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Abstract: Predicting and allocating water resources have become important tasks in water resource
management. System dynamics and optimal planning models are widely applied to solve individual
problems, but are seldom combined in studies. In this work, we developed a framework involving a
system dynamics-multiple objective optimization (SD-MOO) model, which integrated the functions
of simulation, policy control, and water allocation, and applied it to a case study of water management
in Jiaxing, China to demonstrate the modeling. The predicted results of the case study showed that
water shortage would not occur at a high-inflow level during 2018–2035 but would appear at mid-
and low-inflow levels in 2025 and 2022, respectively. After we made dynamic adjustments to water
use efficiency, economic growth, population growth, and water resource utilization, the predicted
water shortage rates decreased by approximately 69–70% at the mid- and low-inflow levels in 2025
and 2035 compared to the scenarios without any adjustment strategies. Water allocation schemes
obtained from the “prediction + dynamic regulation + optimization” framework were competitive in
terms of social, economic and environmental benefits and flexibly satisfied the water demands. The
case study demonstrated that the SD-MOO model framework could be an effective tool in achieving
sustainable water resource management.

Keywords: water resource management; system dynamics; multi-objective optimization; dynamic
regulation; feedback

1. Introduction

Water is an important resource, supporting life, economies, and healthy ecological
environments [1]. In the past several decades, rapid population and economic growth and
the accelerated expansion of cities have led to widespread water scarcity [2–4]. This has also
raised problems such as water quality degradation and environmental vulnerability [1].
Meanwhile, growing user demands have intensified competition for water resources,
resulting in water resource instability [5]. The imbalance between water supply and
demand requires innovative water management methods to coordinate the sustainable
development of water resources within society, the economy, and the environment [6].

Water flows from a natural cycle to a social cycle through precipitation and water
withdrawal, and it has complex relationships with social, economic, and environmental
systems [7,8]. It being inherently necessary in production and human lives promotes the J-
shaped growth of water demand [9]. To meet the exploding demand, there are widespread
efforts to increase water availability (e.g., building dams, pumping groundwater, trading
virtual water), but the problem of water scarcity has not been solved [10] because of
population growth [11]. In order to avoid an indefinite vicious cycle, demand-curbing
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strategies such as water-saving agriculture, industrial structure optimization, gradient
water price, and water-saving appliances have been widely explored [12–14]. Moreover,
water resource management often involves complex driving forces and constraints. The
interactions between them are not completely linear. System dynamics (SD) is a useful
method to deal with high-order, nonlinear, multi-feedback, complex, and uncertain system
problems [15]. It has been widely applied to the systematic management of water resources
on basin [16], regional [17], and urban scales [18,19]. In water resource management,
the SD model has not only been used to simulate internal processes of water resource
systems but also to evaluate the impacts of population growth, industrial development,
and other factors associated with water resource decision making [20–22]. Certain water
resource decisions with single or combined goals have been made previously based on the
results of SD model simulations [16,23]. However, the parameters of the SD model remain
constant, whereas policy packages may change during the simulation [24]. Thus, feedback
mechanisms to dynamically adjust the parameters are concerned in the decision making.

Feedback mechanisms provide an important theoretical basis for dynamic manage-
ment and can be divided into positive and negative feedback according to the adjustment
direction. Positive feedback makes the system locally unstable, whereas negative feed-
back makes the system oscillate or reach an equilibrium [25]. In water management, the
difference between the real and ideal states of a system can be regarded as “the amount
of action that needs to be taken” [14]. Dynamic feedback considers the system state and
forms an adaptive management strategy which provides valuable insights to cope with the
increasing uncertainty, complexity, and system interaction in water management [26].

Optimal allocation of water resources is another important task in water resource
management. Influenced by social, environmental, and political factors, water stakeholders
have conflicts in terms of regions, generations, users, and benefit objectives [27]. As
it is difficult for stakeholders to reach an agreement on their own, the authority in the
basin or region must make fair and reasonable water resource allocations [28]. In most
cases, the stakeholders are required to compromise to achieve maximum group benefits
and balance conflicting interests [29]. Multi-objective optimization (MOO) is a common
method to solve such a problem but many studies have focused on optimizing the solution
algorithms [30–32] rather than on the dynamic change of supply and demand constraints.
The combination of SD and MOO in a simulation-based optimization framework (SD-MOO)
has been proposed to generate effective boundaries. The framework has been applied to
supply chain management [33,34], but is rarely reported in water resource management.

Based on these considerations, this study incorporated dynamic adjustment into the
SD-MOO modeling framework which included three functional modules: water supply
and demand prediction, feedback-based dynamic adjustment, and MOO-based allocation.
The integrated model not only optimized the macro policy package to minimize the gap
between supply and demand, but also made full use of the SD simulation results to ensure
that water allocation proceeded within realistic limits. In the following sections, we first
introduce the overall framework of the SD-MOO model and the detailed structure of each
module. Then, we take Jiaxing City as a case study to illustrate how the three functions are
realized. Finally, deficiencies in the case study and several improvement directions of the
model are discussed.

