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Abstract: Better representations of groundwater processes need to be incorporated into large-scale 

hydrological models to improve simulations of regional- to global-scale hydrology and climate, as 

well as understanding of feedbacks between the human and natural systems. We incorporated a 2D 

groundwater flow model into the variable infiltration capacity (VIC) hydrological model code to 

address its lack of a lateral groundwater flow component. The water table was coupled with the 

variably saturated VIC soil column allowing bi-directional exchange of water between the aquifer 

and the soil. We then investigated how variations in aquifer properties and grid resolution affect 

modelled evapotranspiration (ET), runoff and groundwater recharge. We simulated nine idealised, 

homogenous aquifers with different combinations of transmissivity, storage coefficient, and three 

grid resolutions. The magnitude of cell ET, runoff, and recharge significantly depends on water 

table depth. In turn, the distribution of water table depths varied significantly as grid resolution 

increased from 1 to 0.05 for the medium and high transmissivity systems, resulting in changes of 

model-average fluxes of up to 12.3% of mean rainfall. For the low transmissivity aquifer, increasing 

the grid resolution has a minimal effect as lateral groundwater flow is low, and the VIC grid cells 

behave as vertical columns. The inclusion of the 2D groundwater model in VIC will enable the fu-

ture representation of irrigation from groundwater pumping, and the feedbacks between ground-

water use and the hydrological cycle. 

Keywords: VIC hydrological model; groundwater model; soil moisture–groundwater coupling; 

grid resolution; aquifer diffusivity 

 

1. Introduction 

Human water requirement is increasing at the global scale [1] and has significantly 

modified hydrological processes through irrigation, artificial dams and water diversions 

[2]. Currently, a third of freshwater withdrawal is derived from groundwater pumping, 

which provides an estimated 42% of water used for agriculture [3]. Human–water inter-

actions can significantly change the terrestrial water cycle; for example, groundwater-fed 

irrigation can transform regions from areas of moisture limited to energy limited evapo-

transpiration (ET), influencing both water and energy budgets [1–6]. 

Examples of extensively irrigated areas are found in the Hau He, Huan He and Yang-

tse basins in China, along the River Nile in Egypt and Sudan, in the Mississippi–Missouri 

river basin in USA, and in northern India and Pakistan along the Ganges and Indus rivers 

[7]. Despite the critical importance of groundwater to global water security [8], the impact 
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of human intervention on the water cycle by groundwater abstraction and groundwater-

fed irrigation is not yet fully understood [9]. Feedbacks between the human and natural 

systems can be complex, such as in the Indo-Gangetic basin where a spatially complex 

pattern of both groundwater depletion and areas of water logging is observed. This has 

occurred because of groundwater pumping and complex and dynamic recharge processes 

influenced by groundwater use, river flows and canal engineering [10]. To improve un-

derstanding of feedbacks between the human and natural systems, better representations 

of groundwater processes need to be incorporated into global/meso-scale hydrological 

models (GHMs), land surface models (LSMs), and Earth system models (ESMs) [1]. The 

effects of groundwater abstraction and groundwater-fed irrigation on hydro-climatology 

has received limited attention, partly because groundwater is either ignored, or repre-

sented crudely in such models [8]. Representations of groundwater storage dynamics 

have been included in a number of model codes. Some calculate changes in groundwater 

storage based on a mass balance of fluxes and withdrawals [11], some represent ground-

water using linear or non-linear reservoirs [2,8,12–14], which may or may not simulate the 

influence of a moving capillary fringe on recharge, and some couple one-dimensional nu-

merical models of unsaturated-saturated flow to the base of the soil column [15–17]. How-

ever, relatively few models have included lateral groundwater flow, even though it has 

been recognised as a key missing process [6,8], acting across multiple spatial scales: in 

humid areas at the hill-slope scale to the basin scale, to larger scales in semi-arid or arid 

regions where discharge areas can be remote from recharge areas [3]. 

