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Abstract: In recent years, many studies have been performed to develop simple and accurate methods
to design micro-irrigation systems. However, most of these studies are based on numerical solutions
that require a high number of iterations and attempts, without ensuring to maximize water use
efficiency and energy-saving. Recently, the IRRILAB software, which is based on an analytical
approach to optimally design rectangular micro-irrigation units, has been developed, providing the
solution corresponding to the maximum energy-saving condition, for any slope of the laterals and
of the manifold. One IRRILAB limitation is that, according to its theoretical basis, the rectangular
planform geometry and uniform slope of the laterals and of the manifold are required. On the
contrary, IRRIPRO software, which is based on the traditional numerical solution, does not have
the aforementioned limitations, but requires an important number of attempts, especially when
common emitters are used. In this study, the results of a joint use of IRRILAB and IRRIPRO software
applications are illustrated, towards the aim to verify the IRRILAB performance in a large number of
micro-irrigation sectors belonging to a Sicilian apple farm, which is characterized by a high irregular
topography, thus it is suitable for the purpose of this study. First, only five irrigation sectors, for
the actual subdivisions of the farm, were considered, showing limited reasonable IRRILAB results.
Dividing the farm into a higher number of sectors so as to provide a better uniformity in planform
geometry and slope revealed that IRRILAB results improved in terms of emission uniformity and
energy consumption, as verified by IRRIPRO applications. The energy-saving provided by IRRILAB
(in one step) with respect to that by IRRIPRO (by attempts) resulted higher for common emitters (CEs)
(−15% for five sectors and −9% for nine sectors) than for pressure compensating emitters (PCEs)
(−7% for five sectors and−6% for nine sectors). In absolute terms, the energy is greater for five-sector
subdivision than for nine-sector subdivision. For both software, the use of PCEs always required less
energy than CEs, because of the higher range of pressure compensating of PCEs than CEs. However,
PCEs are characterized by less durability and by a higher manufacturing variation coefficient, thus
they should not be the first choice. In conclusion, IRRILAB software could be recommended because
it is easy to use, making it possible to save energy, especially when sectors are almost rectangular
and uniform in slopes.

Keywords: micro-irrigation systems; IRRILAB software; IRRIPRO software; common emitters;
energy-saving

1. Introduction and Theoretical Background

Agriculture accounts for roughly 70% of total freshwater withdrawals and for over
90% in the majority of the least developed countries [1,2]. Without improving efficiency
strategies, agricultural water consumption is expected to increase by about 20% by 2050 [3]
and the world could face a 40% global water deficit by 2030 under a business-as-usual
scenario [4,5].
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Under these critical water availability conditions and the projections that indicate
the need to increase agricultural production, rational management of water is essential
to enhance water productivity, i.e., the ratio between the agricultural benefit and the
water supplied. Thus, it is increasingly advocated to focus efforts on enhancing water
management in irrigated agriculture [6].

Drip irrigation has been increasingly preferred to other irrigation systems in order
to save water, especially in arid and water-scarce countries, since it makes it possible to
increase crop yield per any drop of water supplied [7], thus maximizing the irrigation
water use efficiency.

Therefore, in the context of the growing scarcity of water resources [8], the use of
micro-irrigation has become widespread also due to its high irrigation efficiency, especially
where water is expensive or scarce, soils are sandy or rocky [9], and where high-value crops
are produced [10,11]. Tiwari [12] mentioned that micro-irrigation is the most effective way
to supply water and nutrients to the plant and does not only save water but also increases
crop yield and quality. This is achieved by allowing water to drip slowly to the plants
roots, either onto the soil surface or directly near the root zone, through the pressurized
piping system that consists of water supply and pump followed by a network of mainlines,
manifold, and laterals with evenly spaced emitters.

Although the micro-irrigation system allows for water use efficiency to be optimized
and high values of emission uniformity, its benefits may be nullified by a not appropriate
design. Thus, the primary objective of the good micro-irrigation system design is to
provide sufficient system capacity to adequately meet crop water needs and assuring a
high emission uniformity of water application. The proper choice of system components is
also very recommended for a good hydraulic design [13], which is considered one of the
most important factors in the success or failure of the micro-irrigation design, since it is also
responsible for pursuit of the pressure head distribution along the lateral line for obtaining
uniform application of water in the field [14]. The properly designed micro-irrigation
system should also be a low-energy system, and it has to consider the effect of the slope,
because neglecting the field slopes leads to inappropriate design of lateral pipe diameter
and length [15].

The study of drip laterals has been widely addressed over many years, and conse-
quently, numerous methods have been developed for the hydraulic design of drip irrigation
laterals [16]. In recent years, many studies have been performed to develop simple and
accurate methods for designing a micro-irrigation system and calculating the design vari-
ables. Some of these studies addressed one-lateral units [7,17–24], while others deal with
the entire irrigation unit regarding the manifold with many laterals [25–29].

Because of the difficulties in establishing relationships between the input parame-
ters that characterize the irrigation units and the output design variables, most of these
studies have been based on graphical or numerical solutions. Design solutions are usually
obtained by using time-consuming iterations that require many trial-and-error attempts,
performed by applying the basic hydraulic equations from the manifold to the end of both
the downhill and the uphill sides of the laterals. On the contrary, analytical approaches are
more practical and provide more insight into the design relationships between the input
and output data. Moreover, the analytical methods allow trade-offs between pertinent
design parameters [30]. In addition to that, they do not need iterations to be coded in
computer programs.

Recently, an analytical procedure was proposed to optimally design paired drip
laterals laid on uniform slopes, providing readily obtainable results and energy-saving, by
considering pressure compensating emitters (PCEs) and common emitters (CEs). The latter
is characterized by many advantages with respect to PCEs, such as long shelf-life, low cost,
and they are commonly used when fields are almost flat. For high-slope fields, the actual
tendency is to choose PCEs, because of difficulties in finding appropriate design solutions.

To solve the laterals design in sloping fields by using CEs, Baiamonte et al. [22]
considered the motion equation along uphill and downhill sides of the lateral and the
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hypothesis to neglect: (1) the variations of emitters’ flow rate along the lateral, with this
hypothesis providing a good approximation if the ratio between the emitters’ flow rate
variation and its average is small, it should be less than 10% [31,32], as well as (2) the local
losses due to emitters’ insertions so that the formation of emitter connections does not
produce significant reductions of the lateral cross-section. The proposed methodology
makes it possible to separately determine the number of emitters in the uphill and the
downhill sides of the lateral, and therefore, once fixing the emitter’s spacing, the length of
the uphill and downhill laterals and the best position of the manifold need to be determined.
However, the methodology proposed by Baiamonte et al. [22] appears complicated since it
involves solving a system of four implicit equations.

By maintaining the same aforementioned hypotheses and using exponential laws and
power functions that approximate the analytical solution well, Baiamonte [24] simplified
the analytical procedure proposed by Baiamonte et al. [22]. This solution is based on four
calibration parameters for each unknown variable, such as the number of emitters in the
uphill lateral, nu, the number of emitters in the downhill lateral, nd, the minimum emitter
pressure head in the downhill lateral, imin, and the slope of the lateral, S0,L, providing
the simple explicit relationships as a function of 16 calibration constants, with relative
errors that were less than 2% compared with the Step-By-Step (SBS) procedure that is
unanimously recognized and assumed to have the greatest level of accuracy. Moreover,
an easy method to determine the best position of the manifold (BMP) associated to the
optimal lateral length on uniform slopes, which could be 0 or 0.5 in flat field and 0 and 0.24
in sloping fields, was proposed.

Baiamonte [7] further simplified the proposed procedure of Baiamonte [24] by reduc-
ing the calibration constants from 16 to 3, providing much simpler and explicit relationships,
and making evident the influence of flow rate and pipe diameter exponents (r, s) pertaining
to the resistance equation in the design variables. This analytical approach makes it possible
to optimize the lateral design and energy-saving.

Since the analytical approaches described by Baiamonte [24] dealt with a partial
approach, because they only provided analytical solutions for one lateral unit, the same
relationships were then used by Baiamonte [29] to derive explicit relationships that are
valid for rectangular micro-irrigation units, through extending the design relationships to
the manifold where the laterals are connected. This made it easy to understand all of the
factors affecting the micro-irrigation unit design, and the design procedure was coded in a
simple software application named IRRILAB [29].

