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Abstract: Freshwater quality maintenance is essential for human use and ecological functions. To
ensure this objective, governments establish programs for a continuous monitoring of the inland
waters state. This could be possible with Sentinel-2 (S2) and Sentinel-3 (S3), two remote sensing
satellites of the European Space Agency, equipped with spectral optical sensors. To determine optimal
water quality algorithms applicable to their spectral bands, 36 algorithms were tested for different key
variables (chlorophyll a (Chl_a), colored dissolved organic matter (CDOM), colored dissolved organic
matter (TSS), phycocyanin (PC) and Secchi disk depth (SDD)). A database of 296 water-leaving
reflectance spectra were used, as well as concomitant water quality measurements of Mediterranean
reservoirs and lakes of Spain. Two equal data sets were used for calibration and validation. The
best algorithms were recalculated using all database and used the following band relations: SDD,
R560/R700; CDOM, R665/R490; PC, R705/R665 for S2 and R620, R665, R709 and R779 for S3, using a
semi-analytical algorithm; R700 for TSS < 20 mg/L and R783/R492 (S2) or R779/R510 (S3) for TSS >
20 mg/L; and for Chl_a, the maximum (R443; R492)/R560 for Chl_a < 5 mg/m3 and R700/R665 for
Chl_a > 5 mg/m3. A preliminary test with a satellite image in a well-known reservoir showed results
consistent with the expected ranges and spatial patterns of the variables.

Keywords: water quality; Sentinel; optically complex waters; Secchi disc depth; chlorophyll a;
phycocyanin; total suspended solids; CDOM; empirical models; semi-analytical model

1. Introduction

Improving and protecting water quality, both for human needs and for the sustain-
ability of aquatic ecosystems, has become a global priority for the 21st century [1].

The quality of inland and underground waters is growing in prominence, considering
that water is an essential life element that is becoming a scarce asset due to the population
rise, pollution and the consequences of global change. This is particularly critical in
southern Europe, where the climatic models forecast a rise in the intensity of flooding
events and drought severity for the 21st century [2]. In this scenario, the reservoirs located
in basins with increased water deficit will be even more essential for supplying drinking
water to the population [3]. In this context, water quality monitoring will be fundamental
to assess the effect of the measures taken to keep water bodies in a good ecological state.
To ensure this objective, the European Water Framework Directive (WFD) has compelled
member states to establish programs for monitoring the state of inland waters. These
programs require adjustment to regional and local conditions, improving sampling and
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monitoring techniques for the water quality control, aiming to be as efficient and effective
as possible in analysis.

Satellite remote sensing can complement in situ measurements, because, despite the
fact that off in situ monitoring provides pertinent and detailed information to understand
key ecosystem characteristics, it is limited to point-based representations of complex and
dynamic systems and is also limited by logistics such as access, cost and timing [4]. Remote
sensing allows total coverage of water ecosystems with temporal coherent data [5], although
is limited to the uppermost part of the water column, is affected by bottom reflectance in
shallow waters and cannot provide information in cloudy days. It has become an essential
tool for the monitoring of water bodies as an assessing or warning method, which helps to
obtain higher temporal and spatial resolution data. This allows optimization of the efforts
for improving the information content and limit costs [6]. Continuous monitoring provides
basic information for long-term monitoring records, needed to identify trends and observe
climate change effects.

The new generation of Earth-Observation Sentinel satellites, belonging to the Coper-
nicus European Union Earth Observation Program, includes two important missions for
water monitoring: Sentinel-2 (S2), started in 2015, and Sentinel-3 (S3), in 2016. Both
missions are formed by a constellation of two satellites to achieve a higher pass frequency.

Sentinel-2 satellites (S2-A and B, launched in 2015 and 2017, respectively), have the
MultiSpectral Instrument (MSI) onboard, with spatial resolutions of 10, 20 and 60 m and
a revisit time of 5 days at the equator [7]. Ten-meter resolution has not been available in
open-access images until recently, making the S2 an excellent tool for intensifying studies
on inland water bodies.

However, being primarily designed for land studies, the broad bands of S2 (Figure 1)
make it difficult to find the specific features (peaks, shoulders, troughs) caused by the water
optically active constituents (OAC) in the water-leaving reflectance. Sentinel-3 satellites
(S3-A and B, launched in 2016 and 2018, respectively), which are primarily designed for
water studies, have the Ocean and Land Color Instrument (OLCI) onboard, with narrower
bands (Figure 1) specifically positioned for some of these OAC. The S3 OLCI images have
a much coarser spatial resolution than S2 (300 m at nadir), but a revisit time of less than
2 days at the equator [8].

Figure 1. Spectral bands and spatial resolution of MultiSpectral Instrument (MSI) and Ocean and
Land Color Instrument (OLCI) sensors.

Using remote sensing, water quality and ecological state can be determined through its
optical properties. Optical variables often derived quantitatively from remotely sensed data
include phytoplankton pigments concentration like chlorophyll a (Chl_a) or phycocyanin
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(PC), water transparency like the Secchi disk depth (SDD), total suspended solids (TSS)
and colored dissolved organic matter (CDOM).

Increase of chlorophyll and algal biomass are symptomatic signs of alteration in
nutrient parsimony (efficiency in recycling scarce materials) and food chain structure
related to eutrophication, and, as a result, are included in the normative definitions of
ecological status classes for all the surface water categories [9]. Chl_a is commonly used
as a proxy for phytoplankton biomass and is the most retrieved variable in water remote
sensing studies. Currently, the most widely used algorithm in our target sensors is the
three-band model of Dall’Olmo et al. [10], using 750, 710 and 670 nm bands [11–13] and a
band ratio between 700 and 665 nm [12,14–16].

Among all the taxonomic classes of phytoplankton, examples, such as Cyanobacteria,
are characteristic, because they present greater abundances in worse state water bodies [17].
Some species of Cyanobacteria can produce toxins, affecting recreational uses and drinking
water supplies [18]. The early detection of these toxic substances is of interest for the
assessment of risks that may affect human health [19]. Remote sensing could be an optimal
tool for the detection of Cyanobacteria if the adequate bands are available. The PC, which
is pigment characteristic of Cyanobacteria, has a maximum absorption at 620 nm that
can be detected with S3, but not with S2. Other bands in the VIS-NIR spectral region
have already been used to detect Cyanobacteria with these two sensors. From the five
consulted studies, three used a band ratio between a band within 700–750 nm and another
band within 600–700 nm [20–22]; one four-band model used R620, R560, R709 and R754
bands [23]; and one semi-analytical approach used R620, R665, R709 and R779 bands [24].

Water transparency is a key variable for monitoring, because the amount of light pene-
trating thorough the water column restricts the rate at which benthic algae, phytoplankton
and macrophytes can assimilate energy through photosynthesis [25]. The most widely
used and conventional method for measuring water column transparency is SDD. This
is an important variable, because it can relate to the euphotic zone, which is the layer of
water that has a depth where only 1% of incident light arrives [26], thus concentrating the
vast majority of photosynthetic activity. Transparency is correlated with the red band, and
when water clarity decreases, the brightness in the red spectral region usually increases
due to particulate scattering [27]. Recent studies in S2 and S3 used different band ratios
for SDD retrieval: either the R490/R709 ratio [13,28], the R560/R709 ratio [28,29] or the
R490/R560 ratio [30].

The transparency of the water is strongly influenced by TSS, which is related directly
to many other variables (e.g., turbidity, Secchi depth, water color), and, because of that,
it is an important variable to consider in water management [25]. As discussed in Rud-
dick et al. [31], the bands more appropriate for TSS retrieval depend on the concentration:
for high TSS concentrations, the best results are obtained with longer wavelengths (700 nm
and beyond), whereas, for low concentrations, it is more appropriate to use shorter wave-
lengths (e.g., green waveband). This could explain the great variability of the obtained
band combinations in the studies carried out so far with S2 and S3. In fact, six different
band combinations in the five revised papers for TSS retrieval were recorded.