It has been shown that it is important to include lateral groundwater flow in 

GHM/LSM to represent components of the hydrological cycle accurately. For example, 

Chang et al. [18] showed that differences between the observed ratio of transpiration to 

ET and that simulated by most LSM were predominantly caused by not representing lat-

eral water flow and water vapour diffusion in the soil. Within the Indian context, Chawla 

and Mujumdar [19] suggested that lower than observed simulated flows in the River Gan-

ges towards the end of the annual recession after the monsoon season were due to the lack 

of a baseflow contribution from groundwater, which is not represented by the variable 

infiltration capacity (VIC) macro-scale hydrological model [20,21] they used. This is an 

important issue as VIC is widely applied at the all-India scale for a range of purposes, for 

example for reconstructing historical droughts [22], hydrological forecasting [23], and es-

timation of land-surface fluxes [24]. 

Despite the importance of groundwater-related processes in large-scale hydrology, 

groundwater flow, which connects model cells laterally and redistributes water within 

space, has only recently become a component in some LSM and GHM codes. These in-

clude LEAF2-Hydro [25,26], Parflow-CLM [4,15], the linkage of the Community Land 

Model (CLM) to a two-dimensional saturated groundwater model [27], or PCR-GLOBWB 

1&2 [28–30]. 

Whilst the standard version of VIC [20,21] does not simulate groundwater flow, a 

small number of studies have partially addressed this limitation. Rosenberg et al. [13] en-

hanced VIC by coupling the simple groundwater model, SIMGM [12], to the base of the 

soil column. This additional unconfined aquifer store facilitates the simulation of ground-

water table dynamics, and baseflow loss as an empirical function of water table depth 

(WTD) rather than soil moisture, but there remains no lateral connectivity between the 

grid cells. More recently, VIC was linked to a two-dimensional MODFLOW [31] ground-

water model [32], which was subsequently used for catchment drought assessment [33]. 

This study used a loose coupling approach [34] to link the two models. At each time-step, 

groundwater discharge through MODFLOW drains is added to the bottom VIC layer, 

which may cause the two layers above to wet up. The elevations of the drains were set to 

the land surface height minus the VIC soil thickness, though spatial aggregation of drain 

flows was required as the two models had different grid resolutions: there were 25 MOD-

FLOW grid cells within each VIC cell. VIC then solves the soil water budget and passes 

recharge to MODFLOW for the next time-step. Recharge is considered to be equivalent to 
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VIC’s baseflow, which is a non-linear function of the moisture content of the bottom soil 

layer [35]. By using this iterative approach, a significant improvement in simulated 

streamflow was obtained. However, calculating groundwater recharge in this way using 

the VIC baseflow formulation maintains the need to specify three calibration parameters; 

this is not the case if the saturated aquifer and variably saturated soil are explicitly cou-

pled as in Niu et al. [12]. In summary, groundwater has been represented in VIC by either 

adding laterally unconnected buckets to the bottom of soil column cells, and calculating 

groundwater recharge as a function of the water table depth [13], or by loosely coupling 

a 2D groundwater model to VIC without implementing a dynamic recharge formulation 

[32]. 

In this study, we extended the previous approaches by integrating a 2D groundwater 

model into the VIC code, implementing soil moisture–groundwater table interaction ac-

cording to Niu et al. [12], and enabling direct river–aquifer interaction. This allows the 

simulation of baseflow contributions to rivers from diffusive groundwater flow through 

an aquifer and will facilitate the inclusion of more realistic groundwater irrigation 

schemes based on knowledge of actual practice [36,37], especially within India [38–40], 

representing feedbacks between groundwater pumping, groundwater levels and irriga-

tion return flows. Baseflow to rivers can be modelled either using a groundwater level-

dependent Darcian flux, or be allowed to discharge at the land surface when the soil com-

pletely saturates. Using this enhanced version of VIC, we then considered how the spatial 

resolution of the mesh affects lateral groundwater flow, and how it modifies runoff, 

baseflow, ET, recharge, and WTD. Furthermore, we also investigated how these fluxes 

and the groundwater table vary when the diffusivity of the aquifer is altered in addition 

the model grid size, which has not been investigated previously in a two-way integrated 

model of land surface and groundwater, representing both groundwater recharge and ca-

pillary rise. These simulations are based on an idealised representation of the upper Gan-

ges catchment within India. 

