment is shown in Figure 5 as monthly average values, since the NO3–N concentration
was highly variable even in the two replicates. NO3–N concentrations in all treatments
were higher in season 1 than in seasons 2 and 3 and lower after the third application. In
March of season 1, the NO3–N concentration in drainage water from the control treatment
(T7) increased to approximately 5.0 mg L−1, similar to the increased concentrations in the
other treatments. In season 1, NO3–N concentrations peaked in May for all treatments,
with values of approximately 8.0 mg L−1 for T1, T2, T4, and T5. In contrast, the NO3–N
concentrations in season 2 were less than 0.2 mg L−1 during this period. In season 3, NO3–N
concentrations in the deep drainage of T1 and T4 increased from March and reached a peak
(approximately 3.0 mg L−1) in April 2019.

N leached downward below a depth of 2 m and ranged between 37.4–61.1 kg ha−1

in season 1, 0.7–1.6 kg ha−1 in season 2, and 0.9–16.1 kg ha−1 in season 3 (Tables 3–5).
The total amounts of N loads and the time variations were quite different between the
seasons. In season 1, N loads increased with increasing rainfall until around the time of
the third application period (178DAP) (Figure 6). The highest N loads were in the T1 and
T4 treatments, in which the recommended amount of N in the first application had been
adapted. T2 and T5, in which half the amount of N in the first application was applied, and
T3 and T6, in which 0 N in the first application was applied, had similar N loads. In season
2, the accumulated N loads were less than 1.6 kg ha−1 in all treatments. In season 3, the N
loads of T1, T2, T4, and T5 increased rapidly after a 72.5-mm rainfall event in 95DAP, while
those of T1 and T4 also increased after a 149.5-mm rainfall event in 122DAP. The ANOVA
detected significant differences in N loads between treatments with different N rates used
in the first application. The effects of reduced N rates of the first application affected the
reductions of N loads in both single and whole cropping seasons (Table 6).

3.3. Sugarcane Yield and N Balance

Sugarcane yields over the three seasons ranged from 27.0 to 88.0 tons ha−1 (Table 7).
The average yields for all treatments were 75.1 tons ha−1 in season 1, 54.1 tons ha−1 in
season 2, and 68.9 tons ha−1 in season 3. The average yield in season 2 was lower than the
average yield of 66.0 tons ha−1 on Ishigaki Island (2006–2015). As previously mentioned,
this may be due to drought stress caused by low rainfall until the third fertilization period
and typhoons that occurred during the period of high growth and high temperatures from
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June to October. The average N uptake for season 2 (66 kg ha−1) was also lower than
those for seasons 1 and 3 (149 kg ha−1 and 98 kg ha−1, respectively). Except for the control
treatment (T7), N fertilizer accounted for the dominant portion of the N input; however, N
input accompanied by rainfall contributed 5–14% of the total N input. The soil N balance
was negative in all treatments in season 1, and in T7 in seasons 2 and 3. In seasons 1 and 3,
the average seasonal N recoveries were at the same level (56.3% in season 1 and 57.4% in
season 3), whereas this value in season 2 was lower than that in season 2.

Table 7. Sugarcane yield (Yield), N balance (N rain, N fertilizer [N fer], N uptake by crops [N upt], N
loads, soil N change [∆N soil]), and N recovery.

Season/ Yield N Balance (kg ha−1) N Recovery

Treatment (tons ha−1) N Rain N Fer N Upt N Loads ∆N Soil (%)

S1/T1 91 13 230 186 61 −5 47.8
S1/T2 89 13 195 188 48 −29 57.5
S1/T3 77 13 160 168 42 −37 57.2
S1/T4 83 13 150 153 51 −41 51.1
S1/T5 75 13 115 148 49 −69 62.1
S1/T6 72 13 80 126 42 −75 62.1
S1/T7 40 13 0 76 37 −101 -

S2/T1 81 12 230 112 1 128 39.0
S2/T2 66 12 195 91 1 114 35.1
S2/T3 59 12 160 71 2 99 29.9
S2/T4 60 12 150 61 1 100 25.6
S2/T5 50 12 115 60 1 66 32.2
S2/T6 45 12 80 45 1 46 27.4
S2/T7 18 12 0 23 1 −12 -

S3/T1 93 14 230 147 16 81 54.9
S3/T2 87 14 195 151 3 55 66.8
S3/T3 81 14 160 131 2 41 68.8
S3/T4 73 14 150 93 14 57 48.3
S3/T5 70 14 115 82 3 44 53.3
S3/T6 55 14 80 62 1 30 52.3
S3/T7 23 14 0 21 1 −8 -

S1/Ave 1 75 13 133 149 47 −51 56.3
S2/Ave 54 12 133 66 1 77 31.5
S3/Ave 69 14 133 98 6 43 57.4

1 Ave refers to the mean arithmetic average between treatments in the same season.
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Figure 5. Mean monthly NO3–N concentrations in the drainage water of different treatments (T1–T7) and monthly rainfall.
Treatments refer to the different N fertilizer application rates shown in Table 2.
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Figure 6. Cumulative rainfall and N loads in deep drainage under different N treatments: (a) season
1; (b) season 2; and (c) season 3. Treatments (T1–T7) refer to the different N application rates shown
in Table 2.