Inland water CDOM is mainly composed of humic and fulvic acids from organic
matter degradation [26]. It is being studied increasingly with remote sensing, since its
estimation allows a better understanding of the carbon cycle [32] as a part of the dissolved
organic carbon budget. It is also important for ecosystem metabolism [1] and in the
formation of cancerogenic chlorinated byproducts during water supply treatments [33,34].
CDOM absorption is highest in the blue part of the spectrum but the low reflectance and
largest atmospheric correction errors in this spectrum region show that the green–red ratio
is the most suitable for mapping lake CDOM [35,36]. For this reason, a green–red ratio was
applied in four works [15,37–39] using S2 and S3, and another three applied a ratio using
blue and red bands [27,39,40].

With S2 and S3 sensor characteristics, the greater spectral resolution of the OLCI sensor
should provide more accurate algorithms, with bands closer to the optimal wavelengths
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for the retrieval of water quality variables, while the greater spatial resolution of the MSI
sensor allows to study a larger number of water bodies. The application of S3 algorithms
can help us to check the coherence of S2 algorithms observing the variables estimations
and provide information more frequently. Therefore, the aim of this manuscript is to
find combined algorithms for S2 and S3 that give us correlated information, allowing the
continuous monitoring of the spatial and temporal variation of key variables to determine
the inland water ecological status.

2. Materials and Methods
2.1. Study Area

A total of 296 sampling points in 2 lakes and 50 reservoirs were analyzed, situated in
several Spanish watersheds (Figure 2). The water bodies had total volumes ranging from
6× 106 m3 (Regajo reservoir) to 3219× 106 m3 (La Serena reservoir) and a maximum depth
between 2 m in Albufera lake and 202 m in Almendra reservoir. The climate variability
greatly influences the water quality, and the sample sites correspond to five different
climate types of Köppen–Geiger classification for the 1981–2010 period: Cfa, Csa, Cfb,
Csb and Bsk. Reservoir water levels vary broadly throughout the year and are therefore
highly dependent on upstream rainfall and water temperature, meaning that residence time
oscillates from 0.08 yr (Cortes reservoir) to 3.59 yr (La Serena reservoir). In addition, other
nonclimate factors, such as altitude, vary from 1 m.a.s.l. in Albufera lake to 1100 m.a.s.l.
in Riaño reservoir. An overview of sampling sites and their characteristics is given in
Appendix A.

Figure 2. Location of sampled lakes and reservoirs. Symbol size reflects the number of samples collected at each site, and
grayscale reflects the climate type.

2.2. Field Data Collection and Laboratory Measurements

This work is based on two data sets of previous projects, the project of the Centre for
Hydrographic Studies (CEDEX data set) carried out across six years between September
2001 and July 2007 and the Ecological Status of Aquatic Systems with Sentinel Satellites
project (ESAQS data set) performed between 2017 and 2018. We combined both in a single
database. All sampling points were georeferenced, and the samples were taken and filtrated
in the field (CEDEX) or on the same day at the laboratory (ESAQS). The availability of the
different data types for each of the water bodies is given in Appendix A.
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SDD and radiometric measurements were carried out in the field in both projects.
In situ fluorometers were also used in both projects, in the CEDEX project for all CDOM
measurements and for some PC measurements, and in the ESAQS project for all PC
measurements.

SDD was measured using a disk (20 cm in diameter) with alternating black and white
quadrants, which was submerged vertically until it was no longer visible. SDD consists of
measuring the mean value of the point at which the disc completely disappears and the
depth at which it reappears [41]. SDD was used as the sample depth in ESAQS project, but
in CEDEX project, the sampling depth was that corresponding to the first optical depth
(Z90), from which 90% of the remotely sensed light comes from [42]. The first optical depth
was obtained directly from downward irradiance attenuation profiles or by means of an
empirical relationship with SDD. PVC tubes were used to take samples from the surface
down to the calculated depth, because integrated samples are more representative and
avoid missing possible phytoplankton peaks. In turbid lakes (SDD < 1 m), samples were
taken directly from the surface layer.

In situ CDOM was measured using a Seapoint UV fluorometer (Seapoint Sensors
Inc., Brentwood, NH, USA), and due to a factory calibration against quinine sulphate,
CDOM is expressed in micrograms per liter of quinine sulphate equivalents. In situ PC
was determined using a C3 Submersible Fluorometer (Turner Design Instruments; San Jose,
CA, USA) in ESAQS project and a Minitracka II PA Fluorometer Model HB202 (Chelsea
Instruments Ltd., Surrey, UK) in CEDEX project. The calibration of fluorescence intensity
was performed by means of a calibration curve made with a standard phycocyanin extract
from Spirulina sp. (Sigma–Aldrich Chemicals). For the radiometric measurements, three
field spectroradiometers were used, one in CEDEX project and two in ESAQS project.
Spectroradiometers characteristics are given in Table 1, and Appendix A shows which
ones were used at each sampling location. The water-leaving radiance was obtained by
measuring above-surface water spectroradiometry, according to the methodology described
by Mobley [43].

Table 1. Details on field spectroradiometers used to collect water-leaving radiance.

Dataset CEDEX ESAQS

Instrument ASD-FR ASD FieldSpec®

HandHeld 2
Ocean Optics

HR4000-UV-NIR

Manufacturer Analytical Spectral Devices, Inc.; Boulder, CO,
USA

Ocean Optics; Largo,
FL, USA

Acceptance angle 8◦ 8◦ 8◦

Spectral interval 1.4 nm 1 nm 0.2 nm
Spectral range 350–1000 nm 325–1075 nm 200–1100 nm

Once the in situ remote sensing reflectance spectra was calculated according to the
methodology described by Mobley [43], it was convoluted to the S2–MSI and S3–OLCI
spectral bands, using the Sentinel-2 Spectral Response Functions (S2–SRF) v3.0 [44] and
the Sentinel-3 Spectral Response Functions (S3–SRF) v2.0 [45].

Laboratory analyses were carried out in both projects for Chl_a and TSS. In addition,
CDOM measurements in ESAQS project and the PC in CEDEX project were analyzed in
the laboratory.

TSS were analyzed using the gravimetric method (ISO-11923-1997). Chl_a and CDOM
in ESAQS project were measured in the laboratory using spectrophotometric methods.
Chl_a samples were filtered through 0.4–0.6-µm GF/F glass fiber filters, extracted using
standard methods [46] and calculated with Jeffrey and Humphrey [47] methods. The fitting
function determined by Sòria-Perpinyà et al. [48] between spectrophotometric and HPLC
Chl_a values was used to adjust our Chl_a results. The water filtered for Chl_a extraction
was used to measure CDOM. The UV absorption curve (200–900 nm) was measured with a
spectrophotometer using a 1 cm quartz cuvette and using a calibration curve with quinine
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sulphate to obtain organic matter values expressed in micrograms per liter of quinine
sulphate equivalents at UV absorption wavelength of 250 nm [49]. The methodology used
to measure Chl_a by HPLC and to PC quantification for CEDEX samples was described by
Simis et al. [24].

To assess the strength of the association between water quality variables, nonpara-
metric Spearman correlation coefficients were calculated because the data did not have a
normal distribution.

2.3. Algorithms Retrieval

To find the best algorithms for estimating water quality variables a comparison of
the performance of different water quality product algorithms was done (Table 2). Our
bibliographic research was centered in SMI and OLCI sensors from 2015, when S2 was
launched, until 2020. Except for two variables, PC and TSS, we also adapted algorithms of
other sensors due to the limited number of publications for these variables.

In total 36 bands combinations were tested: 14 to derive Chl_a values, 6 for CDOM, 6
for TSS, 6 for PC and 4 for SD. Bands combinations are given in Table 2.

The process for the calibration and validation of the algorithms was developed in two
steps. For the first step, the data were equally divided into two data sets, one for calibration
and another for validation.

Once we had two data sets, the algorithms were calibrated with a regression between
the field data, using raw or transformed values, and bands combinations using S2–MSI
and S3–OLCI convoluted spectral bands, finding the best fitting function (linear, potential,
exponential or polynomial). The algorithms were validated by four error statistics using
observed and estimated data: coefficient of determination (R2), root–mean–squared error
(RMSE), relative root–mean–squared error (RRMSE) and bias. The coefficient of determina-
tion was calculated by adjusting a linear regression between field and estimated data.