The first objective of this paper is to test IRRILAB in designing micro-irrigation units
by using IRRILAB output parameters in IRRIPRO software, in order to check the uniformity
goodness of the emitters, the pressure heads’ distribution, and the emission uniformity.
This was possible by using the IRRIPRO features that are missing in IRRILAB. Moreover,
the performance of IRRILAB in designing micro-irrigation units, characterized by non-
uniformity in the slopes and in the planform geometry of the sectors, compared with the
exactly rectangular sector shape that IRRILAB requires, is a secondary objective of this
paper. The IRRILAB ability in saving energy in case of using common emitters (CE) and
pressure compensating emitters (PCE) is also discussed.

The applications were performed on the apple farm named MELIDIONALE of about
8.5 hectares in the countryside of Mangiante, Caltavuturo (PA), Italy, which is characterized
by highly irregular topography, and thus it is suitable for the purpose of this study.

2. IRRILAB and IRRIPRO Software
2.1. IRRILAB Software

IRRILAB software application introduced by Baiamonte [29] allows a simple design
of micro-irrigation units and can be applied to any laterals and manifold slopes. IRRILAB
requires a simple rectangular sketch, oriented any way in the space, and defined by two
slope values, one for the laterals and one for the manifold. By considering the possible
combinations of: (1) horizontal, downward, or upward sloped laterals and manifold,
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(2) the manifold position with respect to the laterals (BMP = 0, 0.24, or 0.5), and (3) the
best inlet position with respect to the manifold (BIP = 0, 0.24, or 0.5), IRRILAB accounts for
25 irrigation unit layouts, as shown in Figure 1, providing for each of them the maximum
energy-saving and water use efficiency.
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Figure 1. 25 irrigation sector layouts considered by IRRILAB, by varying the lateral slope (S0,L < 0, S0,L > 0, S0,L = 0), the
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(BIP = 0, 0.24, 0.5). Qualitative pressure head distribution lines are represented for a lateral and for the manifold. Reprinted
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For each layout, the derived explicit relationships can be gainfully used to further
derive other design parameters, such as the emitter’s hydraulic characteristics, the required
inlet flow rate, the inlet pressure head, the manifold inside diameter, the number of rows,
the irrigation unit area, and the water application rate, as well as other important variables
such as the Reynolds number for laterals and manifold [29].

The first IRRILAB validation in the field was performed for Layout #17, which is
marked by green color in Figure 1, through accomplished work of a Master of Science
thesis at the University of Palermo [33]. The pressure distribution was checked in field
experiments for a rectangular sector uniform in slope, for both manifold and laterals, and
compared with those obtained by IRRILAB. This experimental validation showed very
promising results since data provided by IRRILAB matched the experimental ones.

2.2. IRRIPRO Software

IRRIPRO software represents an innovative and powerful product based on an inno-
vative algorithm that makes it possible to numerically design micro-irrigation subunits
with any planform geometry. The proposed algorithm, based on numerical simulations,
assures the correct design of the micro-irrigation systems, which enables the design and
management. This method provides all the tools for analysis and diagnostics needed to
evaluate the effects of each design choice made by the user, the identification of potential
malfunctions, and shows a graphical representation of the results, especially in terms of
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pressure head distribution, which can be easily detected by colored maps, highlighting the
overpressure and under-pressure conditions (Figure 2a). In addition, there is the possibility
to compare the different design choices with a calculation of the different solutions’ costs,
through the detailed database that is included in the software. The materials present in the
markets, so the cheapest solution can be adopted, is also considered [27].
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IRRIPRO takes into account any planform geometry and slope of the sector and starts
from the hydraulic and geometric parameters for achieving the design (Figure 2b). The
latter allows the users to easily proceed to input the geometric, topographic, and hydraulic
data of the irrigation systems [27].

Arshad et al. [34] mentioned that the results provided by IRRIPRO are considered
a good representation of the micro-irrigation system compared to the field results; in
addition, the IRRIPRO software can help to test and analyze any alternative design from a
hydraulic and economic point of view.

2.3. Motivation of Joint Use of IRRILAB and IRRIPRO

Notwithstanding the many advantages of IRRILAB, which is based on analytical
solutions and does not require trial-and-error attempts and iterations, the slope uniformity
and the rectangular planform geometry is an important condition to be respected. Moreover,
IRRILAB can be applied to just one rectangular unit and does not allow the user to
simultaneously design a multiplicity of subunits. It is unlike its counterpart IRRIPRO,
which is based on the numerical solutions according to the Step-By-Step (SBS) procedure,
and needs many trial-and-error attempts and iterations for solving tedious calculations for
designing micro-irrigation units, especially when working with common emitters (CEs)
in sloping fields. The latter issue is particularly important, since CEs require the pressure
head–flow rate relationship to be considered, whereas pressure compensating emitters
(PCEs), which theoretically assumed a constant emitter flow rate, are much simpler to use
in sloping fields.

IRRIPRO can design micro-irrigation subunits characterized by non-uniformity slopes
and irregularity of the subunit planform geometry. In the meantime, IRRIPRO is lacking the
advantages of IRRILAB in saving energy by achieving the allowed pressure head values,
and in finding the solution without iterations and attempts. Therefore, the joint use of
IRRILAB and IRRIPRO software may offer a unique solution in designing micro-irrigation
units, through capturing the positive aspects of both, and meanwhile overcoming the
negative ones. Thus, the joint use of both software could lead to design by IRRILAB
and verifying the results by IRRIPRO, being much less time-consuming and much more
energy-saving.

3. IRRILAB and IRRIPRO Applications

The study area is an apple farm named MELIDIONALE (www.melidionale.it, accessed
on 25 September 2020, by Giacomo Armò Pirrone), located at Mangiante, near Caltavuturo
(Palermo, Sicily), as displayed in Figure 3a. The MELIDIONALE farm is extended about
8.5 hectares, and it is characterized by a mean altitude of about 950 m a.s.l. The climate is
Mediterranean, characterized by abundant rainfall accompanied by snowy phenomena
in winter, with an average annual temperature of around 10–17◦C. The entire agricul-
tural holding in MELIDIONALE farm is managed in compliance with the re-quire-ments
applicable to organic production.

To satisfy the crop water requirement, the farm has a reservoir, with a usable water
capacity of 8500 m3, as shown in Figure 3b. The reservoir is located at 103 m below the
apple farm (Figure 3b), so a lot of energy is required by the micro-irrigation system, and the
farmer is interested in reducing the required energy and increasing the emission uniformity
as much as possible.

Actually, the farm is subdivided into five cultivated sectors. These sectors were
characterized by “non-uniformity” in the slopes and in the planform geometry, as shown
in Figure 3a, which illustrates a three-dimensional (3D) Google Earth view of the actual
apple farm, not fitting the IRRILAB requirements enough. Thus, this case study is a good
experimental area to test IRRILAB and to show its design performance in case of addressing
the issue pertaining to the non-uniform topography, and also to compare IRRILAB results
with IRRIPRO standing alone, without IRRILAB suggestions.

www.melidionale.it
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actually subdivided into five cultivated sectors, and (b) two-dimensional (2D) Google Earth view of
the apple farm, illustrating the reservoir location (859 m a.s.l.).

Towards this aim, the micro-irrigation system of the actual “non-uniform” five sectors
of the farm was designed twice. First by IRRILAB and by using IRRIPRO to verify its
design, and second by IRRIPRO, independently of IRRILAB suggestions, i.e., by attempts.
Moreover, two different types of emitters (CEs and PCEs) were considered in order to make
it possible to compare both emitter types with reference to both software. For verifying
the latter in detail, the apple farm was subdivided into sectors as uniform as possible to fit
the IRRILAB requirements, as it is described in the next section. Local losses due to the
emitters’ insertion into the laterals, which IRRIPRO can consider and in IRRILAB are not
implemented yet [35], were neglected in both software to make comparisons homogeneous.

3.1. IRRILAB Applications

For each sector, the mean slope along the laterals (S0,L) and manifold (S0,M) directions,
which are sensitive parameters in IRRILAB, were calculated by minimizing the mean square
error between the actual elevation distribution of each sector, and that of the equivalent
rectangular plane, described by the corresponding plane Equation (1):

S0,Mx + S0,Ly + cz = d (1)

where x, y, and z are the 3D coordinates, d is a parameter that refers to the elevation
reference, and c =

√
(1 − S0,L

2 − S0,M
2). As an example, Figure 4 shows two different 3D

views of sector #4 illustrated in Figure 3a. In Figure 4, the red color indicates the actual
morphology of sector #4, while the blue color indicates the corresponding equivalent sector
with uniform slopes. Figure 4 also shows the vector u (S0,L, S0,M, c) normal to the equivalent
plane (blue line).