2. Methodology

The SD-MOO model framework for water resource management consists of three
functional modules: water supply and demand prediction, dynamic adjustment, and water
optimal allocation (Figure 1). With respect to water supply and demand, the complex
interactions among population, economy, environment and water are visualized by a flow
diagram (Figure 2) and quantitatively described by the formulae in Table S1. The water
shortage rate (WSR) is defined as “the percentage of simulated supply and demand gap in
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total water demand” and was selected to evaluate the gap between the water supply and
demand in the framework.

WSR =

(
1− ∑3

i=1 WSi

∑4
j=1 WDj

)
× 100% (1)

where WSi means the water supplied from source i (1, 2, and 3 represent surface water,
diversion water, and reclaimed water, respectively), and WDj denotes the demand of user
j (1, 2, 3, and 4 represent agriculture, industry, domestic, and environment, respectively).
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The validated SD model was used to predict future WSR. A negative WSR indicates
that the total water demand of region can be met, and water resources can support the local
population, economic development and ecosystem stability. When the WSR was positive,
meaning the water demand was not satisfied, various management strategies were tested
to regulate WSR in the “dynamic adjustment” module. The prediction results of water
supply and demand or the results after dynamic adjustment were used to serve as the
boundary or constraints of the water optimal allocation model.

Prediction and dynamic adjustment were operated on the system dynamics platform
Vensim DSS Version 6.4 (https://vensim.com/ (accessed on 15 July 2019)). The water opti-
mal allocation was modeled and solved in a General Algebraic Modeling System (GAMS).

2.1. System Dynamics (SD) Model

System dynamics is a combination of qualitative and quantitative research methods,
which can comprehensively simulate the structure of various complex systems and analyze
the internal relationships of the system [15]. The structure of a system brings about
observable and predictable behaviors [26]. The models with system dynamics of water
supply and demand are established based on causal loop diagrams (Figure 2), and the

https://vensim.com/
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relationships between variables are described by first-order differential equations with a
time lag.

As a natural water supplier, surface water significantly correlates with precipitation
and is uncertain owing to the specific climatic and hydrological conditions [35]. The
supply of surface water was directly determined by hydrological condition and surface
water utilization rate. Inter-basin, or cross-regional water diversion projects have become
important ways to alleviate regional water scarcity [36,37]. The dispatching of water from a
water source area to an intake area is controlled by the total annual of water diversion [38].
As a supplement to water resources, reclaimed water which derives from wastewater
treatment plants has become an active water source in many regions [39–41].

Water users are usually divided into agricultural, industrial, domestic, and environ-
mental users and the efficiency of production-oriented water use in agriculture, industry,
and the urban public is compatible with GDP growth and technological improvement.
The agricultural, industrial and urban public water demand can be further calculated by
the production scale (e.g., farmland irrigation area, amount of livestock, and fishpond
area) or gross output value of agriculture and industry. The urban and rural domestic
water demand are affected by two factors: the change in per capita water quota caused
by water-saving equipment and water usage habits and the distribution of the urban and
rural population caused by population growth and urbanization. The environmental water
demand refers to urban green land irrigation water, determined by the green land area and
water quota for green land. Detailed SD equations are provided in Table S1.

The SD model needs to be calibrated and validated before application. The mean rela-
tive error (MRE), coefficient of determination (R2), and Nash-Sutcliffe efficiency coefficient
(NSE) were adopted to evaluate model performance. MRE represents the overall deviation
degree and direction of the simulated value from the observed value; R2 characterizes the
fitness of the two sets of data, and NSE measures the credibility of the model [42]. The
evaluation statistics parameters were computed as follows:

MRE =
∑(Vs −Vo)

∑ Vo
(2)

R2 =

 ∑
(
Vs −Vs

)(
Vo −Vo

)√
∑
(
Vs −Vs

)2
∑
(
Vo −Vo

)2

2

(3)

NSE = 1− ∑(Vs −Vo)
2

∑
(
Vo −Vo

)2 (4)

where Vs and Vo represent the simulated and the observed values of variables; Vs and Vo
are the mean values of the corresponding variables.

2.2. Dynamic Adjustment Based on Feedback

Seemingly perfect policies may fail due to unexpected challenges in their implementa-
tion. Triggering built-in policy adjustments by monitoring indicator changes is useful to
prevent policy failures [43]. The key to applying this policy adjustment in an SD model is
to define feedback functions between system state and regulatory metrics.