2. Materials and Methods 

2.1. Implementation of Groundwater Flow Model in VIC 

VIC is a macro-scale hydrological model and has been widely applied from basin to 

global scale for water and energy balance studies in the US, the Arctic and globally (see 

[20] for a review). The model describes vertical water transport in areally large and thin 

cells. Sub-grid heterogeneity of land cover and elevation is handled with statistical distri-

butions of the different land cover types and elevation bands, dividing a cell into a number 

of tiles. For each of these tiles, ET, infiltration, runoff, soil moisture and baseflow are cal-

culated separately and weighted by area to give a cell-average value for each variable. The 

water and energy balance for each grid cell is solved independently and there is no lateral 

connectivity between the cells. The runoff function within VIC calculates surface runoff, 

infiltration, soil water transport and baseflow as follows: when precipitation reaches the 

land surface, it is partitioned into runoff and infiltration, according to the variable infil-

tration curve [41]. It assumes that surface runoff from the upper two soil layers is gener-

ated by those areas for which precipitation and the soil moisture exceeds the storage ca-

pacity of the soil. Water is calculated to flow between the soil layers using a 1D Richards 

equation [42], assuming free drainage and using the Brooks–Corey relationship for hy-

draulic conductivity [42]. Baseflow, which leaves the soil column, is calculated as a func-

tion of relative moisture of the bottom soil layer according to the Arno model formulation 

[35]. Routing of runoff and baseflow is performed a posteriori by post-processing model 

output [43].  

Here, we incorporate a two-dimensional model of groundwater flow into the VIC 

code. This has been based on the AMBHAS code [44]. We do this within the image version 

of VIC 5.0.1. [20,21], an additional later version of the code, which iterates across each cell 
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before progressing the solution to the next time-step. This “space before time” implemen-

tation is required to be able to integrate a distributed groundwater model. In contrast, the 

classic version of VIC has a “time before space” implementation, solving all time steps for 

one model cell before moving onto the next cell, which makes linking with a distributed 

model impossible without changing the entire model structure. In summary, we turn off 

the VIC algorithm, which calculates baseflow as a function of the soil moisture of the low-

est soil layer, and instead calculate the downward recharge, or upward discharge, of wa-

ter across the base of the VIC soil column at each time-step. This vertical flux is a function 

of the VIC soil moisture content and the current level of the water table simulated by the 

groundwater model. This vertical flux is then applied to the groundwater model, which 

solves for groundwater flow, baseflow to rivers, and the elevation of the water table across 

the domain for the time-step. Henceforth, we use the term discharge to mean an upward 

flux of water across the base of the soil column, i.e., a negative recharge. We run the model 

on a Linux HPC and make use of the VIC parallelisation using MPI. The groundwater 

model runs on a single processing core, and data are passed between VIC and the ground-

water model at each time-step. 

2.1.1. Groundwater Model Formulation 

We implemented an explicit, or forward-difference [45] two-dimensional, one-layer 

groundwater model, which solves the following governing partial differential equation of 

flow: 

𝜕

𝜕𝑥
(𝑇

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑇

𝜕ℎ

𝜕𝑦
) = 𝑆

𝜕ℎ

𝜕𝑡
− 𝑞𝑟 + 𝑞𝑝 + 𝑞𝑏 (1) 

where ℎ is hydraulic head [L], 𝑇 is aquifer transmissivity [L2/T], 𝑆 is the dimensionless 
aquifer storage coefficient, 𝑞𝑟 is groundwater recharge [L/T], 𝑞𝑝 is groundwater pump-

ing [L/T], and 𝑞𝑏 is baseflow to rivers [L/T]. The aquifer is isotropic but can be heteroge-

neous. 𝑇 can be constant in time, or recalculated at the end of each time-step as the satu-

rated aquifer thickness varies, according to: 