Water 2021, 13, 694 8 of 24

Water 2021, 13, x FOR PEER REVIEW 8 of 26 
 

 

the emitters’ insertion into the laterals, which IRRIPRO can consider and in IRRILAB are 
not implemented yet [35], were neglected in both software to make comparisons homo-
geneous. 

3.1. IRRILAB Applications 
For each sector, the mean slope along the laterals (S0,L) and manifold (S0,M) directions, 

which are sensitive parameters in IRRILAB, were calculated by minimizing the mean 
square error between the actual elevation distribution of each sector, and that of the equiv-
alent rectangular plane, described by the corresponding plane Equation (1): 𝑆଴,ெ𝑥 + 𝑆଴,௅𝑦 + 𝑐𝑧 = 𝑑 (1)

where x, y, and z are the 3D coordinates, d is a parameter that refers to the elevation refer-
ence, and c = √ (1 − S0,L2 − S0,M2). As an example, Figure 4 shows two different 3D views of 
sector #4 illustrated in Figure 3a. In Figure 4, the red color indicates the actual morphology 
of sector #4, while the blue color indicates the corresponding equivalent sector with uni-
form slopes. Figure 4 also shows the vector u (S0,L, S0,M, c) normal to the equivalent plane 
(blue line). 

 
Figure 4. Two different 3D views of sector #4 belonging to the apple farm subdivided in five sectors (numbered in Figure 
3a), and the corresponding equivalent sector (blue color) with uniform slopes (S0,L = −0.054 and S0,M = −0.180). 

The parameters corresponding to the position of the manifold (BMP) and that of the 
water inlet into the manifold (BIP) were selected (Figure 1) according to the slopes of the 
actual 5 sectors, which correspond to Layout #6 (for sectors #1, #2, and #3) and to Layout 
#7 (for sectors #4 and #5). 

After the farm subdivision into a higher number of sectors, as it will be discussed 
later, Layout #22 was also considered, which together with Layout #6 and #7, mentioned 
above, are marked by red circles in Figure 1. The sketches of the laterals (L2, L5), which 
depend on S0,L and BMP, and those of the manifold (M1, M2), which depend on S0,M and 
BIP, are involved in all the considered layouts (#6, #7, and #22), and are illustrated in Table 
1a,b, respectively (rearranged by Baiamonte [28]). Therefore, as can be seen in these tables, 
designing each sector by IRRILAB and detecting the corresponding layout requires BMP, 
BIP, and the sign (negative downward and positive upwards) of the laterals and manifold 
slopes to be established (S0,L, S0,M). 

  

Figure 4. Two different 3D views of sector #4 belonging to the apple farm subdivided in five sectors (numbered in Figure 3a),
and the corresponding equivalent sector (blue color) with uniform slopes (S0,L = −0.054 and S0,M = −0.180).

The parameters corresponding to the position of the manifold (BMP) and that of the
water inlet into the manifold (BIP) were selected (Figure 1) according to the slopes of the
actual 5 sectors, which correspond to Layout #6 (for sectors #1, #2, and #3) and to Layout
#7 (for sectors #4 and #5).

After the farm subdivision into a higher number of sectors, as it will be discussed
later, Layout #22 was also considered, which together with Layout #6 and #7, mentioned
above, are marked by red circles in Figure 1. The sketches of the laterals (L2, L5), which
depend on S0,L and BMP, and those of the manifold (M1, M2), which depend on S0,M
and BIP, are involved in all the considered layouts (#6, #7, and #22), and are illustrated in
Table 1a,b, respectively (rearranged by Baiamonte [28]). Therefore, as can be seen in these
tables, designing each sector by IRRILAB and detecting the corresponding layout requires
BMP, BIP, and the sign (negative downward and positive upwards) of the laterals and
manifold slopes to be established (S0,L, S0,M).
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For common emitters (CEs), the IRRILAB design is performed according to the com-
mon design procedure that considers a value of the pressure head tolerance, δ = 0.1, in 
each sector, whereas in the case of using pressure compensating emitters (PCEs), the pres-
sure head tolerance can be set as significantly increased (δ = 60%). 

For each layout, other required IRRILAB input are the lateral length, Lopt,L, the lateral 
inside diameter, DL, the emitters spacing, (S = 1 m), the laterals spacing, (Srows = 3.8 m), as 
well as the pressure head tolerance for both the laterals, δL, and the manifold, δM. The 
output data are the design variables, namely the nominal (average) emitter pressure head, 
hn, the design emitter flow rate, qn, the manifold inside diameter, DM, the number of rows, 
nrows, the required inlet flow rate, qin, and the inlet pressure head, hin [28]. 

In IRRILAB, the pressure head tolerance of the irrigation unit, δ, is linked to the lat-
erals pressure head tolerance, δL, and to the manifold pressure head tolerance, δM, which 
can be arbitrarily fixed. If one wanted to fix the pressure head tolerance of the irrigation 
unit (δ = 10%) and that of the lateral δL (<0.1), the manifold pressure head tolerance, δM, 
can be calculated by the relationship, δ = (1 + δL) (1 + δM) − 1, suggested by Baiamonte [28], 
which yields (Equation(2)): 𝛿ெ = 1 + 𝛿1 + 𝛿௅ − 1 (2)

It should be noticed that, for a fixed δ value, the unit design by IRRILAB output pa-
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sector is uniform in slope. 

The aforementioned consideration explains why the investigated farm, characterized 
by irregular slopes and planform geometry, was chosen to test, in each sector, the good-
ness of the IRRILAB design by using its output parameters as input in IRRIPRO. Indeed, 
for regular sectors, IRRILAB was already fully tested numerically, as can be seen in Figure 
4 and in Figure 9 reported in Baiamonte [29]. 
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For common emitters (CEs), the IRRILAB design is performed according to the com-
mon design procedure that considers a value of the pressure head tolerance, δ = 0.1, in 
each sector, whereas in the case of using pressure compensating emitters (PCEs), the pres-
sure head tolerance can be set as significantly increased (δ = 60%). 

For each layout, other required IRRILAB input are the lateral length, Lopt,L, the lateral 
inside diameter, DL, the emitters spacing, (S = 1 m), the laterals spacing, (Srows = 3.8 m), as 
well as the pressure head tolerance for both the laterals, δL, and the manifold, δM. The 
output data are the design variables, namely the nominal (average) emitter pressure head, 
hn, the design emitter flow rate, qn, the manifold inside diameter, DM, the number of rows, 
nrows, the required inlet flow rate, qin, and the inlet pressure head, hin [28]. 

In IRRILAB, the pressure head tolerance of the irrigation unit, δ, is linked to the lat-
erals pressure head tolerance, δL, and to the manifold pressure head tolerance, δM, which 
can be arbitrarily fixed. If one wanted to fix the pressure head tolerance of the irrigation 
unit (δ = 10%) and that of the lateral δL (<0.1), the manifold pressure head tolerance, δM, 
can be calculated by the relationship, δ = (1 + δL) (1 + δM) − 1, suggested by Baiamonte [28], 
which yields (Equation(2)): 𝛿ெ = 1 + 𝛿1 + 𝛿௅ − 1 (2)

It should be noticed that, for a fixed δ value, the unit design by IRRILAB output pa-
rameters should provide a pressure head distribution in between the theoretical minimum 
admitted pressure head, hmin = hn (1 − δ), and the theoretical maximum admitted pressure 
head, hmax = hn (1 + δ), only if the planform geometry of the sector is rectangular and the 
sector is uniform in slope. 

The aforementioned consideration explains why the investigated farm, characterized 
by irregular slopes and planform geometry, was chosen to test, in each sector, the good-
ness of the IRRILAB design by using its output parameters as input in IRRIPRO. Indeed, 
for regular sectors, IRRILAB was already fully tested numerically, as can be seen in Figure 
4 and in Figure 9 reported in Baiamonte [29]. 
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Table 2. Resistance equation parameters of the laterals (rL, sL, kL), best manifold position (BMP), and
calibration constants (B1, B2), for Blasius and Hazen-Williams formula. Rearranged with permission
from ref. [29], Copyright 2020, Elsevier (Amsterdam, The Nether-lands).