Feedback functions are designed to either exacerbate the deviation (positive feedback) or
resist the interference (negative feedback) as responses to the signal. Suppose the current sta-
tus of the system can be expressed as an m-dimensional vector SV = (SV1, SV2, . . . , SVm)T

and its theoretical expected state is µ = (µ1, µ2, . . . , µm)T. Tracing from state variables down
to underlying logic along the causal loop, each state variable is affected by the adjustable
variable p = (p1, p2, . . . , pn), which is a time-varying table function or constant. When SVm
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deviates from its expected value µm, the difference between them will be mapped to the
feedback ratio αm,n by feedback functions, further changing pn to p′n as follows:

p′n = pn ×
M

∏
m=1

αm,n (5)

The following characteristics are required for the feedback functions [44]: (i) when SVm
reaches its expected value µm, the feedback ratio αm,n is equal to 1, which means pn does not
need to be adjusted; (ii) αm,n monotonously and nonlinearly increases (positive feedback)
or decreases (negative feedback) with the state variable SVm; (iii) αm,n has upper and lower
bounds, and (iv) αm,n is affected by the feedback control intensity fm,n (insets (a) and (b) in
Figure 1). Two reconstructed sine functions, Equations (6) and (7), are designed to calculate
the feedback ratio αm,n of the positive and negative feedback mechanisms, respectively:

αm,n = 1 + sin
(

π

2
× SVm − µm

σm
× fm,n

)
(6)

αm,n = 1− sin
(

π

2
× SVm − µm

σm
× fm,n

)
(7)

where σm is the maximum distance between the state variable SVm and its expected value
µm. The feedback intensity fm,n varies in the range of [0, 1] to maintain monotonicity of the
feedback functions.

It can be interpreted that the feedback forms a logical closed loop of SV–α–P–SV.
Feedback control intensity f is the “controller” which can be artificially changed, and its
value reflects the decision-maker’s sensitivity to the system state.

2.3. Water Allocation Based on Multi-Objective Optimization

Water scarcity and the contradiction between supply and demand urge water man-
agement authorities to make water allocation plans that have maximum social, economic,
and environmental benefits [45,46]. In water optimal allocation model, the social benefit
objective (F1) can be expressed in terms of the minimum WSR in the region (Equation (8)),
whereas the economic benefit objective (F2) is represented by the lowest sum of the water
fees generated by different water allocation paths (Equation (9)). Water use is accompa-
nied by waste generation. The environmental benefit objective (F3) is recognized as the
minimum discharge of chemical oxygen demand (COD) within the region (Equation (10)).

minF1(X) =

(
1−

∑3
i=1 ∑4

j=1 xij

∑4
j=1 WDj

)
× 100 (8)

minF2(X) =
4

∑
j=1

3

∑
i=1

xij × yij (9)

minF3(X) =

(
3

∑
i=1

xi1 × k1 × c1 +
3

∑
i=1

xi2 × k2 × c2

)
× 0.01 (10)

where the decision variable xij is the amount of water allocated from source i to user j
(108 m3); yij is the cost coefficient of xij (yuan/m3); k1 and k2 are the discharge coefficients
of domestic sewage and industrial wastewater, respectively, and c1 and c2 are the mean
COD concentrations of domestic sewage and industrial wastewater (mg/L), respectively.

The water supply and demand predicted by the SD model and optimized by the
dynamic adjustment served as constraints in the optimal allocation model. The amount of
water supplied by each source should not exceed its available water WSi (Equation (11)).
The amount of water allocated to each user should ensure the minimum water demand
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(greater than WDj,min ) but avoid water waste (less than WDj,max) (Equation (12)). In
addition, the decision variable should be non-negative (Equation (13)).

4

∑
j=1

xij ≤WSi , ∀i (11)

WDj,min ≤
3

∑
i=1

xij ≤WDj,max , ∀j (12)

xij ≥ 0 (13)

After compiling and solving the multi-objective optimization model in GAMS, a
series of Pareto sets [47] were obtained, each of which represented an allocation scheme.
Comprehensive benefits were further calculated as follows:

F′s =
Fs,max − Fs

Fs,max − Fs,min
, ∀s (14)

F =
S

∑
s=1

F′sηs (15)

S

∑
s=1

ηs = 1 (16)

Here, Fs,max and Fs,min are the maximum and minimum values of objective Fs (s = 1, 2, 3);
F′s is the dimensionless value. F is the comprehensive benefit, and ηs is the weight of benefit
objective Fs.

3. Case Study

In order to demonstrate the work of the SD-MOO framework, Jiaxing City was used
as a case study. Due to data limitations and practical simplifications, this case study
is not intended to be a realistic characterization of future conditions or to recommend
policy solutions.

3.1. Study Area

Located in the central-eastern area of the Yangtze River Delta, Jiaxing City has a flat ter-
rain with a land area of 3915 km2 and a population of 4.72 million. The mean annual rainfall
reaches 1193.5 mm, and the multiyear average water resources reach 20.07 billion m3. How-
ever, Jiaxing has been facing intense conflicts between water supply and demand, as well as
a deteriorating water quality due to pollution from rapid social and economic development.
In 2017, the per capita occupancy of water resources of Jiaxing was 546 m3, which is con-
siderably lower than that of the current national average (2074.5 m3/person) [48]. Limited
water resources have become the main bottleneck restricting the sustainable development
of the city.

