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Abstract: In this research, a real-time nowcasting system for regional landslide-hazard assessment 

under extreme-rainfall conditions was established by integrating a real-time rainfall data retrieving 

system, a landslide-susceptibility analysis program (TRISHAL), and a real-time display system to 

show the stability of regional slopes in real time and provide an alert index under rainstorm condi-

tions for disaster prevention and mitigation. The regional hydrogeological parameters were cali-

brated using a reverse-optimization analysis based on an RGA (Real-coded Genetic Algorithm) of 

the optimization techniques and an improved version of the TRIGRS (Transient Rainfall Infiltration 

and Grid-based Regional Slope-Stability) model. The 2009 landslide event in the Xiaolin area of Tai-

wan, associated with Typhoon Morakot, was used to test the real-time regional landslide-suscepti-

bility system. The system-testing results showed that the system configuration was feasible for prac-

tical applications concerning disaster prevention and mitigation. 
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1. Introduction 

During 7–10 August 2009, Typhoon Morakot brought strong southwesterly winds 

and extremely heavy rainfall. Hourly rainfall exceeded 50 mm, with a cumulative total of 

more than 2500 mm. The extreme duration and intensity of the rainfall caused many land-

slides in the mountainous area near the village of Xiaolin. The village was destroyed and 

buried by debris from a deep-seated landslide, resulting in the loss of 500 lives. This was 

the most serious landslide tragedy in the history of Taiwan, which caused great public 

concern. A real-time regional landslide forecasting system for extreme-rainfall conditions 

would contribute to the development of a nation-wide early warning system to prevent 

such a landslide disaster. 

Early warning systems for rainfall-induced landslides have now been established in 

many countries. Baum and Godt [1] reviewed the development history of early warning 

systems for landslides and debris flows and the system currently operating in the United 

States. The US Geological Survey (USGS), in cooperation with the National Weather Ser-

vice (NWS), operated an experimental landslide warning system in the San Francisco Bay 

area of California in 1985–1995 [2]. The system used groundwater level monitoring, ante-

cedent rainfall, and rainfall intensity–duration thresholds as alert indicators to support 

alerts being issued via broadcast media. However, the system was closed due to a lack of 

funding. The Oregon Department of Geology and Mineral Industries built a real-time 

landslide warning system in western Oregon, USA, which has been in operation since 

1997. The system uses antecedent rainfall monitoring, landslide hazard maps from Hoff-

meister et al. [3], and rainfall intensity–duration thresholds as alert indicators to enable 

alerts to be issued via the news media and Internet. The USGS has operated a real-time 

landslide warning system for potential debris flows in parts of the Appalachians since 
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2004 [4]. That system uses landslide hazard maps from Radbruch-Hall et al. [5] and rain-

fall intensity–duration thresholds as alert indicators to issue alerts via the Internet. In co-

operation with the NWS and the City of Seattle, the USGS has operated a landslide warn-

ing system in Seattle under an informal agreement since 2002 [6]. That system uses real-

time monitoring of rainfall, NWS quantitative precipitation forecasts, soil moisture and 

pore pressure monitoring, cumulative rainfall thresholds, rainfall intensity–duration 

thresholds, and landslide hazard maps from Harp et al. [7] as alert indicators.  

To develop a landslide early warning system in Italy, Segoni et al. [8] built an auto-

matic forecasting chain for the spatial and temporal prediction of shallow landslides in 

the framework Landslides Platform Service 2. This service used soil saturation estimates 

and regional rainfall layers, produced from actual rainfall station data and radar rainfall 

maps. The data were used as inputs for a hydrogeological model, C-DRiFt, to calculate 

the distribution of factors of safety over the entire basin. All outputs were shown in a Web-

GIS system so that end-users could interactively access and download data to find out 

about the safety of areas of concern. Montrasio et al. [9] performed real-time landslide-

potential forecasts using a SLIP (Shallow Landslides Instability Prediction) model for one 

year in the Emilia Romagna region of northern Italy to confirm the utility of the landslide 

warning model. Federici et al. [10] implemented an automatic rainfall-induced regional 

landslide prediction procedure in the GIS GRASS system for the Santo Stefano d’Aveto 

region, Italy. The procedure used an integrated hydrological-geotechnical (IHG) model 

and an infinite slope analysis to produce landslide-susceptibility raster maps. 

In Asia, the Geotechnical Engineering Office (GEO) in Hong Kong, in cooperation 

with the Hong Kong Observatory (HKO), has operated a regional landslide warning sys-

tem since 1977 [11]. This system integrates the real-time rain gauge network with a statis-

tical model for predicting landslide susceptibility extracted from Yu et al. [12]. After the 

results had been examined by the experts, the warning information would be issued to 

the public. Chen et al. [13] developed a real-time landslide warning system, GRAPES-LFM 

(GRAPES: Global and Regional Assimilation and PrEdiction System; LFM: Landslide 

Forecast Model), in China. The system integrated a meteorological model, GRAPE, and 

the TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope-Stability) 

model from Baum et al. [14] to predict rainfall-induced landslides. The system was tested 

in Dehua County, Fujian Province, where Typhoon Bilis triggered regional landslides in 

2006. In Taiwan, Lin et al. [15] developed a rainfall-induced landslide warning system on 

a Web-GIS platform. That system used real-time rainfall forecast data from a QPESUMS 