Resistance Equation rL sL kL BMP B1 B2

Blasius 1.750 4.750 7.788 10−4 0.24 7.35 2.34
Hazen-Williams 1.852 4.871 10.675 C−r 0.25 7.07 2.34

For common emitters (CEs), the IRRILAB design is performed according to the com-
mon design procedure that considers a value of the pressure head tolerance, δ = 0.1, in each
sector, whereas in the case of using pressure compensating emitters (PCEs), the pressure
head tolerance can be set as significantly increased (δ = 60%).

For each layout, other required IRRILAB input are the lateral length, Lopt,L, the lateral
inside diameter, DL, the emitters spacing, (S = 1 m), the laterals spacing, (Srows = 3.8 m),
as well as the pressure head tolerance for both the laterals, δL, and the manifold, δM. The
output data are the design variables, namely the nominal (average) emitter pressure head,
hn, the design emitter flow rate, qn, the manifold inside diameter, DM, the number of rows,
nrows, the required inlet flow rate, qin, and the inlet pressure head, hin [28].

In IRRILAB, the pressure head tolerance of the irrigation unit, δ, is linked to the laterals
pressure head tolerance, δL, and to the manifold pressure head tolerance, δM, which can
be arbitrarily fixed. If one wanted to fix the pressure head tolerance of the irrigation unit
(δ = 10%) and that of the lateral δL (<0.1), the manifold pressure head tolerance, δM, can
be calculated by the relationship, δ = (1 + δL) (1 + δM) − 1, suggested by Baiamonte [28],
which yields (Equation(2)):

δM =
1 + δ

1 + δL
− 1 (2)

It should be noticed that, for a fixed δ value, the unit design by IRRILAB output pa-
rameters should provide a pressure head distribution in between the theoretical minimum
admitted pressure head, hmin = hn (1 − δ), and the theoretical maximum admitted pressure
head, hmax = hn (1 + δ), only if the planform geometry of the sector is rectangular and the
sector is uniform in slope.

The aforementioned consideration explains why the investigated farm, characterized
by irregular slopes and planform geometry, was chosen to test, in each sector, the goodness
of the IRRILAB design by using its output parameters as input in IRRIPRO. Indeed, for
regular sectors, IRRILAB was already fully tested numerically, as can be seen in Figure 4
and in Figure 9 reported in Baiamonte [29].

In IRRILAB, the explicit design relationships that are used vary according to BMP,
BIP, S0,L, and S0,M, providing the already mentioned 25 layouts (Figure 1). In the following,
for the Layouts #6, #7, and #22, which were considered in the present study and that can
be solved by using the same design relationships (see layouts #6, #7, and #22 in Table 5
reported in Baiamonte [29]), the IRRILAB procedure is shortly summarized. First, the
nominal emitter pressure head, hn, and the nominal emitter flow rate, qn, need to be
calculated according to [29] Equations (3) and (4):

hn = α
Lopt,L|S0,L|

δL
= α

nopt S |S0,L|
δL

(3)

qn = α′
DsL/rL

L |S0,L|(1+rL)/rL S
δL hn

(4)

where the optimal lateral length, Lopt,L, could be determined by the known emitter spacing,
S, and by the optimal number of emitter, nopt, rL and sL are the flow rate and the inside
diameter exponent of the flow resistance equation (Blasius or Hazen-Williams) adopted for
the laterals (Table 2), α is the coefficient of nominal pressure head, and α

′
is the coefficient
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of nominal flow rate (Table 1a) as a function of the calibration constants, B1, B2, and BMP,
which are also reported in Table 2.

Once the design emitter flow rate and the emitter pressure head are known, for any
exponent x of the CE flow rate–pressure head relationship, IRRILAB provides the emitter
parameter, ke, to be chosen:

ke =
qn

hx
n

(5)

To calculate the number of rows, nrows, which can be installed in the manifold, Baia-
monte [28] applied the relationship derived for the laterals to the manifold, considering
that a manifold can be seen as a lateral with laterals in place of emitters. Thus, by replacing
the lateral pressure head tolerance, δL, with the manifold pressure head tolerance, δM, the
emitter’s spacing, S, with the drip laterals spacing, Srows, and lateral’s slope, S0,L, with the
manifold slope, S0,M, the relationship of the number of rows, nrows, was derived starting
from that expressing the number of emitters for the laterals (Equation (3)), yielding:

nrows = β
∆ hn δM

|S0,M| Srows
(6)

where β is the number of rows coefficient reported in Table 3, as a function of the calibration
constants, B1 and BIP. The symbol ∆ = 1 + δL indicates an amplification factor for the
manifold pressure tolerance, that for the manifold, contrarily to the laterals where the
pressure head tolerance has to be referred to the design pressure, hn, it has to be referred to
the maximum pressure achieved in the laterals, hM = hn (1 + δL).

Table 3. For layouts #6, #7, and #22, considered in the IRRILAB applications, coefficients of number of rows and manifold
inside diameter design relationships, β and β

′
, as a function of the calibration constants, which were reported in Table 1.

Rearranged with permission from ref. [29], Copyright 2020, Elsevier (Amsterdam, The Netherlands).

Layout
Lateral Layout Manifold Layout

β
Different Resistance
Equation for L and M

β
′

Same Resistance
Equationfor L and M

β
′# S0,L BMP # S0,M BIP

6 L2 <0
0

M1 <0 0.24 B1,M k1 ( B∗(1− BMP)B1,L)
rM
sM ( (1− BMP) B1)

r
s

7 L2 <0 M2 <0
0

(1− BIP) B1,M k1 (B∗(1− BMP)B1,L)
rM
sM ( (1− BMP) B1)

r
s

22 L5 >0 M2 <0 (1− BIP) B1,M k1 ( B∗BMP B1,L)
rM
sM (BMPB1)

r
s

The manifold inside diameter, DM, is calculated by considering that the flow rate of
each lateral can be obtained by multiplying the emitter flow rate, qn, with the optimal
number of emitters, nopt [28]:

nopt qn = α′M
DsM/rM

M |S0,M|(1+rM)/rM
. Srows

δM hn
(7)

where α
′
M corresponds to the α

′
coefficient of Table 1a, referred to the manifold calibrations

constants (B1,M, B2,M) and to the manifold resistance equation coefficients (kM, rM, Table 2).
By substituting Equation (4) into Equation (7), Baiamonte [29] derived an explicit and
compact relationship of the inside manifold diameter, DM:

DM = β′ D
rM
rL

sL
sM

L

(
hn δM ∆

Srows

S1/rL
0,L

S1+1/rM
0,M

) rM
sM

(8)

where β
′

is the manifold inside diameter coefficient (Table 3), as a function of BMP, rM, sM,
and the numerical constant reported in Table 2.

However, the aforementioned procedure to calculate nrows and DM can only be applied
for a new irrigation unit, where any possible number of laterals can be installed in a



Water 2021, 13, 694 11 of 24

manifold (Equation (6)). For the applications performed here, where IRRILAB is applied to
an already designed irrigation system, so that the number of rows is imposed, the IRRILAB
explicit relationships need to be reformulated, since the emitters’ characteristics (x, ke) that
match nrows are required, because in this case, nrows is an imposed parameter.

By fixing the exponent x, the ke coefficient of the emitter can be derived by combining
Equations (3)–(5), which provides the following ke relationship:

ke =
α′

α1+x
DsL/rL

L Sx δx
L

n1+x
opt |S0,L|x−1/rL

(9)

Equation (9) could be applied just for one-lateral units, since no constraints referred to
the manifold are imposed yet. Towards this aim, for any imposed number of rows, nrows,
the corresponding manifold pressure head tolerance, δM, can be derived by Equation (6):

δM =
nrows S0,M Srows

β ∆ hn
(10)

By inserting Equation (3) into Equation (10), gives:

δM =
nrows Srows δL

α β (1 + δL) nopt S
S0,M

S0,L
(11)

Equation (11) cannot be solved alone, since according to the IRRILAB design, δM also
has to satisfy Equation (2). Thus, by imposing Equations (2) and (11) as equal, an explicit
relationship of the lateral pressure head tolerance, δL, can be derived:

δL =
α β δ nopt S S0,L

α β nopt S S0,L + nrows S0,M Srows
(12)

Interestingly, for a fixed sector geometry, Equation (12) only depends on the unit
pressure tolerance, δ, and does not depend on DM. Equation (12) can be usefully substituted
into Equation (9) to derive the emitter’s characteristic ke that needs to be set, for a fixed x,
when the number of rows, nrows, is assigned:

ke =
α′ DsL/rL

L Sx

α1+x n1+x
opt |S0,L|x−1/rL

(
α β δ nopt S S0,L

α β nopt S S0,L + nrows S0,M Srows

)x
(13)

Equation (13), which does not depend on DM, as Equation (12), helps with detecting
the optimal emitter’s characteristics (ke, x) for a fixed nrows and can be used for both CE and
PCE emitters. Indeed, for PCE, that is when x = 0, Equation (13) reduces to:

ke =
α′ DsL/rL

L |S0,L|1/rL

α nopt
(14)

In conclusion, Equations (13) and (14) can be used for the purpose of this study, since
they make it possible, for a fixed sector geometry (nopt, nrows, S0,L, S0,M) and drip laterals
diameter (DL), to determine the emitter’s characteristic ke, for CE and PCE, respectively. Of
course, the manifold diameter, DM, then needs calculating by Equation (8).