4. Discussion

There was little difference in total drainage water from 2 m depth in each season with
different N fertilizer management. In the medium term, accumulated drainage water with
full N application rates in the second and third applications (T1–T3) increased compared
to the treatments in which the N application rates were halved in the second and third
applications (T4–T6). This may be because crop growth and high yield were positively
affected by an increased transpiration in T1–T3. In particular, the control treatment (T7)
had extremely low yields and large infiltration rates compared to the other treatments.
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NO3–N concentrations in drainage water at the 2-m depth reached a maximum ap-
proximately 60–90 days after the first fertilizer applications in seasons 1 and 3. During
sugarcane cultivation in Australia in an area with approximately 2800 mm of annual rain-
fall, NO3–N concentrations in drainage water from lysimeters at a 1-m depth reached a peak
approximately 50–70 days after fertilization and, subsequently, gradually decreased [25].
The measured NO3–N concentrations in the present study were very close to those previ-
ously reported in Australia and Brazil (1.7–5.0. mg L−1, [25,26]). In season 1, T3 and T6
(i.e., with 0 N first application) had similar peak concentrations as the control treatment
(T7; approximately 5 mg L−1). NO3–N in deep drainage is likely to be affected by previous
cultivation in the early growth stages of a new planting, as this phenomenon was not
observed in ratoon cultivation in seasons 2 or 3. In season 3, N leaching in T1 and T4 (in
which the full N fertilizer application rate was used at the first application) was greater
than that in the other treatments. These results suggest that the first N application may
cause an increase in the NO3–N concentration in drainage water below the sugarcane root
zone. In particular, peak NO3–N concentrations were likely to exceed the threshold of the
WHO water quality standards (11 mg L−1) in the plant cropping season (season 1).

N loads have been reported to be 42.1–59.4 kg ha−1 for new plantings with an ap-
plication of 180 kg ha−1 of N fertilizer and 2.61–7.44 kg ha−1 for ratoon cropping with
an application of 200 kg ha−1 of N fertilizer on Tokunoshima Island, which is one of the
southwest islands in Japan [27]. The results of our study showed similarly low N loads
in ratoon plantings (1–16 kg ha−1) compared to new plantings (37–61 kg ha−1). The N
loads in this study (2–241 kg ha−1) were lower than those reported for high N inputs
(144–247 kg ha−1) during sugarcane cultivation in Australia [28,29]. Especially in the early
sugarcane growth stages in season 1, N leaching occurred in the 0 N application treatment
(T7). Therefore, it is important to properly apply N fertilizer immediately after planting in
new plantings. Our results showed that the reduction of the first N fertilizer application
reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N
in the first fertilization would lead to a substantial reduction in yield in all seasons. Because
of the large change in the annual rainfall distribution at the time of fertilizer applications, it
is considered desirable to establish a cultivation system that uses slow-release N fertilizers
and organic materials. These N sources release their N more slowly than urea. Therefore,
they would correspond to the N absorption characteristics of sugarcane, which absorbs
less N in the early growth stage.

Yield and N uptake were low in season 2 when there was little rainfall from the first
to the third applications, followed by typhoons in the high growth season from May–
September [30], compared to seasons 1 and 3; hereafter, the discussion regarding seasons
1 and 3 are based on these patterns. The yield of T2 with the applications of half the N
application rate for the first application in seasons 1 and 3 was approximately 5% lower
than that of T1. The yield of T3 with 0 N used for the first N application was approximately
15% lower than that of T1 (Table 7). Halving the N application rates in the supplementary
fertilizer (T4–T6) reduced yields by 9–41%, and yields could not be consistently maintained
throughout the three seasons. Except for T7, the levels of N uptake of aboveground
sugarcane in this study were higher than the 55.9–68.1 kg ha−1 reported by Chen et al. [31].
N uptake of T1 and T2, as well as sugarcane yields, were at similar levels in seasons 1
(186–188 kg ha−1) and 3 (147–151 kg ha−1). N recovery in our study was higher than that
reported in a previous study [17], except for season 2.

Based on the responses of sugarcane yield and N uptake to fertilizer reduction in
two of the three years, T2 (with the application of half the amount of basal fertilizer)
is considered to be a feasible fertilization practice for farmers in Okinawa prefecture.
Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved the
N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that
the half-reduction of N in the first application contributed to improving the efficiency of N
fertilizer use and reducing N loss.
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