RMSE =

√
∑N

i=1
(
xestimated

i − xmeasured
i

)2

N
(1)

RRMSE =
RMSE

∑N
i=1 xmeasured

i /N
× 100 (2)

Bias =
∑n

i=1

(
xestimated

i − xmeasured
i

)
N

(3)

In the second step, the best performing algorithms for each variable were recalculated
using the entire database with the aim to obtain a more robust and accurate algorithm.
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Table 2. Band math and original specified wavelengths in nm for each algorithm used to retrieve the water quality parameters. SEE (Standard error of the estimates), MAE (Mean
absolute error).

Reference Sensor Atmospheric Correction Variables Bands Relation N R2 RMSE Data Range

[11] S2-MSI 6S Chl_a

(
1

R670 −
1

R710

)
× R750 8 0.78 5.34 2.89–22.83 mg/m3

R705−R665
705−665 6 0.93 12.09 19.51–87.63 mg/m3

R740/R560 7 0.98 58.90 75.89–938.97 mg/m3

[12] S3-OLCI Bright Pixel Atmospheric
Correction

Chl_a
R709/R665

15
0.95 6.53

1.81–96.41 mg/m3(
1

R665 −
1

R709

)
× R754 0.95 7

[13] S2-MSI

Simulated water leaving
radiance

(Hydrolight)
Chl_a

R740×
(

1
R665 −

1
R705

)
392 0.99 23 (MAE) 10–169 mg/m3

log10 [max. (R443; R490)/R560] 392 0.97 0.89 (MAE) <10 mg/m3

Sen2cor SD R490/R705 60 0.68 0.88 (MAE) 0.25–10 m

[14] S2-MSI Empirical line method Chl_a R709/R665 56 0.76 4.39 7.84–60.95 mg/m3

[15] S2-MSI Sen2Cor
CDOM R560/R705

41
0.88 0.73 0.11–8.46 m−1 a (440)

Chl_a R705/R665 0.49 9.97 1.62–51.68 mg/m3

[16]
S2-MSI

In situ reflectance Chl_a
R705/R665

72
0.78 10.44

0.97–117.24 mg/m3
S3-OLCI R709/R665 0.76 10.77

[20] Dron PC R709/R620 92 0.95 – 0.43–13.07 mg/m3

[21] S2-MSI Sen2cor PC R740/R665 21 0.84 141 10–1287 mg/m3

[22]
S2-MSI

In situ reflectance PC
R740–R665 29 0.70 4.82

0–23 Relative Fluores-
cence UnitsS3-OLCI R707/R679 9 0.86 1.45

[23] S3-OLCI In situ reflectance PC
(

1
R620 −

0.4
R560 −

0.6
R709

)
× R754 216 0.69 27.69 0.33–317.74 mg/m3

[24] MERIS In situ reflectance PC R620; R665; R709; R779 373 0.74 – 0.4–1000 mg/m3

[27] * S2-MSI
S3-OLCI

C2RCC
C2X
TOA

Chl_a R665/R709

49

0.7 8.9 18.9 (115.7) ** mg/m3

TSS R700 0.7 3.5 8.9 (52.1) ** mg/L
CDOM R665/R490 0.6 0.8 5.5 (11.7) ** m−1 a (400)

SD R490/R709; R560/R709 0.8 0.4 0.9 (6.27)** m

[28] S2-MSI Sen2cor SD R560/R704 79 0.67 0.06 0.19–0.62 m

[29] S2-MSI Polymer SD R490/R560 82 0.8 1.4 0.5–10.5 m
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Table 2. Cont.

Reference Sensor Atmospheric Correction Variables Bands Relation N R2 RMSE Data Range

[37] S2-MSI Sen2Cor CDOM R560/R665 41 0.65 1.71 0.14–12.24 m−1 a(420)

[38] S2-MSI TOA
Chl_a R705− R665+R740

2 23
0.83 – 3.6–72.9 mg/m3

CDOM R560/R665 0.72 – 1.77–15.8 mg/L a(380)

[39]
S2-MSI

In situ reflectance CDOM
Ln(R490/R740)

32
0.86 0.44

0.71–4.3 m–1 a(440)S3-OLCI Ln(R510/R753) 0.86 0.44

[40]
S2-MSI Simulated water leaving

radiance (Hydrolight) CDOM R705/R490 – 0.97 0.17
1–86 m−1 a(400)S3-OLCI 0.96 0.19

[50] S2-MSI
ACOLITE

POLYMER (sun-glint) TSS
R664

48
0.63 25.06% <150 mg/L

R865 0.95 10.28% >150 mg/L

[51] S2-MSI Empirical line method Chl_a R560/R665 30 0.68 0.14 (SEE) 1.58–6.00 mg/m3

[52] S3-OLCI UV-AC TSS R779/R510 50 0.91 19.29 33.88–695.24 mg/L

[53] Tiangong 2
MWI UV-AC TSS

NISSI = R820 − R’820
R’820 = R750 + (R980 − R750)
× (820 − 750)/(980 − 750)

92
20

0.85
0.76 22.7 1.78–330.43 mg/L

23.12–208.89 mg/L

[54] MODIS Land-based atmospheric
correction method TSS R645/R555 92 0.88 34.20% 1–300 mg/L

[55] OLCI In situ reflectance Chl_a log10 [max. (R443; R490;
R510)/R560] 2720 0.86 – 0.012 to 77.9 mg/m3

* Most repeated band ratios among those selected for each optical water type; ** Median, and range in parenthesis.
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3. Results
3.1. Measured Data

Getting a wide range of values is very important for achieving a robust algorithm.
Descriptive statistics for each variable are given in Table 3. These statistics show that our
data set covers a wide range of ecological states for water bodies.

Table 3. Descriptive statistics of the measured water parameters: Secchi disc depth (SDD), coloured
dissolved organic matter (CDOM), total suspended sediment (TSS), chlorophyll a (Chl_a), and
phycocyanin (PC).

n Min. Max. Mean Median SD

SDD (m) 271 0.10 11.50 2.47 1.76 2.26
CDOM (µg/L QSE) 222 0.03 17.14 1.90 1.60 1.66

TSS (mg/L) 92 0.67 78.82 9.03 3.01 15.92
Chl_a (mg/m3) 254 0.53 704.97 53.26 10.28 108.87

PC (mg/m3) 170 0.10 1040.00 106.37 17.27 194.60

Figure 3 summarizes the information to understand the distribution of the samples
over the ranges of the variables. All variables showed a skewed distribution, with the
average in the lower values, and, for the pigment data, a few values up to three orders of
magnitude higher.

The cross correlations between variables are given in Table 4. The SDD is inversely
related to the other four variables since all produce a reduction in transparency with
increasing concentrations. CDOM shows a high correlation with Chl_a (R2 = 0.68, p < 0.001),
indicating a predominant autochthonous origin of organic matter in this data set. TSS
and Chl_a are well-correlated (R2 = 0.65). This indicates that, in most cases, TSS is mainly
composed of phytoplankton and not of suspended minerals. Chl_a and PC are strongly
related (R2 = 0.85, p < 0.001), indicating the importance of the Cyanobacterial group in the
phytoplankton composition of our data set.

Figure 3. Boxplot of the values range for the water quality parameters. The box bounds the in-
terquartile range (IQR; 25–75 percentile), the horizontal line inside the box indicates the median and
whiskers (error bars) indicate the 90th above and 10th below percentiles. Dots indicate the outliers.

Table 4. Spearman correlation coefficients, probability value and data points (in parenthesis).

p < 0.001 CDOM TSS Chl_a PC

SDD −0.588 (204) −0.831 (91) −0.845 (251) −0.815 (157)
CDOM 0.551 (55) 0.680 (202) 0.376 (159)

TSS 0.649 (92) 0.734 (21)
Chl_a 0.848 (160)
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3.2. Algorithms Retrieval

Calibration results, relating measured values of five studied variables and different
band combinations, and error statistics results, relating measured and estimated values,
are summarized together in the Tables 5–9.

Table 5. Calibration and validation results for Secchi disk depth (SDD). Only results with a calibration
with R2 > 0.4 are shown. All are linear regressions. RMSE (m); RRMSE (%); bias (m). R2: coefficient
of determination; RMSE: root–mean–squared error; RRMSE: relative root–mean–squared error.