3.2. IRRIPRO Applications

First, in order to check IRRILAB results, IRRIPRO was applied by using the same
design parameters that were obtained by IRRILAB. Then, IRRIPRO features were used to
control the pressure head value in the source, Qs (see the reservoir in Figure 3b), that makes
it possible to impose the inlet pressure head provided by IRRILAB (hin = ∆hn(1 + δM)) at
the inlet of each sector.
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Thus, the output data by IRRIPRO is considered as a good representation for the
IRRILAB design, which can be checked by IRRIPRO that is able to provide emitters’
pressure head distribution illustrated by color maps, indicating the over- and under-
pressure conditions. The latter are also supported by the emission uniformity, EU, by the
minimum and maximum emitters’ pressure head achieved in each sector, hmin and hmax, in
addition to other useful output parameters that will be discussed later.

IRRIPRO software was also applied by a different user than that of IRRILAB, thus
independently by IRRILAB suggestions, i.e., by attempts, in order to compare the IRRIPRO
stand-alone performance with that obtained by the IRRILAB data, and for both CE and PCE.
Moreover, the joint software application made it possible to show the ability of IRRILAB in
saving energy through calculating the energy required by the irrigation system, differently
designed by both software.

4. Results and Discussion

In this section, results aimed at (i) checking the IRRILAB applications by IRRIPRO,
(ii) comparing IRRILAB results with those derived by IRRIPRO standing alone applied
by attempts, and (iii) comparing the energy consumptions. The section is organized as
follows. First, the aforementioned objectives (i) and (ii) are addressed for the actual five-
sector subdivision of the farm (Section 4.1). Second, according to the not satisfying results
obtained for the actual “non-uniform” five sectors, the farm was subdivided into “almost
uniform” seven and nine sectors to better fit the sectors to the regularity degree required by
IRRILAB (Section 4.2). Finally, the energy consumptions by using IRRILAB and IRRIPRO
with common emitters and pressure compensating emitters are discussed (Section 4.3).

4.1. Results for the Actual “Non-Uniform” Five Sectors

As mentioned above, first, the IRRILAB software was run for the actual “non-uniform”
five sectors of the apple farm using CEs. All the already defined geometric and hydraulic
design parameters are reported in Table 4, together with the emission uniformity, EU,
calculated according to Keller and Karmeli [25], and the variation coefficient of pressure
head, CV [36].

Table 4. Geometric and hydraulic design parameters for the actual “non-uniform” five sectors of the apple farm designed
by IRRILAB, for common emitters (CE) and pressure compensating emitters (PCE).

Geometric Parameters

Sector #Layout BMP BIP nrows
Lopt ,L

(m)
Lopt ,M

(m)
S0,L S0,M

CE PCE

DL
(mm)

DM
(mm)

DL
(mm)

DM
(mm)

1
6

0
0.24

72 88.96 273.6 −0.0210 −0.1202

12.98

39.3

12.98

39.3
2 49 78.49 186.2 −0.0898 −0.1259 45.8 45.8
3 37 99.17 140.6 −0.0747 −0.0586 46.7 46.7

4
7 0

42 90.33 159.6 −0.0540 −0.1799 39.9 39.9
5 37 84.04 140.6 −0.0414 −0.1566 37.1 37.1

Hydraulic parameters for common emitters (CE) with x = 0.5

Sector δ δL δM ke
hn

(m)
qn

(L/h)
hin
(m)

hmin
(m)

hmean
(m)

hmax
(m)

Qs
(m3/h)

hs
(m) CV EU

(%)

1 0.06 0.004 0.056 0.400 80.2 3.58 85.0 73.2 84.7 102.3 22.98 196.7 3.23 89.2
2 0.08 0.023 0.056 1.247 55.7 9.30 60.1 49.7 55.8 71.1 34.45 157.3 4.21 89.4
3 0.05 0.027 0.022 0.947 49.0 6.63 51.4 41.9 47.2 58.8 23.12 145.3 3.60 89.9
4 0.10 0.015 0.084 0.779 60.2 6.04 66.2 49.1 54.5 70.0 21.15 189.9 4.71 89.3
5 0.09 0.012 0.077 0.784 50.7 5.58 55.3 43.2 49.0 58.8 16.11 176.0 3.59 89.7



Water 2021, 13, 694 13 of 24

Table 4. Cont.

Hydraulic parameters for pressure compensating emitters (PCE) with x = 0

Sector δ δL δM ke
hn

(m)
hin
(m)

hmin
(m)

hmean
(m)

hmax
(m)

Qs
(m3/h)

hs
(m) CV EU

(%)

1 0.425 0.030 0.384 3.578 11.3 16.1 5.1 16.6 34.9 22.35 128.2

0 100
2 0.342 0.097 0.223 9.301 13.0 17.5 6.3 13.3 29.4 34.42 115.4
3 0.168 0.091 0.071 6.627 14.6 17.0 6.9 12.6 24.4 23.56 111.2
4 0.26 0.038 0.214 6.044 23.1 29.2 7.4 13.7 33.3 22.26 155.9
5 0.29 0.040 0.241 5.582 15.7 20.3 6.2 12.9 23.9 16.39 142.5

A commercial inside lateral diameter, DL = 12.98 mm, was chosen for the laterals,
which are characterized by the exponent x = 0.5 for CEs (Equation (5)) and by x = 0 for PCEs.

Applications made by IRRILAB for the imposed pressure head tolerance commonly
considered, δ = 0.1 for CE, δ = 0.6 for PCE, did not provided satisfying results (EU < 90%).
Only for sector #4 (Figure 3a), which is characterized by a good regularity (as can also be
seen by the corresponding contour lines later discussed), did δ = 0.1 provide a satisfying
EU value (89.3). Thus, for the other sectors, δ was reduced and after few attempts, and EU
almost equal to 90% was achieved, as can be seen in Table 4.

Figure 5a illustrates the results of the emitters’ pressure head distribution map for the
whole farm that was obtained by IRRIPRO, using the IRRILAB design parameters. For
the actual five sectors of the farm, Figure 5a shows that IRRILAB, from a pressure head
distribution point of view, was almost satisfying, since only few areas are in overpressure
(h > 1.1 hn) and in under-pressure (h < 0.9 hn). This is probably because the actual five
sectors did not fully fit the sectors regularity that IRRILAB requires.

The latter consideration is supported by Table 4, where EU ∼= 90% were achieved.
More importantly, reducing the pressure head tolerances (δ < 0.1), because of a not too high
uniformity of the sectors, determined an increase in the required inlet pressure head and in
the corresponding energy required, as can be observed by the high inlet pressure heads,
especially for sector #1 that is unreliable (102.3 m).

Contrarily, for sectors #4, #5, and #2, which are characterized by a more sector unifor-
mity, Table 4 shows that an acceptable emission uniformity, EU, almost equal to 90%, can
be achieved by only a slight δ reduction. According to these results, it is noteworthy to
observe that the more regular the sectors are, the less the δ reduction will be. This IRRILAB
behavior will be better described in the next section where the farm will be subdivided into
a higher number of sectors.

By applying IRRIPRO, independently of IRRILAB suggestions, by changing the mani-
fold diameter, the emitter flow rate, and inlet pressure, a lot of attempts were necessary to
achieve a satisfying emission uniformity, EU. By also using CE, Figure 5b illustrates the
best results of emitters’ pressure head distribution designed by IRRIPRO for the actual
“non-uniform” five sectors, as in Figure 5a.