Surface water in Jiaxing City consists of two parts. This consist of local water gen-
erated by precipitation, and secondly transit water exchanged with that of Huzhou and
Hangzhou in the west, Jiangsu Province in the north, and Shanghai in the east. The av-
erage transit volume in 2011–2018 was 3.74 times that of local water. During the same
period, the utilization rate of surface water (including transit water) fluctuated around
20% [49]. According to the historical data, the local water resources in typical hydrological
years at 50, 75, and 90% frequencies in Jiaxing City are 2.154, 1.206, and 0.9 billion m3,
respectively, whereas the transit water resources are 6.221, 4.12, and 3.49 billion m3, re-
spectively. Groundwater extraction was prohibited in 2016. To expand water sources,
reclaimed water of 1.05 × 105 m3/d has been adopted as an unconventional water source
in recent years. Eight reclaimed water facilities are to be constructed by 2025, supplying
an additional 3.25 × 105 m3/d of reclaimed water. In 2035, the amount of reclaimed water
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will increase by 1.25 × 105 m3/d, reaching 5.5 × 105 m3/d. Considering the local shortage
of high-quality water sources, Jiaxing plans to divert water from Qiandao Lake and Taihu
Lake outside the city, with diversion amounts of 2.3 × 108 and 5.5 × 108 m3 in 2020 and
2.3 × 108 and 6.5 × 108 m3 in 2030, respectively.

3.2. Data Sources

The input data of the SD model included the initial values of stock variables and
the dynamic change value of the table function. The initial stock values were taken
from local statistics, including the Jiaxing Statistical Yearbook for social and economic
data (Table S2), Jiaxing Water Resources Bulletin for water supply and demand, Zhejiang
Natural Resources and Environment Statistical Yearbook for land use. The agricultural
production data (e.g., farmland irrigation area, amount of livestock, and fishpond area)
were obtained from the Jiaxing Agriculture and Rural Affairs Bureau. Water quotas of all
users (Table S3) refer to the Water Quota Standard of Zhejiang Province and were estimated
according to the medium and long term water saving plans of Jiaxing City. Surface water
and transit water resources under 50, 75 and 90% guarantee rates were provided by the
Zhejiang Hydrology Management Center. The amount of unconventional water supply,
sewage treatment, and state of socioeconomic development in 2020, 2025, and 2035 refers
to Jiaxing Water Resource Protection Planning, Municipal Sewage Planning and Jiaxing
Urban Master Planning. Further, the water cost coefficient yij in the MOO model adopted
the water prices of Jiaxing. The wastewater discharge coefficient and COD concentration
(Table S4) were estimated according to the statistical data of the Jiaxing Bureau of Ecology
and Environment.

3.3. Parameter Selection and Scenarios in Model Application
3.3.1. SD Model for Water Supply and Demand Prediction

According to the system flow diagram of the water–economic–society–environment
composite system (Figure 2a), three supply sources including surface water (WS1), diver-
sion water (WS2) and reclaimed water (WS3) were considered in the study. Groundwater
supply was not considered because groundwater exploitation was forbidden [31]. In
order to take into account the impact of hydrological uncertainty, three hydrological condi-
tions were set according to the long-term rainfall observations, namely high-, mid-, and
low-inflow levels corresponding to the hydrological guarantee rates of 50, 75 and 90%.

There were four water users involved in the study. Agricultural users (WD1), indus-
trial users (WD2), domestic users (WD3), and environmental users (WD4), whose water
demands were calculated according to the equations in Table S1.

3.3.2. Parameters for Dynamic Adjustment

In the proposed SD model (Figure 2), WSR was the only state variable which meant
m = 1 in Equations (5)–(7). As the ideal situation is that the total water demand is satisfied,
the expected value µ of WSR was 0. The water supply is normally no more than twice
the water demand, thus, σ was set to 100%. Eleven parameters (p1–p11) were selected as
the policy adjustable variables according to the cause tree of the WSR and classified into
three groups based on their properties (Table 1). Group 1 contains water quotas, Group 2
includes variables concerning economic and population growth, and Group 3 includes the
utilization rates of water resources. The variables in Group 1 and Group 2 followed the
negative feedback rule, whereas the variables in Group 3 followed the positive feedback
rule. Different groups were combined to establish different dynamic adjustment scenarios.
Variables in each scenario were adjusted with the same f to simplify operation, and the
feedback intensity f was increased from 0 to 1 at an interval of 0.1.
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Table 1. Three groups of policy adjustable variables.

Group Adjustable Variable (pn)

Group1
water quota for paddy field (p1), water quota for dry land (p2), water use efficiency

of industry (p3), water use efficiency of the tertiary industry (p4), rural domestic
water demand per capita (p5), urban domestic water demand per capita (p6)

Group2 change rate of added value of industry (p7), change rate of added value of the
tertiary industry (p8), population growth rate (p9)

Group3 utilization rate of surface water (p10), utilization rate of reclaimed water (p11)

3.3.3. MOO Model for Water Allocation

Parameter values in Equations (8)–(10) are shown in Table S4. WSi and WDj were
adopted according to the output results of the SD module or the results after dynamic
adjustment; WDj,min and WDj,max were obtained based on WDj and its corresponding sat-
isfaction range. The domestic water demand, industrial water demand, agricultural water
demand and environmental water demand were met at 100, 90–100, 60–100 and 95–100%,
respectively. In addition to the basic constraints, there were some further hypotheses:

(1) No less than 40% and no more than 60% of the domestic water would be supplied by
diversion water (0.4WD3 ≤ x23 ≤ 0.6WD3);

(2) Diversion water was only for industrial and domestic users (x21 = x24 = 0);
(3) Reclaimed water was only for industrial users (x31 = x33 = x34 = 0).