(Quantitative Precipitation Estimation and Segregation Using Multiple Sensors) model 

developed by the Central Weather Bureau, static landslide potential calculated using a 

logistic regression analysis model, and the landslide cumulative rainfall thresholds calcu-

lated using a deterministic method to produce a dynamic landslide-risk prediction and 

issue the results using the Web Mapper Service (WMS). Tang et al. [16] integrated a de-

terministic model, TRIGRS, and optimization techniques to develop a regional rainfall-

induced landslide-potential analysis model. This model can be used to predict the time, 

scale, and spatial distribution of rainfall-induced shallow landslides in watersheds. Chien 

et al. [17] used rainfall data from a QPESUMS model, TRIGRS from Baum et al. [18], and 

landslide cumulative rainfall thresholds to produce a rainfall-induced shallow landslide 

warning system for the development of disaster-related policies. 

The proper determination of geotechnical and hydrogeological parameters is very 

important to any landslide stability analysis model. Traditionally, these parameters are 

determined by suitable laboratory and in situ tests for site-specific landslide problem. 

However, the test methodology may not suitable to regional landslide analysis model due 

to the high variability of the parameters [19] or insufficiency of test data. Therefore, other 

approaches have been used in the regional analysis model. For example, Han et al. [20] 

used the probabilistic approach to consider the variability of the hydraulic conductivity 

into the slope stability model. Park et al. [21] applied Monte Carlo simulation in their in-

finite slope model to consider the inherent uncertainty and variability of input parameters 
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to assess shallow landslide susceptibility over an extensive area. The idea of the study is 

to use optimization techniques to calibrate the parameters from some available test values 

and inventories of the antecedent rainfall events to forwardly predict the landslide devel-

opment of the next rainfall event. 

Based on our review of landslide early warning systems, it seems rare that systems 

can consider the effect of infiltration of actual recent rainfall on slope stability, use real-

time susceptibility-display services, and include a regional hydrogeological parameter 

calibration module. The aim of this research was to integrate a real-time rainfall data re-

trieving system, a landslide-susceptibility analysis program (TRISHAL), and a real-time 

landslide-potential display system to implement a real-time nowcasting system for re-

gional landslides. The Morakot-induced landslide event in the Xiaolin area was used for 

system testing. The system is intended to provide users with a service allowing access to 

information about the real-time landslide susceptibility of areas of concern, and provide 

suggestions relating to disaster prevention. 

2. Materials and Methods  

In this research, the regional landslide real-time nowcasting system integrated a real-

time rainfall data retrieving system, a landslide-susceptibility analysis program 

(TRISHAL), and a real-time landslide-potential display system. The system configuration 

is shown in Figure 1, which illustrates how the data are transferred between the systems 

to perform the landslide-susceptibility analysis, displaying the output under real-time 

rainfall. Each subsystem is described below. 

 

Figure 1. The configuration of the real-time nowcasting system for regional landslide events. 

2.1. Real-Time Rainfall Data Retrieving System 

The real-time rainfall data retrieving system was implemented in an ArcGIS environ-

ment, which is a geographic information system developed by Esri. The procedure was 

coded in the built-in ArcGIS program language, using ArcGIS object functions and a Win-

dows API function library to extract real-time rainfall information from the public website 

of the Central Weather Bureau (CWB). The extracted data were then inserted and updated 

in the real-time rainfall database. Rainfall-event definition and regional interpolation func-

tions would then be executed to produce the regional rainfall layers used by the landslide-
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susceptibility analysis program (TRISHAL). The functioning of the real-time rainfall data-

base, the rainfall-event definition, and real-time regional rainfall production are described 

below. 

2.1.1. Real-Time Rainfall Database Implementation 

The aim of the real-time rainfall database was to store the real-time rainfall data ex-

tracted from the CWB website and provide a connection to the real-time rainfall data re-

trieving system. The main tasks were implementing the MySQL rainfall database, ensur-

ing timely extraction of the real-time rainfall data, and ensuring that database updating 

proceeded. To ensure the robustness and accessibility of the system, the professional da-

tabase program MySQL was used to store the real-time rainfall data. The rainfall database 

architecture included the spatial information from the weather stations as well as the real-

time rainfall data, both stored in table format. The attribute fields of the spatial infor-

mation table were the station coordinates, location, elevation, affiliated basin, and the sta-

tion identifier codes. This table had to be maintained manually. The attribute fields of the 

real-time rainfall table were the station identifier codes, rainfall time, and the correspond-

ing hourly rainfall data. The two tables were linked via the station identifier codes for 

subsequent spatial information processing. The system used the timer function from the 

Windows API function library to extract and analyze the real-time rainfall information 

from the CWB website. The extraction data would then be automatically inserted into the 

MySQL database via the built-in database functions (such as "select", "update", and "in-

sert") for subsequent analysis. 