Sensor Bands
Relation

Calibration Validation

n R2 n R2 RMSE RRMSE Bias

SDD

S2 R492/R705
134

0.65
131

0.71 1.30 55.19 0.35
S3 R490/R709 0.64 0.69 1.36 57.65 0.36
S2 R560/R705

135
0.63

131
0.77 1.03 43.64 0.31

S3 R560/R709 0.62 0.77 1.05 44.46 0.32
S2 R492/R560

135
0.60

131
0.65 1.21 51.22 0.10

S3 R490/R560 0.60 0.65 1.19 50.95 0.13

Table 6. Calibration and validation results for colored dissolved organic matter (CDOM). Only results with a calibration
with R2 > 0.4 are shown. Regressions: linear (l.); potential (p.); exponential (e.). RMSE (µg/L QSE); RRMSE (%); bias
(µg/L QSE).

Sensor Bands Relation
Calibration Validation

n R2 n R2 RMSE RRMSE bias

CDOM

S2 Ln(R492/R740) 108 0.46 (l.) 109 0.48 0.93 50.46 0.04
S3 Ln(R510/R753) 0.45 (l.) 0.47 0.93 50.85 0.05
S2 R560/R665 107 0.51 (p.) 107 0.51 0.95 52.34 0.29
S3 R560/R665 0.50 (p.) 0.48 0.98 53.96 0.29
S2 R560/R705 108 0.51 (e.) 110 0.55 0.91 49.88 0.30
S3 R560/R709 0.50 (e.) 0.55 0.92 50.15 0.30
S2 R665/R492 108 0.49 (l.) 110 0.53 0.88 47.94 0.03
S3 R665/R490 0.47 (l.) 0.51 0.90 48.90 0.03
S2 R705/R492 108 0.48 (p.) 108 0.48 1.03 56.24 0.26
S3 R709/R490 0.47 (p.) 0.45 1.09 59.14 0.25

Table 7. Calibration and validation results for TSS. Only results with a calibration with R2 > 0.4 are shown. Regressions:
linear (l.); potential (p.); exponential (e.). RMSE (mg/L); RRMSE (%); bias (mg/L).

Sensor Bands
Relation

Calibration Validation

n R2 n R2 RMSE RRMSE Bias

TSS

S2 R865 45 0.71 (e.) 44 0.91 6.13 65.98 2.09
S3 R865 0.71 (e.) 0.91 6.03 64.87 2.01
S2 R783/R492 45 0.90 (l.) 41 0.93 4.57 49.69 0.27
S3 R779/R510 0.90 (l.) 0.94 4.35 47.22 0.38
S2 NISSI (R842) 45 0.90 (l.) 44 0.84 6.74 72.71 0.15
S3 NISSI (R779) 42 0.92 (l.) 0.81 7.74 83.27 0.63

TSS
< 10 mg/L

S2 R665 38 0.54 (l.) 35 0.55 1.42 45.27 0.08
S3 R665 0.52 (l.) 0.55 1.71 54.42 0.86

TSS
< 20 mg/L

S2 R700 40 0.84 (l.) 37 0.85 1.79 42.89 0.39
S3 R700 0.84 (l.) 0.85 1.78 42.78 0.40
S2 R665/R560 40 0.50 (p.) 38 0.48 3.23 77.45 0.76
S3 R665/R560 0.48 (p.) 0.47 4.25 84.70 0.75

TSS
> 10 mg/L

S2 R665 8 0.51 (l.) 8 0.60 16.65 42.65 1.84
S3 R665 0.50 (l.) 0.59 16.71 43.12 2.00

TSS
> 20 mg/L

S2 R783/R492 6 0.77 (l.) 5 0.80 11.44 22.77 4.36
S3 R779/R510 0.78 (l.) 0.81 11.20 22.29 4.78
S2 NISSI (R842) 6 0.77 (l.) 5 0.40 20.44 41.96 1.15
S3 NISSI (R779) 0.98 (l.) 0.21 21.28 43.68 2.60
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Table 8. Calibration and validation results for chlorophyll a (Chl_a). Only results with a calibration with R2 > 0.4 are shown.
Regressions: linear (l.); potential (p.); polynomial (pl.); exponential (e.). RMSE (mg/m3); RRMSE (%); bias (mg/m3).

Sensor Bands Relation
Calibration Validation

n R2 n R2 RMSE RRMSE Bias

Chl_a
< 5 mg/m3

S2 log10 [max. (R443;
R492)/R560]

52 *

0.68 (l.)

53

0.55 0.94 43.18 0.09

S3 log10 [max. (R443;
R490)/R560] 0.69 (l.) 0.57 0.92 42.43 0.08

S3 log10 [max. (R443; R490;
R510)/R560] 0.69 (l.) 0.57 0.93 42.82 0.13

Chl_a
> 5 mg/m3

S2
(

1
R665 −

1
R705

)
× R740 73

0.92 (pl.)
71

0.85 41.76 51.76 4.77

S3
(

1
R665 −

1
R709

)
× R754 0.91 (pl.) 0.84 79.35 98.36 29.87

S2 R705−R665
705−665 73 * 0.82 (pl.) 70 0.73 56.04 73.47 1.15

S3 R709−R665
709−665 73 0.83 (pl.) 0.82 54.97 72.07 14.44

S2 R740/R560 73 0.91 (pl.) 71 0.90 31.67 39.26 10.24
S3 R754/R560 0.91 (pl.) 0.89 43.67 54.17 10.72
S2 R705/R665 72 0.93 (p.) 71 0.91 35.16 41.07 2.99
S3 R709/R665 0.93 (p.) 0.91 37.10 43.95 3.40
S2 R665/R705 73 * 0.90 (e.) 73 0.87 81.13 97.44 20.05
S3 R665/R709 0.89 (e.) 72 0.87 60.13 71.50 15.82
S2 R705− R665+R740

2 73 * 0.70 (p.) 73 0.28 125.01 134.55 36.16
S3 R709− R665+R754

2 0.72 (pl.) 71 0.55 81.48 95.54 15.89

S2 log10 [max. (R443;
R492)/R560] 73 * 0.47 (pl.) 73 0.21 128.01 137.87 36.99

S3 log10 [max. (R443;
R490)/R560] 0.50 (pl.) 0.23 124.86 134.38 33.83

S2 R705/R560 72 * 0.90 (pl.) 71 0.89 39.74 48.00 2.22
S3 R709/R560 0.90 (pl.) 72 0.90 37.04 43.88 0.49

* Using log10 of the data.

Table 9. Calibration and validation results for phycocyanin (PC). Only results with a calibration with R2 > 0.4 are shown.
Regressions: linear (l.); potential (p.). RMSE (mg/m3); RRMSE (%); bias (mg/m3).

Sensor Bands Relation
Calibration Validation

n R2 n R2 RMSE RRMSE Bias

S2 R705/R665 70 0.78 (p.) 64 0.79 43.67 54.92 14.64
S3 R709/R679 68 0.80 (p.) 65 0.93 42.59 54.41 4.62
S3 R709/R620 67 0.77 (p.) 63 0.82 34.57 46.75 7.03
S2 R740/R665

69
0.67 (p.) 64 0.35 58.36 79.93 27.09

S3 R754/R665 0.66 (p.) 65 0.62 60.62 77.23 25.62

S2

(
1

R665 −
0.4

R560 −
0.6

R705

)
×

R740
68 0.94 (l.) 55 0.92 92.60 62.52 31.75

S3

(
1

R620 −
0.4

R560 −
0.6

R709

)
×

R754
70 0.95 (l.) 66 0.94 60.16 48.33 16.51

S2 Simis et al. [24] 70 0.91 (l.) 69 0.91 85.10 71.35 36.33
S3 Simis et al. [24] 70 0.96 (l.) 69 0.96 39.98 33.52 2.65

3.2.1. SDD

In the calibration process, the three linear functions obtained with field values and
bands ratios showed a positive slope for SDD, as larger band ratio values correspond with
clearer waters. All the tested band combinations had a similar coefficient of determination,
with a maximum difference of 0.05 (Table 5). The R490/R700 ratio had the best coefficients
of determination for S2 (R2 = 0.65) and S3 (R2 = 0.64), while the lowest coefficient of
determination with a R2 of 0.60 for both sensors was reached by the R490/R560 ratio.