The weights for the scheme should take into account the multi-stakeholder benefits
in the water resource allocation. In this case, we assume that the social, economic, and
environmental benefits were equally important, i.e., η1 = η2 = η3 = 1/3.

3.4. Results
3.4.1. SD Model Validation

State variables and auxiliary variables affected by long feedback loop are key to an
accurate simulation. Such variables that are closely related to the total water supply and
demand are summarized in Table 2. Parameter values were estimated a priori from direct
observations from 2011–2014, and then revised during iterations to optimize fitting to
historical data. Observed data from 2015–2017 were used to evaluate the performance
of SD model according to Equations (2)–(4). The MREs of the variables were close to 0,
varying from −0.025 to 0.117, which indicates that the simulation results were acceptable.
The R2 and NSE values of most of the variables were in the intervals of [0.688, 1] and
[0.653, 1], respectively. However, the NSE of the agricultural water demand was 0.367,
which was closer to 0 rather than 1, indicating that its process error was large but the
overall result was reliable. The results showed that the SD model was suitable for water
supply and demand prediction.

Table 2. Performance of the SD model.

Variables MRE (%) R2 NSE

total population −0.004 0.985 0.703
added value of industry −0.010 0.944 0.938

added value of tertiary industry −0.025 0.975 0.933
agriculture water demand 0.036 0.934 0.367
industrial water demand −0.004 0.688 0.665
domestic water demand −0.017 0.860 0.653

environmental water demand 0.000 1.000 1.000
reclaimed water supply 0.117 0.973 0.946

3.4.2. Water Supply and Demand Prediction

According to the predicted results (Figure 3), surface water remains the main supply
contributor. With surface water utilization rates of 20, 25, and 30% at high-, mid-, and
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low-inflow levels, the available amounts of surface water (WS1) will reach 1.655, 1.332, and
1.317 billion m3, respectively. The current water project plan can offer 0.78 billion m3 (WS2)
of diversion water regardless of the inflow level and time. Affected by the improvement
in sewage treatment capacity and the utilization rate of the reclaimed water, the available
amount of reclaimed water (WS3) will increase to 42.4, 63.8, and 139.8 million m3 in 2020,
2025, and 2035, respectively.
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The agricultural water demand (WD1), which accounts for the largest proportion
of the total water requirement, is expected to decline slightly in the predicted years due
to improvements in water use efficiency. Moreover, WD1 showed a negative correlation
with precipitation as agriculture does not require much additional water when rainfall
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is relatively abundant at a high-inflow level. Industry (WD2) is the second largest water
user, accounting for 23.39–27.95% of the total water demand in 2020. Although WD2
continues to increase annually, its proportion of water demand is decreasing and will drop
to 21.84–24.88% in 2035. The domestic water demand (WD3) will soar and surpass industry
to be the second largest water sector in 2024, and the proportion of water demand was
predicted to reach 32.60–37.13% in 2035. According to the urban land planning, urban
green space is expected to continuously expand, leading to a growth in the environmental
water demand (WD4), although the proportion remained below 6%.

There is no risk of water scarcity during the simulated times at the high inflow level
when comparing the total water supply and demand (Figure 3a). The first water shortage
points of mid- and low-inflow levels occurred in 2025 and 2022, respectively (Figure 3b,c),
after which the WSR gradually increased reaching maximum values of 16.80% (mid) and
20.07% (low) in 2035.

3.4.3. Dynamic Adjustment

To mitigate the water scarcity risk at mid- and low-inflow levels, seven dynamic
adjustment scenarios were established by different combinations of the three groups of
variables (Table 3). Although the dynamic adjusted WSR continued to climb over time, the
rising trend has slowed down comparing to S0 that does not have any policy regulation.
The policy control variables, such as improving the utilization rate of water resources,
or reducing the population growth rate, output growth rate and water quotas, were all
conducive to cutting down WSR. Each scenario achieved the largest reduction in WSR at a
feedback intensity of 1 (Figures S1 and S2 ). The adjusted WSR in 2025 and 2035 at the mid-
and low-inflow levels are summarized in Table 3.

Table 3. Water shortage rates after adjustment at the mid and low inflow levels.