2.1.2. Rainfall-Event Definition  

To prevent unnecessary analysis, this system used the effective rainfall-event defini-

tion on a single rainfall station proposed by Lee et al. [22]. A schematic diagram of this 

definition is shown in Figure 2. In the time series rainfall data, when the hourly rainfall 

increased to over 4 mm, this was defined as the rainfall-beginning state (B). In the subse-

quent rainfall series, when the hourly rainfall was less than 4 mm for six consecutive hours 

and did not increase again, this was called the rainfall-finished state (F). In the rainfall 

series, a single rainfall event was defined as the period from the onset of the beginning 

state to the end of the finished state. The rainfall state between the beginning and finished 

states was denoted the internal state (I). The no-rainfall state (None) was everything that 

occurred outside of single rainfall events. For each rainfall event, a cumulative rainfall 

total was calculated. The rainfall station located closest to the center of the analysis region 

was considered to be representative of the regional rainfall-event definition. Regional 

rainfall layers would be produced during rainfall events and would not be produced dur-

ing the no-rainfall state. 

 

Figure 2. Schematic diagram of the rainfall-event definition used in the system. 
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2.1.3. Real-Time Regional Rainfall Production 

The real-time rainfall data retrieving system would produce regional rainfall layers 

during rainfall events. The system was connected to the MySQL rainfall database to re-

trieve the real-time hourly rainfall data for the region of interest for interpolation analysis. 

The regional rainfall layers were produced by using the interpolation object function in 

ArcGIS. The setting used for the interpolation analysis was the Ordinary Kriging method. 

The output file format for the regional rainfall layers was in ASCII file format for use in 

the real-time landslide-susceptibility analysis in the TRISHAL program. 

2.2. Real-Time Landslide-Susceptibility Analysis Program 

The real-time landslide-susceptibility analysis program, TRISHAL, used two mod-

ules to execute the landslide-susceptibility analysis. One was the real-time landslide-sus-

ceptibility analysis procedure, which ran the TRIGRS program to analyze the real-time 

stability of the regional slopes during rainfall after confirming the production of the real-

time regional rainfall layers. The other module was the reverse-optimization procedure, 

which calibrated the regional parameters used in the real-time landslide-susceptibility 

analysis. The theoretical basis of the TRIGRS model, the techniques used for the real-time 

landslide-susceptibility analysis, and the optimization inverse analysis of the regional pa-

rameters are described below. 

2.2.1. Theoretical Basis of the TRIGRS Model 

The TRIGRS model was developed by Baum et al. in 2002 [14]. It combines a hydro-

logic infiltration model with an infinite slope stability model. The infiltration model was 

based on an approximate analytic solution of Richards’ equation using a wet initial con-

dition to compute the pressure head induced by the rainfall [23]. The calculated pressure 

head was used in the infinite-slope stability formulation by Iverson [23] to give time- and 

depth-dependent factors of safety that were incorporated on a cell-by-cell basis into a grid-

based GIS framework of rainfall-induced initiation of shallow landslides. 

The code for calculating the pressure head in the TRIGRS program was updated by 

Baum et al. in 2008 [18]. Deng and Hwang [24] confirmed that this updated code for cal-

culating the total pressure head under wet initial conditions that had been developed by 

Baum et al. [18] corresponded to the correct analytic solution equations. We therefore used 

the 2008 version of the TRIGRS model as the analysis core of the landslide-susceptibility 

analysis. The equations for the total pressure head differed according to the boundary 

conditions of the slope bedrock, which could be either infinite-depth or finite-depth. The 

assumption in the infinite slope stability model was that the depth of the grid cells was 

less than their width. The predictions yielded were more accurate where conditions fa-

vored planar failure. The stability model used the factor of safety, FS, calculated as the 

ratio of the resisting basal Coulomb friction to the gravitationally induced downslope ba-

sal driving stress (Equation (1)) to represent the landslide susceptibility in the region. Fail-

ure was predicted where FS < 1, and stability held where FS ≥ 1. The detailed theoretical 

formula derivation and notes in the program referred to Baum et al. [14], Baum et al. [18], 

Iverson [23], Deng and Hwang [24], and Deng [25]. 

' ( , ) tan 'tan '

tan sin cos
w

sat

c Z t
FS

Z

  

   


   (1)

In Equation (1), where sat  is the saturated soil unit weight, 'c  is the soil cohesion 

for effective stress, '  is the soil friction angle for effective stress, w  is the unit weight of 

groundwater, Z  is the analysis depth, FS  is the factor of safety, ( , )Z t  is the total pres-

sure head, t is time, and   is the slope gradient of the slope grids. 
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2.2.2. Techniques of Real-Time Landslide-Susceptibility Analysis 

TRIGRS analyzed the stability of the regional slopes when a pressure-head build-up 

was induced by rainfall infiltration, based on the actual rainfall history. The TRIGRS pro-

gram downloaded from the USGS website did not provide an automatic rainfall setting 

function to execute the real-time landslide-susceptibility analysis for regional slopes. 

Therefore, to execute the real-time TRIGRS analysis for the practical application of disaster 

prevention, we developed a real-time landslide-susceptibility analysis interface coded in 

Visual Basic programming language. The system used the timer function to run the real-

time landslide-susceptibility analysis after confirming that the real-time regional rainfall 

and parameter layers required for the TRIGRS analysis had been produced. 

The program execution time is a critical factor for developing a real-time landslide-

susceptibility analysis for practical applications. The TRIGRS system developed by the 

USGS considered the computer’s memory limitations and the analysis settings using an 

arbitrary number of periods with different rainfall intensities. The program would release 

the memory matrix that could then be used for the next period of different rainfall inten-

sity. This greatly reduced the memory usage required for long-term analysis, but required 

the complex code for calculating the transient pressure head to be calculated repeatedly 

when there were many periods with different rainfall intensities. The analysis time would 

then be proportional to the square of the number of periods with different rainfall inten-

sities. This program structure made the original TRIGRS program difficult to use in a real-

time warning context. 