Validation results showed higher differences between studied ratios. The best coeffi-
cients were found for the R560/R700 ratio, with a value of 0.77 for both sensors. This ratio
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also registered the best RMSE, 1.03 m for S2 and 1.02 m for S3, and the best RRMSE, with
percentage errors lower than 45%. The bias determined the lower values for the R490/R560
ratio, 0.10 m for S2 and 0.13 m for S3.

The RMSE calculated from the whole data set was always higher than 1 m. Since that
error is an unacceptable error for SDD values below 1 m, the RMSE for the values of SDD
lower than 1 m (n = 47) was calculated. The best results were obtained with the R560/R700
ratio, with an RMSE of 0.49 m. For the R490/R700 ratio, the RMSE was 0.67 m, and for the
R490/R560 ratio, the RMSE was 1.09 m.

These results indicated that the best ratio for the retrieval of SDD was R560/R700,
and, following the second step of calibration and validation process, the algorithm for the
R560/R700 ratio was recalculated using the whole database, obtaining the results shown in
Figure 4.

Figure 4. SDD algorithms recalculated using all database.

3.2.2. CDOM

According to the bibliography cited in the introduction section, both blue–red and
green–red ratios were applied to S2 and S3 spectral bands. Different types of functions in
the calibration regressions were obtained and the summary of results is given in Table 6.

The results were very similar for five different ratios. While, in calibration regression
models, the best ratios were two green–red ratios (R560/R665 and R560/R700) with a R2

of 0.51 for S2 and a R2 of 0.50 for S3, for error statistics, the best results were given in a
blue–red ratio.

The algorithm with better results in the validation process was R665/R490, obtaining
the lowest values for RMSE, RRMSE and bias. Using S2 convoluted bands, the RMSE was
0.88 µg/L QSE, the only one below 0.9 µg/L QSE, corresponding to a RRMSE of 47.94%.
For S3, RMSE was a little higher, 0.9 µg/L QSE, with a RRMSE of 48.90%, the only one
below 50% for S3 results. The bias was the same for two sensors, 0.03 µg/L QSE. The
coefficients of determination of 0.53 for S2 and 0.51 for S3 were the most approximated to
the higher value for both, 0.55, obtained for the R560/R700 ratio.

These results indicated the R665/R490 ratio as the more suitable ratio for retrieval
CDOM in our dataset, and, following the second step of calibration and validation process,
the algorithm for the R665/R490 ratio was recalculated using the whole database, obtaining
the results shown in Figure 5.
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Figure 5. CDOM algorithms recalculated using all database.

3.2.3. TSS

Initially, for the TSS retrieval algorithms, the whole calibration data set was used, but,
finally, the data set according to the TSS concentration were separated. Table 7 presents the
best results, where all calibration regression models present linear functions except one
exponential and one potential.

With regards to the calibration process, when the whole calibration data set was used,
the best results were two linear functions with coefficients of determination of 0.9 or higher,
the R783/R492 ratio for S2 and R779/R510 for S3, and the NIR bands Suspended Sediment
Index (NISSI), using R842 for S2 and R779 for S3. The validation process determined the
better results for the R783/R492 ratio, with a RMSE of 4.57 and 4.35 mg/L for S2 and S3,
respectively, and a RRMSE of 49.69% and 47.22%.

The results using only part of the data range, concentrations under 10 mg/L or under
20 mg/L, have demonstrated that, with the R700 band only, it is possible to reduce the
RRMSE down to 42% with a RMSE of 1.79 and 1.78 mg/L and a bias of 0.39 mg/L and
0.40 mg/L for S2 and S3, respectively.

The best retrieval algorithm using only the high values of our range data was the
same as using all data, the R783/R492 ratio for S2 and R779/R510 for S3. However, the
high values of concentration caused an increase of two error statistics in contrast with the
results using all data. The higher values led to the RMSE increasing to 11 mg/L and the
bias achieving values of 4 mg/L, although the RRMSE descended until 22%.

With the aim of reducing errors, these results lead us to choose two algorithms, the
simple band R700 for low TSS concentrations, under 20 mg/L, and the R783/R492 ratio for
S2 and R779/R510 for S3 for high TSS concentrations, above 20 mg/L. Following the second
step of the calibration and validation process, the algorithms using the whole database
were recalculated, obtaining the results shown in Figures 6 and 7. A threshold has been
determined to facilitate the algorithm application for concentrations above 20 mg/L. If
the R783/R492 ratio for S2 and the R779/R510 ratio for S3 surpassed the value of 0.8, the
algorithm for concentrations above 20 mg/L were applied.

Figure 6. TSS algorithms recalculated using all data under 20 mg/L.



Water 2021, 13, 686 14 of 27

Figure 7. TSS algorithms recalculated using all data upper 20 mg/L.

3.2.4. Chl_a

The difficulties to obtain an algorithm with accurate error for low values using the
entire calibration data range led us to separate data according to the Chl_a concentration.
As shown in Table 8, the values under 5 mg/m3 were separated from the rest. Calibration
regression models were linear functions for low values and polynomial for most regression
models of high values.

Only one band combination achieved good results when using data with concentra-
tions below 5 mg/m3, the correlation between the log10 ratio using maximum value of
R443 or R490 and R560 and the log10 of Chl_a concentrations. Coefficient of determination
for the calibration regression model near to 0.7 was obtained, while, for the validation
regression model, the coefficient descended until 0.55 for S2 and 0.57 for S3. On the other
hand, the RMSE were over 0.9 mg/m3, corresponding to a RRMSE of 43.18% for S2 and
42.43% for S3. The bias was less than 0.1 mg/m3.

Using data above 5 mg/m3, four calibration regression models reached a coefficient
of determination of 0.9 or higher: the triband model, other bands operation and two ratios.
However, the validation regression models with a coefficient of determination of 0.9 was
obtained only when using ratios. The best results were obtained with the R700/R665
ratio reaching a RMSE of 35.16 mg/m3, equivalent to a RRMSE of 41.07% and a bias of
2.99 mg/m3 for S2, and a RMSE of 37.10 mg/m3, equivalent to a RRMSE of 43.95% and a
bias of 3.40 mg/m3 for S3.

These results indicated the ratio using the maximum value of R443 or R490 and R560
as the more suitable ratio for retrieval of Chl_a concentrations below 5 mg/m3. Meanwhile,
for concentrations above 5 mg/m3, these results led us to choose the R700/R665 ratio for S2
and S3. Following the second step of the calibration and validation process, the algorithms
were recalculated using the whole database, obtaining the results shown in Figures 8 and 9.
A threshold was determined to facilitate the algorithm application for concentrations above
5 mg/m3. If the R700/R665 ratio for S2 and S3 surpassed the value of 0.8, the algorithm for
concentrations above 5 mg/m3 was applied.

Figure 8. Chl_a algorithms recalculated using all data under 5 mg/m3.
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Figure 9. Chl_a algorithms recalculated using all data upper 5 mg/m3.

3.2.5. PC

For the phycocyanin retrieval algorithm, only two of the five calibration regression
models reached a coefficient of determination higher than 0.9, the four-band model and
the semi-analytical approach (Table 9). These were linear functions, compared to the rest
that were potential.

With regards to S2, the algorithm with better results in the validation process was
R705/R665, with a RMSE of 43.67 mg/m3, a RRMSE of 54.92% and a bias of 14.64 mg/m3.
Note that this was not the ratio with the highest coefficient of determination. While for S3,
with the band 620 that corresponded to the maximum PC absorption, the best results were
reached with the semi-analytical approach with a coefficient of determination of 0.96, the
RMSE was 39.98 mg/m3, corresponding to a RRMSE of 33.52 and a bias of 2.65 mg/m3.

Following the second step of calibration and validation process, the algorithm of the
R705/R665 ratio was recalculated for S2 using the whole database, obtaining the results
shown in Figure 10. In the semi-analytical approach, all the data were used to recalculate
the specific absorption coefficient of PC at waveband 620, a∗PC(620), determined as the
absorption coefficient of PC at waveband 620, aPC(620), divided by the measured PC
concentration. While Simis et al. [24] used 0.007 m2/mg, in the present study, a value of
0.0034 m2/mg was obtained. Estimated and observed PC concentrations had a strong
correlation, with a coefficient of determination of 0.95, as shown Figure 10.