Scenario Dynamic Adjustment Water Shortage Rate (%)

Mid-2025 Mid-2035 Low-2025 Low-2035

S0 / 0.67 16.80 5.33 20.07
S1 Group1 0.28 7.79 2.28 9.36
S2 Group2 0.66 14.25 5.02 16.39
S3 Group3 0.33 9.06 2.73 11.05
S4 Group1 + Group2 0.28 7.19 2.22 8.47
S5 Group1 + Group3 0.20 5.54 1.62 6.71
S6 Group2 + Group3 0.33 8.26 2.65 9.81
S7 Group1 + Group2 + Group3 0.20 5.41 1.59 6.28

The dynamic adjustment scenario analysis based on the SD model considers the
interactions among social, economic, environmental, and water resource subsystems.
According to Table 3, all the scenarios effectively reduced the WSR compared to S0. Among
the single-group-controlled scenarios (S1-3), the improvement in the water use efficiency in
S1 produced the best effect, reducing the WSR by more than 50%. S2 limited the population
and output value growth rates, resulting in a negligible effect on WSR in the near term.
These impacts can also be seen in S4 and S6, which coupled Group2 and another group,
and had less WSR reduction than S5. Overall, the dynamic adjustment effect of the WSR
ranks as S7 > S5 > S4 > S1 > S6 > S3 > S2, indicating that the integrated strategies are
superior to individual controls. By employing scenario S7 (f = 1) in which 11 policy
variables were adjusted simultaneously, the agricultural water demand will be reduced by
up to 1.05 × 108 m3. Although the adjusted reclaimed water utilization rate keeps rising,
reclaimed water supply will fall off slightly because of the reduction in domestic and
industrial water demands. In contrast, surface water supply will increase significantly,
with maximum increments of 1.12 × 108 and 1.3 × 108 m3 at the mid- and low- inflow
levels, respectively (Table 4). Values of policy variables before (pn) and after adjustment
(with f = 1 in scenario S7, p′n) were supplemented in Figures S3 and S4.
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Table 4. Directly predicted and dynamically adjusted values of water supply and demand. Units: 108 m3.

Subdivision
Directly Predicted Values Dynamic Adjusted Values (S7, f = 1)

Mid-2025 Mid-2035 Low-2025 Low-2035 Mid-2025 Mid-2035 Low-2025 Low-2035

WS1 13.32 13.32 13.17 13.17 13.39 14.44 13.51 14.47
WS2 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80
WS3 0.64 1.40 0.64 1.40 0.64 1.38 0.64 1.36

WD1 10.44 10.36 11.36 11.29 10.38 9.54 11.09 10.24
WD2 5.16 6.11 5.16 6.11 5.15 5.57 5.04 5.42
WD3 5.42 9.12 5.42 9.12 5.41 8.42 5.31 8.09
WD4 0.88 1.46 0.88 1.46 0.88 1.46 0.88 1.46

3.4.4. Optimal Allocation of Water Resources

The Pareto set obtained by solving the MOO model represented all feasible allocation
schemes. Generally, as the social benefit (F1) reduced, the economic (F2) and environmental
benefits (F3) were rapidly optimized, regardless of the time and inflow levels (Figure S5).
Given equal weights, these three individual benefits were combined into a comprehensive
benefit F. The nine schemes with the greatest F were selected as the optimal allocation
schemes for the years of 2020, 2025, and 2035, and with high-, mid-, and low- inflow levels.
The detailed allocation of the water from sources to different users is depicted by the
Sankey diagrams for these nine scenarios with the optimal F values (Figure 4).
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From the perspective of water supply, surface water was the absolute main source
that accounted for 70.51–87.76% at the high-inflow level and 62.96–79.91% at the mid- and
low-inflow levels for the years of 2020, 2025, and 2035. Reclaimed water supply accounted
for a small portion; however, its contribution improved notably with time, regardless of
the inflow levels. The supply proportion of diversion water varied greatly, ranging from
9.74 to 23.54% at the high-inflow level, and 23.51–34.01% at the mid- and low-inflow levels
for the years 2020, 2025, and 2035. This is because the diversion water is only a regional
supplementary water source, and its priority is lower than that of surface water. The
increase in surface water supply generally lowers the amount of diversion water, while the
decrease in surface water supply usually increases the amount of diversion water, as long
as it does not exceed the limit of the current project of 7.8 × 108 m3.

The results of the above optimal allocation demonstrated that domestic water demand
had the highest allocation priority, and the demand was met under all allocation schemes.
The environmental water demand ranked the second, met at approximately 95%. Although
the industrial water demand showed a marked increasing trend with time, it was met
at approximately 90% by the optimal allocation scheme. The agricultural water demand
showed great flexibility, being met at 95–100% when water resources were abundant but
only 64% (Mid-2035) or 62% (Low-2035) when water resources were scarce.

According to the water allocation path shown in Figure 4, the agricultural and en-
vironmental water demands rely on surface water supply only, whereas domestic and
industrial users have more choices, which leads to competition for high-quality and cheap
water resources. The allocation schemes of different inflow levels and planning years could
be divided into four categories:

(i). High supply and low demand (High-2020, High-2025): the ratio of surface water and
diversion water allocated to domestic was 3:2; most industrial water was provided
by surface water and the remainder was supplied by reclaimed water; no diversion
water was used.