The computer technology available now is more advanced than the development en-

vironment of the original program, with much larger memory capacities. We were there-

fore able to increase the execution speed of the program by improving the program struc-

ture and using the memory matrix to store the repeated calculation variables. The pro-

gram structure of the landslide-susceptibility analysis was improved in accordance with 

the equal time intervals in the real-time rainfall data downloaded from the CWB website. 

The fundamental transient pressure head equation with the finite-depth boundary 

condition in TRIGRS program is shown in Equation (2). The memory matrix for the tran-

sient pressure head could store the non-repetitive transient pressure head variables for 

every period with a different rainfall intensity in each rainfall event (Equation (3)) in the 

finite-depth boundary condition. The elements of the memory matrix were extracted to 

calculate the transient pressure head caused by each period of past rainfall, as per Equa-

tion (4). For the hourly rainfall interval used in the real-time landslide-susceptibility anal-

ysis example, the transient pressure head of the first hour 1t  could be expressed as per 

Equation (5). 
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1
1 1( , ) 2 (3600)Z

tran

sat

I
Z t H A

K
   (5)

In Equation (2), where ( , )tran nZ t  is the transient pressure head, satK  is the satu-

rated hydraulic conductivity, nZI  is the surface flux of a given intensity for the nth time 

interval, ( )H n t  is the Heaviside step function, 2
1 0 / cosD D  , 0D  is the saturated 

hydraulic diffusivity, t  is the equal rainfall interval, n  is the order of the rainfall peri-

ods, LZd  is the depth of the impermeable basal boundary, m  is the cumulative integer 

variable represents the item of series solution, and ( )ierfc   is the formulation of the com-

plementary error function.   is the variable in the complementary error function. 

The execution time for a landslide-susceptibility analysis covering a wide area with 

a large number of periods with different rainfall intensities was still lengthy when using 

the above improvement. We then used shared memory in a parallel computing technique 

to improve computing efficiency. We used the multi-core computing technique in 

standalone mode, which was suitable for independent analysis of each of the grid cells in 

the regional slopes. With this multi-core improvement, the TRIGRS program was recom-

piled into a 64-bit application using the Intel Visual Fortran Compiler and executed in a 

Microsoft 64-bit operating system equipped with sufficient memory. 

2.2.3. Optimization Inverse Analysis for Regional Parameters 

The soil measured parameters showed a relatively high variability for different li-

thologies [19]. The representative parameters for regional slopes were difficult to acquire 

purely from geologic borings and laboratory tests. In order to get good match with the 

landslide inventory and improve the calibration efficiency, we therefore developed an op-

timization inverse analysis module to calibrate the regional hydrogeological parameters. 

This module integrated the RGA (Real-coded Genetic Algorithm) proposed by Holland 

[26] and the TRIGRS model to analyze the regional parameters in reverse. The module 

was used to introduce a global random search and the iteration characteristics of RGA 

into the TRIGRS model to iteratively calculate the landslide susceptibility of different ran-

dom sets of hydrogeological parameters under the specific rainfall event concerned. The 

random values of hydrogeological parameters in each lithology zone were automatically 

searched by RGA in the reasonable physical intervals based on the records of literatures 

[25]. The optimization searching zones were defined by the lithology zones of the geolog-

ical map due to the close relation between soil and lithologies. The objective prediction of 

the landslide distribution based on the optimized set of parameters was close to the actual 

landslide distribution in the landslide inventory. 

To evaluate the performance of the calibration parameters, this module used the con-

fusion matrix classification types shown in Table 1, which were proposed by Stehman 

[27]. 1N  was a total of actual landslide cells which were predicted as landslides success-

fully. 2N  was a total of actual landslide cells which were predicted as non-landslide cases. 

3N  was a total of actual non-landslide cells which were predicted as landslides. 4N  was 

a total of actual non-landslide cells which were predicted as non-landslide cases success-

fully. Table 1 was used to calculate the following evaluation indexes: the success rate of 

prediction of landslide cells ( 1R ), the false rate of prediction of landslide cells ( 2R ), the 

false rate of prediction of non-landslide cells ( 3R ), and the total success rate of prediction 

( 4R ) using Equations (6) to (9). In addition, we used an AUC index, area under the pre-

diction rate curve from Chung and Fabbri [28] for auxiliary assessment of the prediction 

quality. 
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1 1 1 2/ ( )R N N N   (6)

2 2 1 2/ ( )R N N N   (7)

3 3 3 4/ ( )R N N N   (8)

4 1 4 1 2 3 4=( )/( )R N N N N N N     (9)

Table 1. The classification of the confusion matrix. 