For the five sectors and for CEs, Table 5 reports the geometric parameters used in
IRRIPRO, where it can be observed that the lateral and manifold lengths of IRRIPRO differ
from those of IRRILAB. Indeed, for each sector, an equivalent rectangular area equal to
the actual one was imposed in IRRILAB. Table 5 also reports the corresponding input and
output hydraulic parameters, and shows that the results obtained by IRRIPRO, without
IRRILAB suggestions, require a higher pressure at the source, hs, than those that IRRILAB
provided without attempts, which may affect the required energy [37].
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Moreover, after a high number of attempts made by a different user compared to that
of IRRILAB, it was found that the lateral diameter needed to be increased (DL = 17.8 mm
rather than DL = 12.98 mm) to find the design solutions, because for the attempts the user
made for DL = 12.98 mm, and by fixing different tentative DM, the IRRIPRO algorithm did
not converge. This is because the IRRIPRO procedure does not include a DM calculus as
IRRILAB does (Equation (8)).

In Figure 5c,d, the pressure head distribution maps corresponding to IRRILAB and
IRRIPRO referred to PCEs are illustrated, and the corresponding design parameters are
also reported in Table 4 (IRRILAB) and in Table 5 (IRRIPRO). Also, for PCEs, according to
non-uniform sector condition, δ was reduced according to the non-uniformity degree, but
starting from the mentioned higher value, δ = 60%, than that for CEs (δ = 10%), in order to
achieve a satisfying pressure head distribution (Figure 5c,d).
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Table 5. Geometric and hydraulic design parameters for the actual “non-uniform” five sectors of the apple farm, designed
by IRRIPRO, for common emitters (CE) and pressure compensating emitters (PCE).

Geometric Parameters

Sector
Area
(m2)

nrows
LL
(m)

LM
(m)

S0,L S0,M

CE PCE

DL
(mm)

DM
(mm)

DL
(mm)

DM
(mm)

1 24,339 72 87.3 328.3 −0.0210 −0.1202

17.8 78.0 12.98

41.6
2 14,616 49 75.8 213.5 −0.0898 −0.1259 38.0
3 13,944 37 96.3 139.4 −0.0747 −0.0586 38.0
4 14,416 42 87.9 263.2 −0.0540 −0.1799 41.6
5 11,815 37 79.6 152.5 −0.0414 −0.1566 38.0

Hydraulic parameters (CE)

Sector ke x qn
(L/h)

Qs
(m3/h)

hs
(m)

hin
(m)

hmin
(m)

hmean
(m)

hmax
(m) CV EU

(%)

1 1.253 0.5 12.87 80.36 239.6 100.2 94.2 105.6 131.6 4.33 89.3
2 1.253 0.5 11.71 43.33 183.6 82.4 77.4 87.4 105 3.79 89.6
3 1.253 0.5 9.04 32.12 146.8 49.8 46.2 52.1 62.1 3.57 89.9
4 1.253 0.5 12.32 45.39 219.2 84.5 84.3 96.8 115.3 2.97 89.8
5 1.253 0.5 12.46 36.59 213.1 84.8 85.1 98.9 108.9 2.45 89.9

Hydraulic parameters (PCE)

Sector ke x Qs
(m3/h)

hs
(m)

hin
(m)

hmin
(m)

hmean
(m)

hmax
(m) CV EU

(%)

1 5

0

31.23 140.7 25.7 9.1 20.6 37.2

0 100
2 7 25.91 113.7 19.2 9.1 14.6 25.8
3 7 24.89 126.2 31.4 9.1 19.7 33.8
4 7 25.78 163.6 34.8 9.1 16.2 38.3
5 7 20.56 159.6 35.6 9.1 18.6 38.5

Of course, for PCEs (x = 0, qn = ke = constant), the EU value cannot be controlled by
IRRIPRO, since EU = 100% (and CV = 0) are imposed (Table 5). In addition, the exponent
emitter discharge, x, was assumed as equal to zero, indicating a constant flow rate for the
wider range of pressure head. For PCEs, results were satisfying for both IRRILAB and
IRRIPRO, in terms of both inlet pressure and pressure head distributions.

Overall, the design of the actual “non-uniform” five sectors of the apple farm using
CEs led to reduce the pressure tolerance by 10%, thus high energy consumption would arise,
especially for sector #1, which required, for both software, a very high input pressure that
is unreliable in practice (85.0 and 100.2 m, respectively). Therefore, the lack of regularity
conditions, in both sector slopes and planform geometry, which affected the IRRILAB
design, provided not satisfying design results. Contrarily, for PCEs, for both IRRILAB and
IRRIPRO, the design solutions are reliable and required low inlet pressure (Tables 4 and 5).
Since this work focused on using CEs, especially for their good durability, a further
subdivision aimed at obtaining more regular sectors was performed.

4.2. Subdividing the Apple Farm in Seven and in Nine Sectors

The further subdivision was performed starting from a completely new design and
considering the contour lines map and the corresponding digital elevation model (DEM),
as illustrated in Figure 6a,b, respectively. At the beginning, the farm was subdivided into
seven sectors, which then became nine sectors as a result of splitting sectors #1 and #7 into
two subsectors, in order to further fit the IRRILAB requirements as much as possible.
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Figure 6. The apple farm subdivided into nine sectors, illustrating (a) the 1 m contour lines, and (b) the DEM with flow
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The geometric parameters, corresponding to the seven sectors (1–7) and those to the
splitting of sectors #1 and #7, are reported in Table 6, where the sectors derived by sector #1
and sector #7 are indicated as sector #1A and #1B, and sector #7A and #7B, respectively
(background colored).

Table 6. Geometric and hydraulic design parameters for the apple farm subdivided into seven or nine sectors, by splitting
sectors #1 and #7 in two sectors (background gray colored), characterized by an “almost uniform” slope and planform
geometry, designed by IRRILAB, for common emitters (CE) and pressure compensating emitters (PCE).

Geometric Parameters

Sector #Layout BMP BIP nrows
Lopt ,L

(m)
Lopt ,M

(m)
S0,L S0,M

CE PCE

DL
(mm)

DM
(mm)

DL
(mm)

DM
(mm)

1 7

0 0

63 55.5 239.4 −0.0911 −0.0993

12.98

58.7

12.98

58.7
1A 22 43 23.5 165 0.0429 −0.0610 31.5 31.5
1B 7 63 39.3 239.4 −0.1148 −0.1260 58.6 58.6
2 7 44 45.1 167.2 −0.0203 −0.1476 34.5 34.5
3 22 43 82.3 163.4 0.0351 −0.1463 25.1 25.1
4 7 50 66.8 190 −0.0143 −0.1486 33.5 33.5
5 7 33 65.5 125.4 −0.1639 −0.0918 53.2 53.2
6 7 44 73.6 167.2 −0.0631 −0.1740 42.3 42.3
7 7 40 81.5 152 −0.0335 −0.1503 36.8 36.8

7A 7 39 55.7 148.2 −0.0322 −0.1502 36.2 36.2
7B 7 21 51.7 79.8 −0.0403 −0.1528 30.1 30.1

Hydraulic parameters for common emitters (CE) with x = 0.5

Sector δ δL δM ke
hn

(m)
qn

(L/h)
hin
(m)

hmin
(m)

hmean
(m)

hmax
(m)

Qs
(m3/h)

hs
(m) CV EU

(%)

1 0.04 0.007 0.033 1.167 129.1 13.26 134.2 103.7 116.9 145.9 44.07 243.2 4.01 89.43
1A 0.07 0.017 0.052 1.109 33.7 6.43 36.0 24.6 27.3 39.3 5.46 136.3 4.52 89.51
1B 0.1 0.013 0.086 2.713 62.1 21.38 68.3 51.3 56.8 79.4 47.68 179.3 4.99 89.18
2 0.1 0.004 0.096 1.022 45.8 6.92 50.4 43.1 46.2 54.6 13.01 154.1 2.98 92.88
3 0.1 0.028 0.070 0.213 59.2 1.64 65.1 49.8 54.8 65.6 5.56 153.7 2.57 92.25
4 0.1 0.003 0.096 0.529 52.3 3.83 57.5 43.4 49.0 60.6 12.32 147.0 4.04 89.36
5 0.08 0.039 0.040 2.227 49.8 15.72 53.8 41.8 47.5 56.0 32.88 148.9 3.27 89.95
6 0.1 0.014 0.085 1.043 60.4 8.11 66.5 52.8 57.7 68.5 25.55 187.6 2.71 92.45
7 0.06 0.006 0.053 0.584 76.3 5.10 80.9 63.8 71.0 86.2 15.7 199.1 3.96 90.13

7A 0.1 0.007 0.092 1.111 43.1 7.29 47.4 38.2 42.1 51.6 14.96 164.0 4.08 90.44
7B 0.08 0.012 0.068 1.577 32.0 8.92 34.5 28.1 31.6 37.2 8.92 134.1 3.80 89.86
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Table 6. Cont.