(ii). Low supply and low demand (Mid-2020, Mid-2025, Low-2020, Low-2035): agricul-
ture and environment accounted for 82-87% of surface water, forcing domestic and
industrial users to use diversion water as a supplement. To maximize economic
benefits, industry was allocated a large amount of diversion water due to its high
economic density [50], accounting for approximately 73-89% of the total industrial
water allocation; the domestic sector uses surface water and diversion water at a
ratio of 2:3.

(iii). High supply and high demand (High-2035): sufficient water supply guaranteed
harmonious allocation. The percentages of surface water supplied to agriculture,
environment, domestic, and industry were 45.07, 0.08, 23.31, and 24.81%, respectively,
meeting 40% of domestic and 70% of industrial water demands. The reclaimed water
supply has risen sharply with technological advances and can satisfy a quarter of the
industrial water demand.

(iv). Low supply and high demand (Mid-2035, Low-2035): the high WSR led to all users
tolerating a certain degree of water scarcity; however, it also intensified competition
for surface water resources. Domestic water had the highest priority in water al-
location; with a satisfaction degree of 100%, it was supplied by surface water and
diversion water at a ratio of 2:3. Compared with other users, agriculture was in a
relatively disadvantaged position, resulting in a low satisfaction degree (60%). This
prevented agriculture from consuming a large portion of surface water and created
an opportunity for industry to use surface water. Similar to High-2035, the share of
diversion water for industry remained lower than those of inexpensive surface water
and reclaimed water.

4. Discussion

Most water resource management projects focus either on water policy simulation
or on ensuring water use equity, economic vitality and excellent environmental quality
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through rational water allocation [28,51,52]. In fact, various social, economic, and environ-
mental impacts caused by water shortage could alert authorities to take efficient actions to
maximize the comprehensive benefits [53]. Based on the SD-MOO model, the closed-loop
management of water resources was realized, which emphasized both the allocation results
and the driving forces of water resources.

The traditional water resource allocation mode is “prediction + multi-objective op-
timization”, in which the predicted water supply and demand are taken to constraint
multi-objective optimization [54]. Water scarcity indicates that the estimated population
and economic development may overload water resources, and some necessary actions are
needed [55]. The “prediction + dynamic adjustment + multi-objective optimization” model
fully considers the compensatory actions by dynamic adjustment. In our case, water re-
sources in Mid-2025, Low-2025, Mid-2035, Low-2035 were allocated by both the traditional
“prediction + MOO” mode (Mode I) and the newly developed “prediction + dynamic
control + multi-objective optimization” mode (Mode II). Comparing the individual benefits
of optimal allocation schemes in the two modes, water shortage rate, water fee, and COD
emission for schemes in Mode I are all higher than those in Model II (Figure 5). This
proves that dynamic adjustment alleviates the pressure of water resources and expands the
benefits of the allocation scheme.

The dynamic adjustment with feedback mechanisms was not based on intuition or a
trial-and-error simulation experiment [56], but was related to the system state and was dy-
namically adjusted by the internal driving force of the system [57]. To ensure monotonicity
of the sinusoidal feedback function, the feedback intensity f was conservatively limited to
[0, 1] to simulate relatively moderate policy control. The lowest WSR was obtained with
f = 1 in all scenarios (Figures S1 and S2); however, it does not mean that relevant variables
have reached their regulatory limits. In theory, if a model is convergent, increasing f can
always achieve a lower WSR. For example, within the limited feedback intensity range,
WSR was as low as 9.93 % in S6 at the low inflow level. If f is continuously raised, WSR can
be further reduced to 3.93 % with a feedback intensity of four; however, the model fails to
converge after f exceeds eight. Selecting a feedback intensity should consider whether the
simulated dynamic adjustment is technically and financially feasible. In addition, it was
observed that the exponential function and modified logistic function were used to describe
the feedback relationship between state variables and regulatory variables [44,58]. Gain
function, correlation function, and least square function were also used to dynamically
modify the preset schemes [59]. However, it has not been reported how different feedback
functions affect the effectiveness of adjustment, and the design of a differentiated and
adaptive feedback function system warrants further study.

In addition, the policy adjustment is limited to some extent. Controlling population
growth to deal with water crisis is a global consensus [60–62], but the effectiveness of
this policy varies regionally [63]. In Jiaxing, the strategy of slowing down population
growth was not as powerful as improving water efficiency, which may be attributed to the
impact of population scale. The simulation results showed that increasing water supply is
a quick and effective measure for dealing with water shortage but yet implementation is
difficult. The plain topography and coastal location make it difficult to store the abundant
transit water in Jiaxing. The upstream water in the flood season has to be discharged to
ensure a safe water level. In addition, supplying reclaimed water is a complex decision-
making process involving various economic, technical and environmental standards [40].
Improving the water reuse capacity may help to reduce fresh water withdrawal, but if the
reclaimed water utilization rate exceeds a certain threshold then this requires more external
financial assistance [64].
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The major goal of this case study was to demonstrate how to apply the SD-MOO model
framework. Because of the difficulty in obtaining data, the parameters were simplified
and estimated according to local plans in the case study. This may have resulted in some
data being inconsistent with realistic development. For example, the “universal two-child
policy” has led to a rebound in the fertility rate since 2015 but will not fundamentally
reverse the decline and aging trend of the population in the long term in China [65,66].
Thus, the natural population growth rate of Jiaxing may be overestimated. However, by
analyzing population statistics data in recent years, we found that population mobility
contributes more to the population growth of Jiaxing than natural growth, which may
justify the selected natural growth rate. As another example, it is unrealistic to ignore
the randomness of precipitation change and keep the surface water constant during the
simulation time. To make up the hydrological uncertainty, three hydrological scenarios
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with high, mid and low inflow levels were set in the models to cover the randomness
of precipitation.