Confusion Matrix 
Predicted Class 

Landslide ( 1FS  ) Non-Landslide ( 1FS  ) 

Actual 

class 

Landslide ( 1FS  ) 1N  2N  

Non-landslide (

1FS  ) 3N  4N  

The optimization model used the fitness function of the static penalty method to 

transfer a constrained problem into the unconstrained state by weighting the objective 

and constrained functions via mathematical programming. The fitness function (Equation 

(10)) considers the evaluation indexes based on Table 1, the initial stability, extreme FS 

values, and the reasonability of the landslide failure history. The lower the fitness value, 

the better the performance of the calibrated regional parameters. In the optimization 

model, the random-search setting of which hydrogeological parameters would be used 

could be changed by users depending on the degree of uncertainty. The random-search 

hydrogeological variables available in this module were effective cohesion 'c , internal 

friction angle ' , saturated hydraulic conductivity satK , saturated hydraulic diffusivity

0D , and steady (initial) surface flux 
,Z steadyI . The detailed calculation process of the RGA 

was based on Holland [26]. 

1 2 2 3 3 4 5 61 4F g FSI g R g R g FSN g FSN g C             (10)

In Equation (10), where F  is the fitness value, the expected search direction is to-

ward to low fitness values. FSI  represents the initial failure before a rainfall event, and 

the expected search direction is toward solutions with initial stability. 2R  represents the 

false rate of prediction of landslide cells, and the expected search direction is toward low 

2R  values. 3R  represents the false rate of prediction of non-landslide cells, and the ex-

pected search direction is toward low 3R  values. 1FSN  represents the degree of instabil-

ity in the failure grids, and the expected search direction is toward critical stability. 

4FSN  represents the degree of stability in the failure grids, and the expected search di-

rection is toward critical stability. C  represents the correlation between the cumulative 

rainfall history and the cumulative landslide grids, and the expected search direction is 

toward a high correlation. ig  is the penalty coefficient. 

2.3. Real-Time Landslide-Potential Display System 

The real-time landslide-potential display system was implemented in the ArcGIS en-

vironment. The system was coded in the built-in ArcGIS program language. It used 

ArcGIS object functions and a Windows API function library to display the real-time land-

slide-susceptibility maps in the ArcMap window, after the real-time landslide-potential 

maps had been confirmed. The color of the grid cells with a risk of landslide, i.e., FS < 1, 



Water 2021, 13, 732 9 of 18 
 

 

was red, and the color of the stable grid cells, i.e., FS ≥ 1, was green. The real-time visual 

display function allowed users to observe dynamic slope stability for the rainfall event of 

concern. 

3. Results 

3.1. System-Testing Case  

Xiaolin is located in the Jiasian District, Kaohsiung City, southern Taiwan (Figure 3). 

The area belongs to the Western Foothills geological zone, and the regional geology is 

rather complex. The geological formations, as shown in Figure 4, include the Hunghwatzu 

formation (thick-bedded siltstone and alternating thick siltstone and sandstone), 

Yenshuikeng shale (massive shale), Tangenshan sandstone (thick-bedded sandstone and 

muddy sandstone), the Changchikeng formation (alternation of sandstone and shale), ter-

race deposits, and recent alluvium. The thickness of overburden was about 0.3–1.8 m [29]. 

The types of soil properties were silt, sand, and clay with rock debris [29]. 

 

Figure 3. Typhoon Morakot landslide inventory for the Xiaolin area. 
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Figure 4. Geological map of the Xiaolin area. 

The Xiaolin syncline passes the high river terrace east of Xiaolin village. The strike of 

the fold axis runs north-northeast to south-southwest (NNE–SSW), and the dip runs to-

ward the south, where part of the area is dip slope. The Chiahsien fault passes through 

the east side of the syncline at a distance of about 800–900 m. Two kilometers eastward, 

another major fault, the Chishan, passes through the area. The Xiaolin area has many frac-

tured zones as a result of these various geological structures (e.g., the syncline and the 

faults). During 7–10 August 2009, Typhoon Morakot attacked in Taiwan. The extreme du-

ration and intensity of the rainfall caused many landslides in the mountainous area near 

the village of Xiaolin. Ultimately, the village was completely destroyed and buried by de-

bris from a deep-seated landslide, resulting in the loss of 500 lives. 

The modified inventory of Morakot-induced landslides (Figure 3) was calibrated by 

Deng et al. [30] using a semi-automatic method and visual interpretation. The magnitude 

characteristics of the landslide distribution is shown in Table 2 and briefly described as 

below. Total landslide area was 623.9 ha, comprising 144 separate landslides. The separate 

landslides contained 16 large-scale slides and 128 small-scale slides. The large-scale slides 

contributed 57.3% of the total landslide area. The small-scale slides occupied 42.7% of the 

total landslide area [30]. Most landslides occurred on slopes of 20–40° [30]. The geological 

characteristic of landslides mainly distributed in Tangenshan sandstone and Chang-

chikeng formation [30]. Factors related to stream systems had the strongest influence on 

the landslides. Most landslides of the Xiaolin area were belong to shallow debris slide [29]. 

The detailed investigation of Xiaolin village main landslide was performed by Lee et al. 

[31]. The sliding source area of the Xiaolin village landslide was 57 ha. The landslide was 

classified into the deep-seated landslides class due to its average sliding thickness was 40 

m. The slide volume was approximately 2.39 × 107 m3, and its material was composed of 

Tangenshan sandstone, Yenshuikeng shale, and colluvium. Of course, this deep-seated 

landslide is not suitable to the infinite slope stability model. However, this area can also 

be predicted by TRIGRS model with 61.5% success rate of slide area.  
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In the present study, we used the rainfall-induced landslide event in the Xiaolin area 

to test the system (Figure 3). Total study area was 4005 ha. This system testing was in-

tended to simulate and display real-time regional slope stability in the Xiaolin area during 

Typhoon Morakot. The results of the testing are discussed below. 