Figure 10. PC algorithms recalculated using all database.

Summary of retrieval algorithms of each studied variable using all data base is given in
Table 10. It is possible to see the used data range, number of used data, obtained algorithm,
the coefficient of determination and the RMSE.
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Table 10. Summary of retrieval algorithms.

Parameter
SENTINEL 2 SENTINEL 3

Range n Equation R2 RMSE Equation R2 RMSE

SDD (m) 0.1–9.55 266 0.5326 × (R560/R705) + 0.3818 0.69 1.14 0.4406 × (R560/R709) + 0.4729 0.68 1.16
CDOM (µg/L

QSE) 0.03–5.30 217 2.4072 × (R665/R492) + 0.0709 0.52 0.88 2.235 × (R665/R490) + 0.1838 0.50 0.90

TSS (mg/L) 0.67–19.76 76 803.99 × R700 + 1.0947 0.85 1.55 813.45 × R700 + 1.2717 0.85 1.55
20.00–78.82 11 14.464 × (R783/R492) + 16.336 0.77 10.35 17.543 × (R779/R510) + 15.67 0.79 10.07

Chl_a (mg/m3) 0.53–4.92 106
exp.10(−2.4792 ×

(log10[max.(R443;R492)/R560])
− 0.0389)

0.62 0.91 exp.10(−2.2251 ×
(log10[max.(R443;R490)/R560] − 0.0306) 0.64 0.90

5.16–674.70 144 19.866 × (R705/R665)2.3051 0.90 35.68 21.057 × (R709/R665)1.9516 0.90 37.29

PC (mg/m3) 0.13–1040 138 21.554 × (R705/R665)3.4791 0.79 44.48

294×
(({[

R709
R620

]
× [0.727 + bb]

}
− bb − 0.281

)
−
[
ε× aph(665)

])
bb(779) = 1.61×R779

{0.082−[0.6×R779]}
aph(665) =

1.47×
({[

R709
R665

]
× [0.727 + bb]

}
− 0.401− bb

)
0.96 41.47
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4. Discussion

The possibility of bringing together two large databases, obtained from two projects
carried out by this manuscript’s co-authors such as CEDEX project and ESAQS project,
allowed us to work with a large amount of high-quality data. Furthermore, its high
heterogeneity made it possible to work within a wide range in each of the variables, so that
the algorithms could be used in equally heterogeneous water bodies. However, the data
sets are not distributed evenly throughout the range; low values are more numerous for all
variables which gives them greater weight in retrieval algorithms.

This study presents a very extensive database of inland water quality data, which
coincides with field spectroradiometry, allowing us to test all possible retrieval algorithms
for the OLCI and MSI sensors. The database covers a wide gradient of limnological
variables and is representative of the variability of climatic and limnological conditions of
the Mediterranean Basin, with a greater representation of semi-arid environment reservoirs
(with high residence times, which determine long stratification periods and a tendency for
summer Cyanobacterial blooms). This amount of data encouraged us to research general
empirical algorithms for all variables, although, for TSS and Chl_a, it was only possible
by separating the data set into two concentration ranges. However, the extensive revision
of models carried out allowed us to determine which ones are the most accurate for the
remote sensing studies of these variables using S2 and S3, taking into account the following
reflections.

The spectra of the studied water bodies are mostly influenced by TSS and phyto-
plankton pigments. These are the OACs mainly affecting water transparency and, thus,
determining the bands better correlated with this variable. In fact, as the strong correlation
of TSS and Chl-a indicates, the main driver of the overall optical properties in this data set
is the phytoplankton. In contrast, CDOM has less influence in water transparency and in
the spectral features of the data set.

SDD is affected by all optically active substances combined in the water (Chl_a, CDOM
and other substances); therefore, it may be difficult to find conclusive reasons for using some
particular wavelengths for retrieval SDD rather than others [56]. Despite the difficulties to
obtain the SDD retrieval algorithm, all data could be used together to obtain a particular
band ratio for two sensors, the R560/R700 ratio, widely used in other sensors like MERIS.
The coefficient of determination obtained with all the data was 0.7 (Figure 4), a value very
close to those obtained in the previous studies considered (Table 2) that use satellite image
data. We also wanted to compare calibration correlation slopes and offsets values with
consulted manuscripts that apply the same combination bands and fitting function. Our
slopes are 0.53 (S2) and 0.44 (S3), while our offsets are 0.38 (S2) and 0.47 (S3). These are
better results than in a study carried out in a hypertrophy lagoon with a slope of 0.22 and
offset of 0.084 [28] but worse than a study in clear waters with a slope of 0.99 and offset of
0.34 [13], both using satellite image data.

It was also the most accurate ratio in the works of Sòria-Perpinyà et al. [28] and
Soomets et al. [27] using satellite image data. These were based on previous works with
MERIS sensor, in the first case, with the premise that SDD and Chl_a are inversely related,
and some algorithms to obtain Chl_a have compared the ratio of the reflectance at the peak
around 700 nm to the reflectance at the peak around 560 nm, which is related to a minimum
in the combined absorption by phytoplankton pigments, particles and CDOM [57], and in
the second case, in the light attenuation coefficient for inland waters of Alikas et al. [58].

For CDOM, it was also possible use all of the data together, obtaining the best correla-
tion for both sensors with the R665/R490 ratio. The coefficient of determination was low,
0.5 (Figure 5), which could be due to the lesser influence of CDOM on the transparency for
our database. Although the errors obtained are among 47 and 49%, an assumable error
since the values referred to are low, and therefore, the error is small, only 0.9 µg/L QSE.
This red–blue ratio is consistent with the results of Soomets et al. [27], using satellite image
data, and Ruescas et al. [40], using simulated data. To compare our calibration correlation
slopes and offsets values with consulted manuscripts that apply same combination bands
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and fitting function, our slopes are 2.41 (S2) and 2.24 (S3) and our offsets are 0.07 (S2) and
0.18 (S3). These values are inside slopes and offsets ranges of a study carried out using
satellite image data and a classification of five different optical water types, with slopes
range of 0.26–21.3 and offsets range of 1.56–9.67 [27].

Therefore, although is true that in situ data does not need any correction and those
of Ruescas et al. [40] are simulated, it is also true that both Soomets et al. [27] and his
work of reference [59] use atmospherically corrected data, so it is possible that, despite
atmospheric correction errors in the blue region, we can use it for CDOM determination. In
contrast, all papers consulted are in agreement with the suggestion of Zhu et al. [60] about
the fact that empirical algorithms in complex inland waters can be significantly improved
by selecting at least one band with a relatively longer wavelength (>600 nm). It reduces
the possible effects of particulate matter, and, in inland waters, chlorophyll and nonalgal
particles are usually in high concentrations and present high backscattering within the
longer wavelengths.

Two models had to be adjusted for TSS, one for low and one for high concentrations,
in order to reduce algorithm errors. Another possibility is that different TSS composi-
tions present different slopes, resulting from different inherent optical properties, and,
thus, due to different characteristics of suspended material [61]. The absence of loss on
ignition (method to estimate the organic content) data from CEDEX project did not let us
to improve respective influences of the organic and inorganic suspended matter on the
relationship. However, of the 11 data used in the correlation, only 1 did not correspond to
a hypereutrophic lake.

The algorithm for low values, under 20 mg/L, was obtained by a simple band R700
for the two sensors, with a coefficient of determination of 0.85 (Figure 6). The accuracy
of the algorithms is also ratified by the validation regression equations, because the slope
value is very close to 1 and the intercept value close to 0. The band R700 used matches for
different water types in the Soomets et al. [27] manuscript using satellite images, although
it uses few values higher than 30 mg/L, one in MSI sensor and three in OLCI sensor, two of
which do not fit in validation regression models. If we compare our calibration correlation
slopes of 803.99 (S2) and 813.45 (S3) and offsets of 1.09 (S2) and 1.27 (S3), we can observe
that they are similar to theirs, with a slopes range of 46.19–531 and an offsets range of
0.15–16.26 [27]. Furthermore, if we consult the works revised by them to test this band,
none of them use high TSS values (<32 mg/L). Only the Kallio et al. [62] manuscript uses a
range of TSS similar to ours, with concentrations between 0.7 and 32 mg/L. We can see
that their results were very similar to ours, using airborne imaging spectrometry with
92 samples they obtained a R2 of 0.82, a RMSE of 3.15 mg/L and a RRMSE of 33%.