𝑇 = 𝐾 (ℎ − 𝑧𝑏𝑎𝑠𝑒) (2) 

where 𝐾 is hydraulic conductivity [L/T], and 𝑧𝑏𝑎𝑠𝑒  [L] the elevation of the base of the 

aquifer, which can both vary spatially. If 𝑇 is specified to be constant in time, and 𝑆 set 

to a confined storage coefficient value, the model can be considered to represent confined 

aquifers. However, as described subsequently, in the current implementation of the code 

all groundwater model grid cells are coupled to the VIC soil column using the simulated 

groundwater level. 

The solution of the set of finite difference approximations to Equation (1) on the 

model grid makes use of a simple operator splitting method [46], which involves three 

steps: the hydraulic head is updated for recharge and abstraction; then, for baseflow to 

rivers; finally, for lateral groundwater flow between cells. The time-step length, ∆𝑡, of the 

groundwater model is adaptive, and adjusted according to the stability criterion ∆𝑡 ≤

0.25∆𝑥2𝑆/𝑇 [47], where ∆𝑥 is the smallest mesh spacing in the grid. To enhance stability 

of the model solution when the groundwater table is near to the base of the VIC soil, the 

storage coefficient is set to vary linearly from that of the soil to that of the aquifer, between 

the base of the soil and twice its depth (Figure 1). Currently, only constant head (Dirichlet-

type) and no flow (Neumann-type) boundary conditions can be specified at the lateral 

edges of the groundwater model domain. 

2.1.2. Vertical Soil Water–Groundwater Interaction  

Vertical water fluxes between the saturated aquifer and the soil are simulated using 

the scheme of Niu et al. [12], who incorporated a simple groundwater model, SIMGM, 

into version 2.0 of CLM [48].  

If the water table is below the base soil column, recharge, 𝑞𝑟 [L/T], is calculated as:  
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𝑞𝑟 = −𝐾𝑎

−𝑧𝑤𝑡 − (𝜓𝑏𝑜𝑡 − 𝑧𝑏𝑜𝑡)

𝑧𝑤𝑡 − 𝑧𝑏𝑜𝑡

 (3) 

where 𝐾𝑎 is the aquifer saturated hydraulic conductivity [L/T], 𝑧𝑤𝑡  is the water table [L] 

depth calculated by the groundwater model, 𝑧𝑏𝑜𝑡 is the depth [L] to the base of the soil 

column, and 𝜓 𝑏𝑜𝑡 is the matric potential [L] of the bottom soil layer, calculated from the 

soil moisture characteristic or moisture release curve after Campbell [49]: 

𝜓 = 𝜓𝑒(
𝜃

𝜃𝑠

)−𝑏 (4) 

where 𝜓𝑒 is the air entry water potential [L], 𝜃 is the volumetric water content [-], 𝜃𝑠 is 

the saturated water content [-], and 𝑏 is the slope of ln 𝜓 versus ln 𝜃. 𝑞𝑟 is positive when 

water infiltrates to the aquifer, but Equation (3) models both downward recharge and the 

upward flux of water driven by capillary forces. The above recharge formulation is only 

valid, if the water table is below the soil column. If the water table is within the soil col-

umn, recharge, 𝑞𝑟, is calculated from the soil layer above that containing the water table 

as: 

𝑞𝑟 = −𝐾𝑖,𝑤𝑡

(𝜓𝑠𝑎𝑡 − 𝑧𝑤𝑡) − (𝜓𝑖 − 𝑧𝑖)