Flexibility of water resource allocation can be achieved by setting the weights of benefit
targets [28]. The current case study adhered to sustainable development and gave equal
weights to the three optimization goals. However, when extreme water shortage occurs,
the poor satisfaction of agricultural water demand (Mid-2035, Low-2035) may exacerbate
water stress and lead to declines in crop yield and agricultural productivity [53,67]. At this
point, if basic water demand and food security are prioritized, the weight of social benefit
should be higher than the weights of environmental and economic benefits (Figure 5).

Regarding the economic benefits, water users always prefer cheaper water sources [68].
In the allocation schemes of the above mentioned categories (i), (iii), and (iv), industry
always uses up the remaining available surface water first, rather than diversion water,
which is more expensive than surface water. However, when social equity and basic
livelihoods are prioritized, some economic interests must be abandoned. In category (ii) of
the allocation schemes, domestic users, as low economic output users, won the competition
for surface water, while industrial users were allocated a large amount of high-priced
diversion water. The industrial users will resist the implementation of allocation schemes
because of high costs. Economic policies such as water price subsidies, water-saving
incentives, and segmented tax rates [69–71] may be prudently introduced to improve user
acceptance of certain allocation schemes. In addition, the cost coefficients of different
types of water were fixed during the simulation period, and the water price was limitedly
adjusted to alleviate the water shortage. However, the water price will fluctuate due
to water shortages. The lack of a link between water price and water scarcity and the
absence of incentives for water-saving behavior may weaken users’ perception of water
scarcity [72,73]. Therefore, a market-based water price response to water shortage should
be involved in the model in the future study.

5. Conclusions

Based on the system dynamics and multi-objective optimization method, this study
established an SD-MOO modeling framework that integrated water supply and demand
simulations, dynamic adjustment, and optimal allocation, exploring a comprehensive
optimal water resource management method. A case study in Jiaxing City showed that
water shortage risk would be alleviated by simultaneously improving water use efficiency,
controlling growth rates of the population and gross production value, and increasing the
utilization rates of surface water and reclaimed water. In water resource allocation schemes
that have the best comprehensive benefit, both domestic and industrial users tended to
use cheaper surface water. However, industry was required to make compromises (more
diversion water was allocated) because of its higher economic density. When extreme
water scarcity occurred, agricultural demand would be greatly suppressed. The proposed
framework is dynamic, flexible in water allocation, and can be helpful in supporting local
water resource management.

Compared with static control and simple allocation optimization in previous SD
studies, the integrated water management framework based on the SD-MOO model has
been improved as follows: (1) Feedback intensity was introduced to help decision makers
devise abundant policy packages and quickly determine their effectiveness in curbing
water scarcity; (2) policies and actions were adjusted based on the current water scarcity,
emphasizing the dynamic management of water resources; and (3) flexible, reasonable, and
multi-beneficial water resource allocation schemes were obtained through implementing
dynamic adjustment and MOO. However, some issues, such as the impact of different
feedback mechanisms on dynamic adjustment, dynamic changes of parameters and the
weights selection in the multi-objective model of water resource allocation, need to be
further explored.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-444
1/13/5/671/s1, Figure S1: Effect of feedback intensity f (from 0 to 1) on water shortage rates (WSR)
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for various scenarios at mid inflow level (2025–2035), Figure S2: Effect of feedback intensity f (from
0 to 1) on WSR for various scenarios at low inflow level (2022–2035), Figure S3: Values of policy
adjusted variables in scenario (pn) and S7 (with f = 1, p′n) at mid-inflow level, Figure S4: Values
of policy adjusted variables in scenario (pn) and S7 (with f = 1, p′n) at low-inflow level, Figure S5.
Individual and combined benefits of Pareto sets. (a) High-2020, (b) High-2025, (c) High-2035, (d) Mid-
2020, (e) Mid-2025, (f) Mid-2035, (g) Low-2020, (h) Low-2025, (i) Low-2035. Table S1: SD equations in
Vensim (High inflow level), Table S2: Observed and predicted values of social-economic parameters
of Jiaxing, Table S3: Water quota of each sector in Jiaxing, Table S4: Water resource cost coefficient of
each water user.
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