Another algorithm was determined, using data higher than 20 mg/L, to have sufficient
data for calibration and validation processes. The best correlation was defined with the
R783/R492 ratio for S2 and R779/R510 for S3, with a coefficient of determination of 0.8
(Figure 7). Despite having fewer samples for calibration and validation processes, our
results are very similar to Yuan et al. [52], a manuscript tested in this research, and, for OLCI
sensor, obtained a validation regression model with a R2 of 0.9 and a RMSE of 19.29 mg/L
using satellite images and data range of 33.88-695.24 mg/L.

The other variable with two algorithms was Chl_a. The threshold value was 5 mg/m3,
because waters with high Chl_a concentrations (above 3–5 mg/m3 [63]) produce discernible
spectral features in the red and NIR regions of the reflectance spectrum [12].

From the 14 band combinations tested for Chl_a, for values under 5 mg/m3, only two
reached a coefficient of determination higher than 0.5. The algorithm with best results was
obtained relating log10 of the ratio using the highest value among R443 and R492 bands
and R560 band with log10 Chl_a concentrations, reaching a coefficient of determination for
S2 of 0.62 and 0.64 for S3 (Figure 8). Our validation results with a RMSE of 0.94 mg/m3

(S2) and 0.92 mg/m3 (S3) are in concordance with Pereira et al. [13] using satellite images,
with a mean absolute error of 0.89 mg/m3, using values under 10 mg/m3, despite the
fact that 35 of 43 used values were under 5 mg/m3. The used bands are in concordance
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with the bands of highest value for under 5 mg/m3 concentrations in the study developed
by O’Reilly and Werdell [55] using the highest value of R443, R492 or R510 bands like a
numerator, obtaining a R2 of 0.86 in the validation of a Chl_a concentration wide range
(0.012 to 77.9 mg/m3). However, their study was carried out in ocean and coastal waters,
while we studied inland waters, which are more optically complex.

For values above 5 mg/m3 the best results obtained were for the R700/R665 ratio, with
a coefficient of determination of 0.9 (Figure 9). It was also the best algorithm in four of the
ten checked studies: Moses et al. [12], Xu et al. [14], Chen et al. [15] and Lins et al. [16]. These
studies use a single algorithm for a Chl_a concentration range from 1 to 120 mg/m3, while
our range is from 5 to 700 mg/m3. Is possible that, for these reasons, our RMSE is higher,
35.16 mg/m3 (S2) and 37.10 mg/m3 (S3), and in the studies mentioned, it only reaches
10 mg/m3. If we compare our RRMSE of 41% for S2 and 44% for S3 using 71 samples, in
regards to works where they calculated it, our results are similar to the RRMSE of 48%
obtained by Chen et al. [15], using 41 samples applying a potential fit, and much bigger
than that obtained by Moses et al. [12] of only 8%, using only 15 samples applying a lineal
fit. We applied a potential fit, and the result was that our calibration correlation slopes of
2.31 for S2 and 1.95 for S3 and offsets of 19.87 for S2 and 21.06 for S3 are very similar to
those obtained by Chen et al. [15], with a slope of 3.12 and an offset of 25.99.

PC is the only variable with two clearly different algorithms for S2 and S3. This is
mainly due to the R620 band, as mentioned in the results, and also due to the fact that the
narrow bands of OLCI sensor allow the application of a semi-analytical model.

The best algorithm for S2 was obtained with the R700/R665 ratio, with a coefficient of
determination of 0.8 (Figure 10). This is the same band ratio as the one obtained to estimate
Chl_a concentrations above 5 mg/m3, due to the strong correlation between these two
variables with a Spearman correlation coefficient, 0.848. We used the same combination
of bands but not the same equation. The position and bandwidths of S2 are not optimal
to detect most of the specific features (peaks, shoulders, troughs) caused by the water
optically active constituents (OAC) in the water-leaving reflectance. This is the case of
Cyanobacteria, whose characteristic trough at 620 nm, due to phycocyanin absorption,
is only detectable in S3–OLCI bands. In S3, the estimation of total phytoplankton and
Cyanobacteria biomasses (through Chl_a and PC, respectively) are, therefore, uncorrelated,
since they use different band sets, while, in S2, there will be always a correlation in the
satellite products, which does not necessarily correspond to the actual correlation of the
variables in the water bodies. On other words, an increase in Chl_a can be caused by
an increase of other phytoplankton types, such as green algae, different from PC-rich
Cyanobacteria.

This issue reinforces one of the main purposes of this work, which was to explore the
complementarities of S2 and S3 for inland water quality monitoring. S2 allowed the study
of surface dynamics of a large number of water bodies, thanks to its spatial resolution, but
with often less accurate or limited algorithms than S3, which provides higher spectral and
temporal resolutions.

The obtained ratio does not coincide exactly with any of the five works reviewed,
although it could be considered the equivalent of S2 to the obtained by Beck et al. [22] for
S3 with R707/R679 ratio using in situ reflectance, because S3-centered band at 679 nm
(677–685 nm) was replaced for S2-centered band at 665 nm (649–680 nm). Unfortunately,
the difference in the PC concentration units used did not allow us to compare our results
with this study, so we compared them to two studies with a similar range of data. The
four-band model developed for Liu et al. [23] using satellite images, obtain a RMSE of
27.69 mg/m3 and a mean absolute percentage error of 172.863% with a data range of
0.33–317.74 mg/m3, while our algorithm percentage error calculated as RRMSE is much
lower, 54.92%, although it has a higher RMSE of 43.67 mg/m3. The opposite happens in
the study of Sòria-Perpinyà et al. [21] using satellite images, with a RMSE of 141 mg/m3

but a RRMSE of 40%, a lower error by having a greater amount of data with high values,
since its average value is 405 mg/m3 and ours is 106 mg/m3.
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The recalibrated Simis et al. [24] semi-analytical approach was the best model to
estimate PC through the OLCI sensor, with a coefficient of determination of 0.9 (Figure 10).
The difference between a∗PC(620) of 0.007 m2/mg, used by Simis et al. [24], and that obtained
with our results of 0.0034 m2/mg could be explained by the higher PC concentrations and
conditions of higher irradiance in our study area, in comparison to the data obtained in
The Netherlands lakes.

The algorithms defined in this work could be very valuable tools for water quality
monitoring, especially in Mediterranean climate areas were the climatic models forecast
predicts a water deficit. As a consequence of a water deficit, reservoirs will be more
sensitive to a eutrophication process, because increased evapotranspiration leads to higher
nutrient concentrations in the remaining water [64].

In addition, particularly in our study area, our algorithms will facilitate the incorpo-
ration of applied remote sensing into the hydrographic basins monitoring programs of
Iberian Peninsula. Monitoring programs in compliance with Water Framework Directive
require a minimum frequency of data, which is difficult and costly to achieve with only field
data. Remote sensing data would serve to perform more frequent monitoring by applying
the models proposed in this work for the estimation of key variables to determinate inland
waters ecological status.

Further validation to test the application of these algorithms must be addressed,
considering the obstacles when trying to transfer the results to real satellite remote sensing
data, such as atmospheric and sun specular correction. To have some indication on the
potential problems and/or errors when applying the models to real remote sensing data,
we did a limited validation in a well-known reservoir (Alarcón), in which, despite not
having enough matchup data with satellite acquisitions, we had a good knowledge of
the usual ranges of the variables and their spatial distribution (Appendix B). The values
obtained were within the expected range in the Alarcón images for Chl_a (Figure A1) and
TSS (Figure A2).

5. Conclusions

In this work, we proposed and validated retrieval methods for five key variables
(Chl_a, PC, SDD, TSS and CDOM) from MSI and OLCI sensors using a large in situ data
set representative of lakes and reservoirs of the Mediterranean basin. The data set included
radiometric and water quality data obtained in the periods 2001–2007 and 2017–2018.