𝑧𝑤𝑡 − 𝑧𝑖

 (5) 

where 𝐾𝑖,𝑤𝑡  is the hydraulic conductivity between layer 𝑖 and the water table, 𝜓𝑠𝑎𝑡  is 

the capillary head, 𝜓𝑖  is the matric potential of the layer above the water table, 𝑧𝑖 is the 

node depth of the layer above the water table [12].𝐾𝑖,𝑤𝑡𝜓𝑠𝑎𝑡𝜓𝑖𝑧𝑖 

During testing of the implementation of this algorithm within VIC, we made two 

modifications to address some occasional erroneous behaviour related to the inherent 

time-stepping nature of the model. First, water entering the soil column from the aquifer 

was specified to always contribute to the bottom soil layer, rather than the layer the water 

table is interacting with. If the bottom soil layer is fully saturated, the runoff function 

within VIC will redistribute this water upwards. After the runoff function has calculated 

surface runoff, infiltration, soil water transport and groundwater recharge, the saturation 

for each soil layer is compared against the residual and maximum saturation, and mois-

ture is moved to the layer above if the saturation is above one. This adjustment ensures 

that the water table cannot be close to the soil surface whilst the bottom soil layer is not 

fully saturated. Second, it was found for some model parameterisations that if the water 

table rose to just below the base of the soil column, large downward vertical gradients 

were generated causing the lowest soil layer to totally drain. To mitigate this, we intro-

duced a parameter that limits the flux out of the bottom soil layer to a fraction of its mois-

ture content. Appropriate values of this factor will depend on the time-step length and 

vertical discretisation of the soil column, but 1% was found to be effective for the 2 m deep 

soil and 3-hour time-step used in this study. 
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Figure 1. Layering in coupled soil-aquifer column and vertical variation in storage coefficient 𝑆. 𝑍1, 

𝑍2, 𝑍3 are the node depths of the variable infiltration capacity (VIC) soil column, 𝑍𝑏𝑜𝑡 is the eleva-

tion of the bottom layer in VIC, 𝑍𝑤𝑡 the water table depth, and 𝑍𝑏𝑎𝑠𝑒  the elevation of the base of 

the aquifer. 

2.1.3. River–groundwater interaction 

Groundwater discharge to the land surface can occur when the groundwater table 

fully saturates the soil. In this case, the upward groundwater flux will be added to runoff. 

This may occur anywhere across the model domain. However, we also incorporated a 

groundwater head-dependent leakage boundary condition (Cauchy type) to represent 

groundwater interaction with rivers, which can be applied in specific grid cells. This flux, 

𝑞𝑏 [L/T] in Equation (6), is calculated as: 

𝑞𝑏 = {

𝑐𝑖(ℎ − ℎ𝑟) ,      𝑓𝑜𝑟 ℎ ≥  ℎ𝑟

𝑐𝑒(ℎ − ℎ𝑟) ,      𝑓𝑜𝑟 ℎ𝑟 > ℎ > (𝑧𝑏 − 𝐵)

𝑐𝑒[(𝑧𝑏 − 𝐵) − ℎ𝑟] , 𝑓𝑜𝑟 ℎ ≤ (𝑧𝑏 − 𝐵)
 (6) 

where: ℎ is the groundwater head [L]; ℎ𝑟 is the river stage [L]; 𝑧𝑏 and 𝐵 are the eleva-

tion and thickness of the riverbed [L], respectively; 𝑐𝑖 and 𝑐𝑒 are the conductance [/T] of 

the riverbed when it gains water from the aquifer (influent), or recharging the aquifer (ef-

fluent), respectively. Conceptually, this conductance is considered to be the hydraulic con-

ductivity of the riverbed, which is conceptualised to differ between influent and effluent 

conditions, divided by its thickness. To calculate the volumetric flow rate, 𝑞𝑏 is multi-

plied by two parameters specifying the width of the rivers within the cell, and their total 

length. Similar representations of river–aquifer interactions are included in widely-ap-

plied groundwater modelling codes (e.g., MODFLOW [31]; FeFlow [50]; ZOOMQ3D [51]). 