Hydraulic parameters for pressure compensating emitters (PCE) with x = 0

Sector δ δL δM ke
hn

(m)
hin
(m)

hmin
(m)

hmean
(m)

hmax
(m)

Qs
(m3/h)

hs
(m) CV EU

(%)

1 0.150 0.026 0.121 13.263 34.4 39.6 5.3 20.3 49.8 46.35 149.9

0 100

1A 0.132 0.032 0.097 6.433 17.9 20.2 7.2 10.2 21.9 6.06 120.5
1B 0.316 0.041 0.264 21.377 19.7 25.9 7.1 13.1 35.8 49.94 138.5
2 0.467 0.017 0.443 6.921 9.8 14.4 7.1 10.3 18.8 12.96 118.2
3 0.337 0.093 0.223 1.638 17.6 23.5 6.8 11.8 23.5 5.78 112.2
4 0.286 0.009 0.274 3.825 18.3 23.5 7.9 13.8 25.4 12.73 113.2
5 0.241 0.116 0.112 15.720 16.5 20.5 6.6 13.6 22.8 33.7 116.3
6 0.368 0.051 0.302 8.108 16.4 22.5 7.0 12.3 24.9 26.16 144.0
7 0.211 0.023 0.184 5.099 21.7 26.3 5.5 13.8 31.7 16.28 144.8

7A 0.323 0.024 0.292 7.295 13.3 17.6 7.1 11.3 22.0 15.16 134.4
7B 0.222 0.032 0.184 8.917 11.5 14.1 7.2 11.0 16.8 8.99 113.7

For CEs and for the seven-sector subdivision, results of the hydraulic parameters
obtained by IRRILAB are also reported in Table 6 (white background color), whereas
the corresponding pressure head distribution map obtained by IRRILAB is illustrated in
Figure 7. As can be seen from Table 6 and from Figure 7, the new subdivision improved the
IRRILAB results, since for sectors #2, #3, and #6, the optimal design solution (EU ∼= 90%)
was immediately found for δ = 0.1, and for sector #5, only a slight δ reduction (δ = 0.08) was
needed to achieve EU ∼= 90%. Contrarily, for sectors #1 and #7, which are still characterized
by high sectors’ irregularities (in planform geometry and slopes, see Figure 6), the δ
reduction necessary to achieve EU ∼= 90% required δ = 0.04 and δ = 0.06, respectively.
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However, again, very high values of inlet pressure heads (134.7 m for sector #1 and
81 m for sector #7) corresponded to this occurrence, which led us to consider these two
design solutions unreliable. This is why for sectors #1 and #7, a further subdivision was
attempted, with the aim to further investigate the influence of sectors’ irregularities in the
IRRILAB design. For CEs, results for the nine-sector subdivision are also reported in Table 6
(background colored for the split sectors #1 and #7), which show that splitting sectors #1
and #7 into two more regular sectors improved the IRRILAB results in terms of both inlet
pressure, hin, and pressure head distribution, as can be observed by comparing sector #1
and sector #7 in Figure 7, with the new sectors #1A, #1B, #7A, and #7b, in Figure 8a.
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Similar to Table 6 (for IRRILAB), results derived by IRRIPRO for both seven- and
nine-sector subdivision, and for both CE and PCE, are reported in Table 7. After a very
high number of attempts, IRRIPRO required an increase of the laterals’ diameter for sectors
#1, #3, #4, and #7, from DL = 12.98 to 17.8 mm. Moreover, for sectors #1, #1b, #3, and #4,
high values of the inlet pressure heads were achieved, indicating that the results obtained
by IRRILAB, without attempts, could be considered more suitable than those obtained by
IRRIPRO with attempts, which also required an increase of the laterals’ inside diameter,
increasing the material cost. For CEs and for the nine sectors, the corresponding pressure
head distributions map derived by the IRRIPRO stand-alone application is reported in
Figure 8b.

Table 7. Geometric and hydraulic design parameters for the farm subdivided into nine sectors, by splitting sectors #1 and
#7 into two sectors (background colored), characterized by an “almost uniform” slope and planform geometry, designed by
IRRIPRO, for common emitters (CE) and pressure compensating emitters (PCE).

Geometric Parameters

Sector Area
(m2)

nrows
LL
(m)

LM
(m)

S0,L S0,M

CE PCE

DL
(mm)

DM
(mm)

DL
(mm)

DM
(mm)

1 13,275 63 55.7 274.8 −0.0911 −0.0993 17.80 78.0

12.98

41.6
1A 3876 43 22.2 159.6 0.0429 −0.0610 12.98 50.0 38.0
1B 9399 63 37.3 248.7 −0.1148 −0.1260 12.98 50.0 38.0
2 7540 44 42.8 170.9 −0.0203 −0.1476 12.98 50.0 38.0
3 13,437 43 82.3 195.3 0.0351 −0.1463 17.80 78.0 41.6
4 12,681 50 66.8 218.9 −0.0143 −0.1486 17.80 78.0 41.6
5 8215 33 65.2 121.2 −0.1639 −0.0918 12.98 78.0 38.0
6 12,282 44 73.6 192.4 −0.0631 −0.1740 12.98 50.0 41.6
7 12,386 40 80.1 187.7 −0.0335 −0.1503 17.80 78.0 41.6

7A 8256 39 53.6 184.1 −0.0322 −0.1502 12.98 50.0 38.0
7B 4129 21 48.3 76.0 −0.0403 −0.1528 12.98 50.0 38.0

Hydraulic parameters (CE)

Sector ke x qn
(L/h)

Qs
(m3/h)

hs
(m)

hin
(m)

hmin
(m)

hmean
(m)

hmax
(m) CV EU

(%)

1

1.253 0.5

11.86 42.49 203.9 95.6 85.0 94.3 122.0 4.12 90.05
1A 7.05 6.64 135.6 35.3 29.0 31.7 44.8 3.99 91.00
1B 10.35 24.18 175.4 72.4 61.5 68.4 90.5 4.26 89.80
2 10.41 19.49 168.3 63.5 63.2 69.0 81.5 3.42 91.60
3 11.14 39.28 173.4 75.7 70.2 79.1 96.3 3.07 90.60
4 11.46 38.15 173.4 76.2 76.0 83.8 100.6 4.00 90.50
5 10.13 21.71 153.0 61.4 57.8 65.4 75.2 3.10 90.40
6 9.89 31.91 188.7 64.9 57.0 62.3 72.3 2.28 92.90
7 11.62 37.09 198.85 74.6 75.1 86.0 96.2 2.81 90.11

7A 9.74 20.24 171.3 53.3 53.3 60.5 68.4 2.59 90.90
7B 9.04 9.11 148.9 49.3 46.2 52.1 59.6 3.55 90.00

Hydraulic parameters (PCE)

Sector ke x Qs
(m3/h)

hs
(m)

hin
(m)

hmin
(m)

hmean
(m)

hmax
(m) CV EU

(%)

1 5

0

17.48 133.1 32.0 9.1 19.3 43.4

0 100

1A 9 8.48 121.0 20.4 9.1 12.1 24.5
1B 9 21.02 143.5 41.1 9.1 19.4 41.2
2 9 16.86 121.4 17.0 9.1 12.6 21.3
3 7 24.69 131.8 39.2 9.1 19.0 39.2
4 7 23.30 123.5 31.3 9.1 18.4 32.4
5 9 19.30 112.7 21.7 9.1 14.1 23.2
6 9 29.04 157.0 34.3 9.1 15.8 36.0
7 6 19.16 146.6 27.7 9.1 20.4 32.8

7A 9 18.70 142.3 24.6 9.1 14.3 28.6
7B 9 9.07 113.0 13.3 9.1 14.5 21.6
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For both IRRILAB and IRRIPRO, results obtained for PCEs, the case of which however
did not require a further subdivision of sectors #1 and #7, are also reported in Tables 6 and 7,
respectively. For IRRILAB, it can be seen that larger pressure tolerances than CEs can be set
according to the self-compensating ability of PCEs, which require less inlet pressure heads
than CEs. For both IRRILAB and IRRIPRO, pressure head distribution maps corresponding
to PCE are reported in Figure 8c,d, which show reasonable results in both cases.