Our goal was to provide algorithms for S2 and S3 to exploit the combined use of
both satellites for the continuous monitoring of the spatial and temporal variation of key
variables determining inland waters’ ecological status. The best algorithms were empirical
and used similar bands for both sensors, with the exception of PC algorithm for S3. The
narrower bands of OLCI facilitated finding specific features in the water-leaving radiance
and allowed the application of a semi-analytical model using its specific band at 620 nm
that corresponds to the maximum PC absorption. The S3 algorithms can serve as a further
validation of the S2 algorithms when the spatial consistency of both products is studied.
This would require study of a large number of small- and medium-sized water bodies that
could not be studied with S3.

Regarding the calibration and validation strategy with different data sets but same
ranges for the variables’ values, the retrieval algorithms demonstrated to be consistent
and suitable to estimate key variables of water quality. The recalibration of the algorithms
using all the database enhanced the algorithms robustness.

A preliminary test with satellite image in a well-known reservoir showed results
consistent with the expected ranges and spatial patterns of the variables. The selected
models could serve in future works to map five water quality variables from remotely
sensed data using S2 and S3, both separated and combined.
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Appendix A

Table A1. Summary of sampled lakes and reservoirs. Symbols and abbreviations: max.: maximum; m.a.s.l.: meters above sea level; lat.: latitude; lon.: longitude; Res.: residence. a Visits
spanning 2 days counted as 1.

Name Position Depth Volume Elevation Res.
Time Climate Visits a Samples # of Spectroradiometry

Samples # of Variables Samples

Lat. Lon. m
(max.)

×106

m3 m.a.s.l. years ASD-
FR

HandHeld
2 HR4000 SDD CDOM TSS Chl_a PC

d.dd d.dd m µg/L
QSE mg/L mg/m3 mg/m3

Aguilar 42.80 −4.32 48 247 942 0.78 Cfb 2 4 4 4 4 0 4 4
Alarcón 39.60 −2.17 71 1118 806 2.15 Csa 2 4 4 4 4 0 4 4
Albufera 39.34 −0.35 2 360 1 10.0 Csa 7 36 29 7 36 18 6 28 19
Alcántara 39.75 −6.75 135 3200 218 0.43 Csa 2 8 8 8 2 4 7 2
Alcorlo 41.02 −3.02 62 180 920 2.22 Csa 1 1 1 1 1 0 1 1
Almendra 41.22 −6.28 202 2413 730 1.57 Csb 3 13 13 13 3 6 9 3
Bellús 38.93 −0.47 34 69 144 0.24 Csa 3 7 6 1 7 6 7 7 5
Benaixeve 39.73 −1.09 90 221 450 0.63 Csb 4 13 13 13 13 13 13 5
Beniarrés 38.80 −0.35 53 27 318 0.35 Csa 3 4 1 3 4 4 3 4 2
Bornos 36.80 −5.73 52 215 104 0.72 Csa 1 2 2 2 2 0 2 2
Brovales 38.35 −6.68 25 7 303 n/a Csa 1 1 1 1 1 0 1 1
Buendía 40.40 −2.77 79 1458 712 2.73 Csa 1 1 1 1 1 0 1 1
Burguillo 40.42 −4.60 91 198 729 0.47 Csa 2 4 4 4 4 0 4 4
Canelles 42.03 0.65 150 201 506 1.22 Cfb 1 4 4 4 4 0 4 0
Cernadilla 42.02 −6.47 69 233 889 0.47 Csb 1 1 1 1 1 0 1 1
Cijara 39.37 −5.00 80 1470 428 1.68 Csa 1 2 2 2 2 0 2 2
Contreras 39.62 −1.53 129 852 669 1.48 Csa 5 17 2 8 7 15 12 13 15 3
Cortes 39.23 −0.92 112 118 326 0.08 Csa 1 1 1 1 1 0 1 1
Cuerda
del Pozo 41.85 −2.75 40 200 1,078 1.96 Cfb 2 7 7 7 0 6 6 0

Ebro 42.97 −4.07 34 540 838 1.55 Cfb 2 3 3 3 3 0 2 2
El Atazar 40.90 −3.53 141 426 873 1.19 Csa 3 4 4 4 3 0 4 4
Entrepeñas 40.50 −2.72 85 874 718 1.04 Csa 1 1 1 1 1 0 1 1
Giribaile 38.08 −3.48 84 475 346 1.28 Csa 1 1 1 1 1 0 1 1
Guadalcacín 36.65 −5.75 44 800 102 2.40 Csa 1 2 2 2 2 0 2 2
Guadalén 38.17 −3.47 55 173 350 1.25 Csa 1 1 1 1 1 0 1 1
Guadalteba 36.95 −4.83 84 173 362 1.44 Csa 1 2 2 2 2 0 2 2
Iznájar 37.25 −4.30 120 980 421 1.63 Csa 3 14 14 14 4 6 9 3
Jándula 38.25 −3.92 88 322 360 1.29 Csa 1 2 2 2 2 0 2 2
La Serena 38.88 −5.17 89 2828 355 3.59 Csa 2 4 4 4 4 0 4 4
Maria
Cristina 40.02 −0.16 38 18 100 5.96 Csa 2 5 5 5 4 4 4 0
Navalcán 40.03 −5.10 26 34 370 0.46 Bsk 1 3 3 3 3 0 3 3
Negratín 37.55 −2.93 75 496 638 1.87 Csb 1 2 2 2 2 0 2 2
Pinilla 40.93 −3.55 33 38 1089 0.27 Csb 3 4 4 4 4 0 4 3
Regajo 39.89 −0.52 23 6 407 0.14 Csa 2 7 4 3 7 7 7 7 4
Rialb 41.97 1.23 99 402 430 0.36 Cfa 1 4 4 4 4 0 4 0
Riaño 42.97 −5.02 101 654 1100 0.95 Csb 1 2 2 2 2 0 2 2
Ricobayo 41.63 −5.90 100 1048 684 0.27 Csa 2 4 4 4 4 0 4 4
Rosarito 40.10 −5.30 38 84 307 0.25 Csa 13 54 54 31 43 2 38 41
San Juan 40.38 −4.33 78 148 580 0.26 Csa 1 2 2 2 2 0 2 2
Sanabria 42.12 −6.70 88 188 998 0.26 Csb 1 2 2 2 2 0 2 2
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Table A1. Cont.

Name Position Depth Volume Elevation Res.
Time Climate Visits a Samples # of Spectroradiometry

Samples # of Variables Samples

Lat. Lon. m
(max.)

×106

m3 m.a.s.l. years ASD-
FR

HandHeld
2 HR4000 SDD CDOM TSS Chl_a PC

d.dd d.dd m µg/L
QSE mg/L mg/m3 mg/m3

Santa
Teresa 40.65 −5.58 59 496 887 0.80 Csb 1 2 2 2 2 0 2 2
Santillana 40.72 −3.83 40 91 894 0.83 Csa 2 3 3 3 3 0 3 3
Sitjar 40.01 −0.23 58 49 160 0.37 Csa 3 6 6 6 6 6 6 2
Terradets 42.05 0.88 47 33 372 0.04 Cfa 1 2 2 2 1 0 1 0
Tous 39.13 −0.65 110 378 135 0.28 Csa 3 9 6 3 9 6 9 9 3
Tremp 42.22 0.97 86 184 501 0.18 Cfa 1 4 4 4 4 0 4 0
Ullívarri 42.93 −2.58 37 139 547 0.30 Cfb 2 2 2 2 2 0 2 2
Valdecañas 39.80 −5.43 98 1446 315 0.36 Csa 3 5 5 5 5 0 4 4
Valmayor 40.53 −4.03 60 124 831 3.54 Csa 2 4 4 4 4 0 4 4
Valparaíso 41.97 −6.30 64 145 833 0.23 Csb 2 3 3 3 3 0 2 2
Valuengo 38.30 −6.67 32.7 10.0 297 0.08 Csa 1 2 2 2 2 0 2 2
Vega de
Jabalón 38.75 −3.78 25 33.5 639 0.62 Bsk 1 1 1 1 1 0 1 1

Total 109 296 224 58 14 271 222 92 254 170
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Appendix B. Test of Chl_a and TSS Algorithms Showed in Table 10 Using
Image Satellite

Figure A1. Thematic maps of Chl_a concentration for Alarcón reservoir using S3 (left) and S2 (right) images.

Figure A2. Thematic maps of TSS concentration for Alarcón reservoir using S3 (left) and S2 (right) images.
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