Other LSMs or GHMs coupled with a groundwater model have also used a head-depend-

ent Darcian flux between the river and aquifer [26,29,52], or else, river baseflow has been 

estimated as the sum of lateral flow reaching one cell [25]. 

2.2. Model Application 

To investigate how the spatial resolution of the mesh affects lateral groundwater flow 

and how it modifies runoff, baseflow, ET, recharge, and WTD, we apply the model to an 

idealised system based on the 623,985 km2 catchment of the River Ganges within India 

above the city of Patna (Figure 2). This model is then used to examine how these fluxes 

and the groundwater table vary when the diffusivity of the aquifer, considered here as the 

ratio of 𝑇 and storage coefficient [53], is modified. 

The model is homogenous, except for the topographic elevation, and all forcing data 

are applied uniformly over the model area. This enabled the analysis of the impact of 

groundwater flow alone, without the complexity arising from heterogeneous parameter 

and forcing data. The elevation of the land surface, derived from the SRTM digital eleva-

tion model [54], varies from 1500 metres above sea level (m asl) in the south-east of the 

catchment to 50 m asl at Patna (Figure 2). Broadly, the areas of higher ground in the south-

west of the catchment correlate with harder igneous rocks, for example, the basalt lavas 

of the Deccan Traps [55], and the lower-lying areas are associated with the thick alluvial 

floodplain of the River Ganges. 
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Figure 2. Model extent and SRTM land surface elevation data [54] aggregated to the three model 

grid resolutions. 

The model parameters are based on the global VIC parameter dataset [56], and forc-

ing data from the WATCH dataset [57], both extracted at 77.75 E, 25.75 N. The forcing 

data are air temperature, total precipitation, atmospheric pressure, incoming shortwave 

radiation, incoming longwave radiation, vapour pressure and wind speed. We calculated 

averages of the forcing data for each day of the year using the 24 values from the years 

1979 to 2002. The resulting annual sequence was then applied repeatedly until a dynamic 

equilibrium was reached, i.e., when there was no difference in the simulated results for 

successive years. The mean rainfall is 61.6 mm/month and varies between 10.0 mm/month 

for the January to March (JFM) period and 192.7 mm/month over July to September (JAS) 

(Figure 3). Only the modelled data for the last year of the simulation were analysed. 

 

 

Figure 3. Daily average temperature and precipitation for the period 1979 to 2002, using WATCH 

climatology [57]. 
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We constructed nine models with the different aquifer diffusivities listed in Table 1, 

and simulated the catchment at three different grid resolutions: 1°, 0.25°, and 0.05°. In this 

region of India, these resolutions correspond to grid cell widths of on average 110.8, 24.8, 

and 5.5 km, and cell heights of on average 99.5, 27.7, and 4.9 km, respectively; there are 

58, 924, and 23,151 active grid cells in the three model grids. At each resolution, the surface 

elevation of each VIC cell was defined to be the mean of the SRTM DEM pixels within the 

cell. The aquifer was set to be 500 m thick and therefore the maximum 𝑇 of the models 

ranges from 50 to 5000 m2/day. The diffusivity of the nine models ranges from 250 to 5×105 

m2/day. The bases of the three soil layers were set at depths of 0.1, 0.5, and 2 m. Only one 

elevation band and vegetation type were applied within each grid cell, i.e., there is no sub-

grid variability within VIC. No river boundary conditions were defined in any of these 

simulations, and so where groundwater discharged to the land surface it did so through 

the soil. However, one further simulation of the R5 model (Table 1) at a resolution of 0.05° 

was run, in which river boundary conditions were applied in all grid cells. The stage of 

the river was set to 4 m below the surface in all cells, and a riverbed thickness of 1 m, and 

conductance of 1 m2/day applied uniformly. Assuming the width of the river to be 100 m, 

and its length to be the same as the grid cell width, the riverbed hydraulic conductivity 

would then be approximately 50 m2/day. This is indicative of well-connected river and 

aquifer. 