Table 2. Magnitude characteristics of the landslides in the Xiaolin area [30]. 

Size Class 
Number of 

Landslides 

Total Area 

(ha) 

Proportion of 

Total Number 

(%) 

Proportion of 

Total Area (%) 

Large (>10 ha) 16 357.6 11.1 57.3 

Small (<10 ha) 128 266.3 88.9 42.7 

3.2. Real-Time Rainfall Setting 

The real-time rainfall data used for the system testing was the hourly rainfall history 

of Typhoon Morakot from 00:00 on 7 August to 00:00 on 10 August. In order to produce 

real-time regional rainfall layers, we collected the spatial information for and rainfall his-

tory data from a total of 58 rainfall stations in the Gaoping River basin, in which the 

Xiaolin area is situated. The data collected were input into the MySQL real-time rainfall 

database in advance of the system testing. The real-time rainfall data retrieving system 

would then connected to the MySQL database to extract the specific rainfall data to pro-

duce the regional rainfall layers that would support the real-time landslide-susceptibility 

analysis conducted during Typhoon Morakot. 

3.3. Required Parameter Layers for TRIGRS 

The regional parameter layers that had to be set manually before executing the real-

time landslide-susceptibility analysis were the slope gradient α , the saturated soil unit 

weight sat , the depth of the impermeable basal boundary LZd , the depth of the initial 

ground water table Zd , the saturated hydraulic conductivity satK , the saturated hydrau-

lic diffusivity 0D , the soil cohesion for effective stress c , the soil friction angle for effec-

tive stress ' , and the steady (initial) surface flux 
,Z steadyI . The slope gradient layer was 

calculated using the actual elevation of the Xiaolin area in ArcGIS (Figure 5a). The depth 

of the impermeable basal boundary was the same as the soil thickness. The soil thickness 

for each grid cell with the size of 40 m × 40 m was evaluated using an empirical formula 

based on a soil-thickness survey of the Gaoping River basin by Tang et al. [16], as shown 

in Equation (11). The evaluated soil thickness values were based on the actual slope gra-

dient for each grid cell (Figure 5b). The initial groundwater level was set at the soil–rock 

interface, with the same distribution as for LZd  (Figure 5b). The saturated soil unit weight 

layer is shown in Figure 5c. The 
,Z steadyI  layer was set as 10−8 m/s to reduce the feasible 

optimal solution region (Figure 5d).  

The hydrogeological parameters satK , 0D , c , and '  were set using the calibrated 

results from the reverse-optimization analysis in TRISHAL (Figure 6). The landslide event 

used to calibrate the parameters was Typhoon Toraji. In the evaluation of the calibrated 

performance, the 1R  was 64.4%. The 4R  was 80.7% and the AUC was 0.78.  

The hydrogeological measured parameters of shallow materials in the study area 

based on Sinotech Engineering Consultants, Inc. (Taipei, Taiwan) [29], Wu et al. [32] and 

Chen [33] are shown in Table 3. The calibrated parameters by optimization are also listed 

in Table 3 in comparison to the test values. It was found the unit weight of calibrated 

values in general less than, but close to the test values. Although the calibrated soil cohe-

sions in Tangenshan sandstone and Hunghwatzu formation are higher than the measured 
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values, however, the calibrated friction angles are lower than the measured values in gen-

eral. Since both cohesion and friction angle contribute to the shear strength of soils; thus, 

the calibrated shear strengths will not differ from the test values much. The measured 

saturated hydraulic conductivities from tests are very scattered. The calibrated values are 

in between the range of the measures values. There are no test values of saturated hydrau-

lic diffusivity 0D  and initial steady surface flux 
,Z steadyI  in the study area. Only the esti-

mated parameters are reported by Sinotech Engineering Consultants, Inc. [29]. The cali-

brated 0D  and 
,Z steadyI  are larger than the above estimated values in general. The authors 

have tried to use the measured and estimated parameters from above literatures to per-

form forward predictions. However, the results were not acceptable. The results indicated 

that the calibrated parameters could then be applied preliminarily in the system testing. 

ln( ) 0.0454 1.44LZd α    (11)

 

  

  

Figure 5. Required fundamental parameter layers for the Transient Rainfall Infiltration and Grid-based Regional Slope-

Stability (TRIGRS) model: (a) Slope gradient; (b) Soil thickness; (c) Saturated soil unit weight; (d) Initial steady surface 

flux. 
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Figure 6. The calibrated parameter layers produced by the optimization reverse analysis: (a) Saturated hydraulic conduc-

tivity; (b) Saturated hydraulic diffusivity; (c) Soil cohesion for effective stress; (d) Soil friction angle for effective stress. 

Table 3. The hydrogeological measured and calibrated parameters of shallow overburdens in the Xiaolin area. 