4.3. Evaluating Energy Consumption by Using IRRILAB and IRRIPRO with Common Emitters
and Pressure Compensating Emitters

In order to check the IRRILAB goodness of saving energy, for both IRRILAB and
IRRIPRO, the energy (E) required for each sector of the actual “non-uniform” five sectors in
addition to the “almost uniform” seven and nine sectors were calculated, using the design
parameters pertaining to each design, such as the pressure at the source (hs), the discharge
in the source (Qs), and the nominal emitter flow rate (qn). Some additional parameters that
are necessary for the energy calculus were set as equal in both IRRILAB and IRRIPRO, to
make the comparison homogeneous. In particular, the pump and motor drive efficiency
(η), the yearly total water application (V), and the years of the irrigation seasons (Y).

The pump power, P (kW), required for each micro-irrigation sector was calculated as:

P =
γ Qs hs

102 η
(15)

where 102 is a conversion factor that makes it possible to express P in (kW), γ is the
water-specific weight (1000 kg m−3), and Qs (m3 s−1) and hs (m) are the discharge and the
pressure head at the source. When applying IRRIPRO, hs was imposed in order to obtain
the same inlet pressure head, hin, provided by IRRILAB, at the inlet of each sector. The
pump and motor drive efficiency, η, was fixed at 0.75.

By assuming a yearly total water application V = 200 mm, the yearly time of irrigation,
T (h), was calculated according to the emitters’ spacing (S = 1 m) and to the assumed drip
lateral spacing (Srows = 3.8 m):

T =
V S Srows

qn
(16)

where qn (L/h) is the emitter flow rate. According to Equations (15) and (16), the total
energy consumption, E (kWh), for both IRRILAB and IRRIPRO, when using CEs and PCEs,
was calculated as:

E = P T Y (17)

The calculated energy required for each irrigation sector designed by IRRILAB and IR-
RIPRO, with CEs and PCEs, for the subdivision in five, seven, and nine sectors, are reported in
Tables 8 and 9, respectively. Results showed that as it could be expected, for both IRRILAB and
IRRIPRO, and for both CEs and PCEs, when subdividing the farm into nine sectors, the energy
required was less than that required when the farm was subdivided in seven and in five sectors.

Table 8. Energy, E, required for the micro-irrigation system of the apple farm subdivided in the actual
“non-uniform” five sectors, designed by both IRRILAB and IRRIPRO software, for common emitters
(CE) and pressure compensating emitters (PCE).

Sector

IRRILAB IRRIPRO

E (kWh) E (kWh)

CE PCE CE PCE

1 34,866 22,100 41,292 24,249
2 16,074 11,789 18,743 11,611
3 13,991 10,905 14,398 12,386
4 18,342 15,846 22,291 16,624
5 14,021 11,546 17,272 12,938

SUM 97,295 72,187 113,996 77,807
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Table 9. Energy, E, required for the micro-irrigation system of the apple farm subdivided in the
“almost uniform” seven sectors and nine sectors, by splitting sectors #1 and #7 into two sectors
(background gray colored), designed by both IRRILAB and IRRIPRO, for common emitters (CE) and
pressure compensating emitters (PCE).

Sector

IRRILAB IRRIPRO

E (kWh) E (kWh)

CE PCE CE PCE

1 22,306 14,456 20,164 12,845
1A 3192 3134 3525 3145
1B 11,037 8928 11,308 9252
2 7994 6107 8693 6276
3 14,401 10,925 16,868 12,829
4 13,070 10,396 15,926 11,344
5 8592 6877 9047 6670
6 16,317 12,824 16,797 13,978
7 16,914 12,758 17,516 12,917

7A 9280 7705 9824 8159
7B 3702 3164 4140 3142

TOTAL 7 sectors 99,594 74,343 105,011 76,859

TOTAL 9 sectors 87,585 70,060 96,128 74,795

A deeper inspection of the energy consumptions derived by IRRILAB and IRRIPRO
applications was possible, as seen in Figure 9a (for five sectors) and Figure 9b (for seven
and nine sectors). For CEs, the figures also indicate the change of the laterals’ diameter
that was needed when applying IRRIPRO, for all the sectors of the five-sector subdivision,
and for sectors #1, #3, #4, and #7, of the seven-sector subdivision.

For each sector, Figure 9 shows the ability of IRRILAB in saving energy, with respect
to IRRIPRO, for both CEs and PCEs. Only for sector #1 (when seven sectors are considered)
and for CEs (Figure 9b) was the energy required by the irrigation system designed by
IRRIPRO less than that by IRRILAB.

In terms of total energy requirement, the energy-saving provided by IRRILAB with
respect to IRRIPRO was higher for CEs (−15%, −5%, and −9%, for five-, seven-, and
nine-sector subdivision, respectively), than for PCE (−7%, −3%, and −6%). However, it is
expected that IRRILAB could provide much higher energy-saving than that determined
here by increasing the regular degree of the sectors, i.e., when there is no need to reduce
the sector pressure head tolerance, δ. The energy-saving found by using IRRILAB in these
applications is supported by the results found in a previous work referring to one-lateral
units [37], where it was shown that using the entire pressure head range imposed by the
pressure head tolerance unit (i.e., the same principle in which IRRILAB is based) provided
an important energy-saving, with respect to the case in which the emitter pressure head
does not achieve the minimum and the maximum values, imposed by δ (hmin = hn (1 − δ)
and hmax = hn (1 + δ)).

It is noteworthy that when the regularity conditions of slopes and planform geometry
of the “almost uniform” nine sectors were considered, fitting the IRRILAB requirements as
much as possible, the total energy was found lower than that obtained from the actual “non-
uniform” five sectors. The latter indicates that IRRILAB software could be recommended
because it is easy to use, does not require attempts, and makes it possible to save energy,
especially when sectors are almost rectangular and uniform in slopes.

For a complete analysis, other differences in output variables should be analyzed, such
as the differences in laterals and manifolds inside diameters. However, the cost analysis,
including the investment costs, was beyond the purpose of this study.

Finally, it should be noticed that notwithstanding the amount of energy saved could
appear limited, at least in this case study, it needs remarking that the greatest benefit
derived was the no attempts requirement of IRRILAB, which makes this software a useful
tool for a pre-design of micro-irrigation systems.
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5. Conclusions

Recently, the IRRILAB software application based on explicit analytical solutions
was introduced as a simple tool to design rectangular and uniform slope irrigation units.
Since the latter conditions may be impractical in some cases, a Sicilian apple farm (8.5 ha)
was selected to apply IRRILAB with different subdivision stages of the farm in order to
fit different degrees of regularity of the sectors. First, the actual five sectors in which
the farm was subdivided were considered. Second, the farm was subdivided into seven
different sectors, and third, two of the seven sectors were split into two sectors, becoming
nine sectors.

IRRILAB was verified by inserting its output data as input in IRRIPRO software
application, which provides, according to numerical solutions, the pressure head distribu-
tion for any shape and slopes of irrigation units. IRRIPRO was also applied by making,
contrarily to IRRILAB, a number of attempts as a stand-alone tool, in order to compare
the results between the two software applications. IRRILAB and IRRIPRO applications
and their comparisons were also performed by using common emitters (CEs) and pressure
compensating emitters (PCEs).

The most important results covered in this study can be summarized as follows:

• The IRRILAB application showed its sensitivity to the planform geometry and to the
slope uniformity of the laterals and of the manifold, indicating that the more uniform
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in slope and the more rectangular the sector is, the better and better the design results
(in terms of emission uniformity and energy-saving) will be.

• IRRILAB, which is based on analytical solutions and does not require attempts and
the trial-and-error technique, offers a valuable solution in designing a micro-irrigation
system using CEs or PCEs, and makes it possible to save energy for both emitter types,
especially when sectors are almost rectangular and uniform in slope.

• The energy-saving provided by IRRILAB with respect to IRRIPRO, applied by attempts,
resulted higher for CEs (−15% for five sectors and −9% for nine sectors) than for PCEs
(−7% for five sectors and−6% for nine sectors). However, in absolute terms, the energy
required was greater for five-sector subdivision than for nine-sector subdivision.

• PCEs could be considered a good solution for saving energy in the sloping field,
but their contraindications need to be mentioned: they are more expansive, more
complicated structurally, and the working mechanism is not clear, which causes
difficulty in their research and development. The latter causes their damage in the
short term and the increase of the manufacturing variation coefficient can frustrate
the benefit found in terms of energy-saving.

• For sloping fields, CEs, usually chosen only for flat fields, should be recommended,
if a design procedure such as that suggested by IRRILAB is applied, especially for
sectors uniform in slopes and rectangular planform geometry.
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