Geological 

Setting 

The Parameters of Shallow Overburdens 

t  

(kN/m3) 

c  
(kPa) 

'  

(°) 

satK  

(10−6 m/s) 

0D c 

(×10−4 m2/s) 

,Z steadyI  c 

(×10−8 m/s) 

Tangenshan 

sandstone 

18–24.3 b 

(19) 

0 a,b 

(3.1–5.2) 

30 a 

21.4 b 

(24.5–32) 

0.15–595 b 

(1) 

0.24–0.28 

(10) 

0.08–0.09 

(1) 

Yenshuikeng 

shale 

- 

(18.5) 

0–10 b 

(6.9–9) 

23.2–25.5 b 

(20) 

1.68–495 b 

(10) 

0.21–0.24 

(6) 

0.07–0.08 

(1) 

Changchikeng 

formation 

- 

(18.4) 

- 

(6.8~8) 

- 

(20) 

- 

(10) 

0.45–0.52 

(1) 

0.15–0.17 

(1) 

Hunghwatzu 

formation 

- 

(18.3) 

0 a 

(7.2–8) 

31.5 a 

(20~21) 

- 

(10) 

0.3–0.35 

(1) 

0.1–0.12 

(1) 

Terrace  

Deposits 

21.4 a 

(18.2) 

- 

(6.8~8) 

- 

(20) 

- 

(100) 

1.8–2.2 

(100) 

0.63–0.74 

(1) 

Recent 

Alluvium 

19.7–20.9 a 

(18.1) 

- 

(7.3–8.5) 

- 

(20) 

- 

(100) 

75–88 25–29 

(1) (50) 
a: The test parameters from Sinotech Engineering Consultants, Inc. [29]. b: The test parameters from Wu et al. [32] and Chen 

[33]. c: The estimated parameters from Sinotech Engineering Consultants, Inc. [29]. The brackets are the calibrated param-

eters from this study. 
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3.4. Real-Time Landslide Nowcasting in the Xiaolin Area 

The Morakot-induced landslide event in the Xiaolin area was used to test the system 

for real-time nowcasting of regional landslide susceptibility. The system timers were acti-

vated to automatically run the real-time landslide warning procedure hour by hour. The 

total time of the analysis under Typhoon Morakot was 72 h, from 00:00 on 7 August to 

00:00 on 10 August. The regional rainfall layers in ASCII file format were produced using 

the real-time rainfall data retrieving system. The real-time safety factor maps were pro-

duced using the real-time landslide-susceptibility analysis function using the TRIGRS 

with finite boundary condition in the TRISHAL program, after confirming the existence 

of the regional rainfall layer at each specific time and of the required layers for the TRIGRS 

program. Finally, the FS maps were displayed in the ArcMap window, using the real-time 

display system, to show the dynamic regional slope stability of the Xiaolin area during 

Typhoon Morakot. Simultaneously, the hourly and cumulative rainfall history at the rain-

fall station concerned, along with the maximum cumulative rainfall at the time of display, 

was shown in the interface of the TRISHAL program. For each new hourly rainfall data, 

the execution time of the nowcasting scheme in Figure 1 was about 2 min in average for 

the study area. 

The system-testing results obtained from the real-time nowcasting system for land-

slide susceptibility in the Xiaolin area during Typhoon Morakot are shown in Figure 7. 

The figure simultaneously shows the hourly rainfall history, the cumulative rainfall his-

tory and the landslide-susceptibility maps. Areas shaded green in the maps have FS ≥ 1, 

i.e., they are stable, and those shaded red have FS < 1, i.e., they are unstable. At 01:00 on 7 

August, during the initial stages of Typhoon Morakot, the slopes are still stable. By 06:00 

on 7 August, failure-risk grid cells are beginning to appear over the whole area, including 

the main area of collapse around Xiaolin Village (Figure 7a). At this time, the station with 

the most cumulative rainfall is Shangdewun, with a cumulative rainfall of 185.5 mm and 

a maximum hourly rainfall of 57 mm. As the duration of the rainfall event increases, the 

number of grid cells with a risk of landslides increases (Figure 7b). By 00:00 on 8 August, 

there is a large number of unstable grid cells in the area of collapse around Xiaolin Village 

(Figure 7c). Again, the station with the most cumulative rainfall is Shangdewun, with a 

cumulative rainfall of 1003 mm and a maximum hourly rainfall of 63.5 mm. By 12:00 on 8 

August, the distribution of the grid cells with a risk of failure is approaching the final 

result. The unstable grid cells in the main area of collapse around the Xiaolin Village are 

distributed in the source and flow areas, not in the deposition area. The station with the 

most cumulative rainfall is once again Shangdewun, with a cumulative rainfall of 1576 

mm and a maximum hourly rainfall of 80 mm. The final map of landslide susceptibility, 

for 00:00 on 10 August, is shown in Figure 7d. At this stage, the station with the most 

cumulative rainfall is Weiliaoshan, with a cumulative rainfall of 2540 mm and a maximum 

hourly rainfall of 117 mm. 

These system-testing results demonstrate the practical feasibility of the real-time 

landslide-nowcasting system developed in this study. This system could thus be used in 

the further development of practical disaster prevention and mitigation systems. 
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(a) (b) 

  

(c) (d) 

Figure 7. The real-time regional landslide-susceptibility display during Typhoon Morakot. (a) 06:00 on 7 August 2009. (b) 

12:00 on 7 August 2009. (c) 00:00 on 8 August 2009. (d) 00:00 on 10 August 2009. 

4. Discussion 

The real-time nowcasting system for regional landslide-hazard assessment was ini-

tially integrated, and our system testing showed its performance to be feasible. The limi-

tations and suggestions for improvement of the system are discussed here. The real-time 

rainfall data source for the landslide-susceptibility analysis was the current hourly rainfall 

observations of the rainfall stations, with the data extracted from the public CWB website. 

Since time is of the essence in disaster-prevention and -mitigation decision-making, we 

focused on improving the timeliness of the results in our system optimization, to ensure 

the practical applicability of the system. The use of radar-based rainfall data and rainfall-

forecast data from relevant government agencies could increase the buffer time and en-

hance the system’s early-warning capabilities. The setting of rainfall parameters could be 

directly interfaced with the standard regional rainfall raster layers provided by the gov-

ernment, which could reduce the uncertainty and increase the reliability of the landslide-

susceptibility warning results.  

The landslide prediction was more accurate where conditions favored planar failure, 

due to the assumptions of the TRIGRS model. The rising of the water table and the lateral 

flow conditions were not considered in the model. It was difficult to get the ideal concept 

of the theoretical model to agree with the actual slope data, due to the high level of uncer-

tainty regarding slopes in the area. The resolution of the landslide-susceptibility maps 
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produced by the system was therefore low. This resolution could be useful for disaster-

prevention and -mitigation planning, but would not be useful for engineering design. 

This research selected the area around Xiaolin Village as the study area has four fol-

lowing reasons. (a) The area suffered most serious landslide events. It is possible to collect 

more extensive and detailed investigation reports around the area. (b) This study used 

google earth and satellite image to carefully check and delineate the correct landslide area 

manually (not include transport and deposit region). It needs about one month to finish 

the work for this area. (c) If the study area is too large, more computer resources were 

needed. It may be unaffordable for us. (d) This study is just a beginning to demonstrate 

such a unique landslide warning system is workable or not. 

Regional landslide stability model cannot analyze the deep-seated landslide neigh-

boring Xiaolin Village. Since the deep-seated landslide is a kind of site-specific problem, 

its prediction requires more detailed parameters and data which are unable to obtain in 

regional analysis. However, in general conditions, the infinite slope analysis model used 

in TRIGRS computes lower factors of safety than more rigorous methods of stability in 

areas where failure surfaces tend to be non-planar [14,18]. This means the infinite slope 

analysis model is conservative when apply to the cases of deep-seated landslide. 

The hydrogeological parameters used in the system testing were well calibrated. The 

system’s performance was evaluated by comparing the predicted landslide susceptibility 

in Figure 7d with the actual inventory of Morakot-induced landslides. The 1R  was 48.5%, 

the 4R  was 60%, and the AUC index was 0.59. In this study, the parameters of such large 

regional area were calibrated by one antecedent rainfall event only. The training is not 

enough. Therefore, it is difficult to obtain very good match to the landslide results of next 

rainfall event. Although the calculation model cannot be used to predict deep-seated land-

slide. It also can predict 61.5% failure ratio of Xiaolin deep landslide area. Moreover, the 

failure grid cells covered 80% of the grid cells in which actual landslides occurred. Alt-

hough the performance of the calibrated hydrogeological parameters was only potentially 

acceptable for application in the nowcasting system, the accuracy of these parameters, 

which were produced by the reverse-optimization analysis, could be further improved by 

more training events and more proper geotechnical characterization of overburdens of 

different lithologies in future research. 

This research has provided the concepts for developing the system and the results of 

the system testing, and it confirms the feasibility of a real-time regional landslide-suscep-

tibility warning system. For practical application in disaster prevention, it is necessary for 

the system to operate stably over long periods. This is closely linked to the robustness of 

the system operating environment, the development software, and system maintenance. 

Potential upgrades of the system would improve the integration interface and the sys-

tem’s operating environment to provide stability in the analysis of real-time landslide sus-

ceptibility for decision-making in disaster-mitigation contexts. 

The system used safety-factor maps based on regional slopes to predict landslide sus-

ceptibility. This was a preliminary demonstration of the practical application and use of 

the system in disaster-prevention planning. The display maps produced by the system 

could be overlapped with maps of settlements and traffic hubs to provide warning infor-

mation concerning the safety of communities and road traffic to the relevant authorities. 

An advanced application of the system could be to contribute to the establishment of prac-

tical landslide-disaster warning criteria and protection strategies. 

5. Conclusions 

In this study, we have successfully integrated a real-time rainfall data retrieving sys-

tem, a landslide-susceptibility analysis program (TRISHAL), and a real-time landslide-

potential display system to establish an automated real-time regional landslide-nowcast-

ing system. This system could be used to observe the changing stability of regional slopes 

under extreme rainfall for the purposes of disaster prevention and mitigation. 
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The reverse-optimization analysis function was integrated into the RGA of the opti-

mization techniques and the improved TRIGRS model to calibrate the regional hydroge-

ological parameters. The calibrated parameters could then be used in the real-time land-

slide-susceptibility analysis because they considered the physical mechanisms of land-

slides and the actual landslide inventory.  

The calculation speed of the real-time landslide-susceptibility analysis was upgraded 

by improving the program structure of the TRIGRS model and introducing the technique 

of parallel computing. This improvement could be used to enhance the timeliness of dis-

aster-prevention measures and the analysis of big data in future research. 
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