Table 1. Model aquifer properties. 

Model 
Hydraulic 

conductivity (m/day) 
Storage Coefficient (-) Maximum Diffusivity (m2/day) 

R1 0.1 0.01 5000 

R2 0.1 0.1 500 

R3 0.1 0.2 250 

R4 1 0.01 50,000 

R5 1 0.1 5000 

R6 1 0.2 2500 

R7 10 0.01 500,000 

R8 10 0.1 50,000 

R9 10 0.2 25,000 

3. Results 

3.1. Effect of Aquifer Properties on Water Table Depth and Fluxes at 0.05 Resolution 

Spatial plots of mean water table depth, recharge, ET, and runoff are presented in the 

first column of Figure 4, for two runs at the 0.05° resolution: R1 with the lowest, and R9 

with the highest, values of hydraulic conductivity and storage coefficient. Spatial averages 

of these mean values are listed in Table 2 for all nine model runs. 

3.1.1. Water Table Depth 

For R1, in which 𝑇 50 m2/day, the simulated mean water table is shallow, and within 

the VIC soil column across 99% the modelled area. It is in the top-soil layer over 41% of 

the area, and on average only 0.52 m below ground level (m bgl). The 1st and 99th per-

centiles of the mean WTD are 0.1 and 2.2 m bgl. Whilst the aquifer storage coefficient is 

low (1%), because the water table is generally within the soil, which has a porosity of 

48.51%, it fluctuates by between only 0.35 and 0.7 m over the year. On average, the water 

table is deepest in May and shallowest in September after the monsoon season. 
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Figure 4. Mean values of water table depth (a–f), groundwater recharge (g–l), ET (m–r), and runoff 

(s–x) for R1 (low 𝑇, low 𝑆) and R9 (high 𝑇, high 𝑆) models, and three grid resolutions 0.05°, 0.25° 

and 1°. 
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Table 2. Mean annual water table depth (WTD), model fluxes, and discharge area fraction for 

Runs 1–9 on the 0.05° grid. 

Run 
Mean WTD 

(m) 

Mean Recharge 

(mm/month) 

Mean ET 

(mm/month) 

Mean Runoff 

(mm/month) 

Mean Discharge 

Area Fraction 

1 0.52 12.7 29.19 31.89 0.63 

2 0.51 12.44 28.94 32.14 0.63 

3 0.51 12.42 28.92 32.17 0.63 

4 5.65 13.11 31.11 29.97 0.51 

5 5.59 13.05 30.9 30.18 0.51 

6 5.59 13.07 30.89 30.19 0.51 

7 20.41 17.13 33.55 27.55 0.29 

8 20.34 16.93 33.35 27.75 0.29 

9 20.34 16.89 33.27 27.82 0.29 

In contrast, for R9, in which 𝑇 5000 m2/day, the simulated water table is, as ex-

pected, flatter, which results in a larger spatial variation in WTD; the 1st and 99th percen-

tiles are 0.1 and 231 m bgl. The mean WTD is 20.34 m bgl, though across the flatter flood-

plain of the Ganges it is mostly within 2 m of the land surface. Across 52% of the domain, 

the mean WTD is within the soil, and across 21% of the catchment it is within the top-soil 

layer. In R9, the water table again only fluctuates by a limited amount (20.56 to 20.12 m), 

which in this simulation is partially because of the high storage coefficient (20%) applied 

when the water table drops below the soil. The water table is deepest in May and shal-

lowest in September after the monsoon season. As would be expected, for the series of 

three simulations in which the hydraulic conductivity is the same (R1–3, R4–6, and R7–9), 

the storage coefficient has little effect on the mean WTD. 

3.1.2. Groundwater Recharge 

The flux across the soil-aquifer boundary consists of drainage by gravity and capil-

lary rise, driven by the interaction between the water table and soil moisture. We refer to 

a downward flux as recharge, but its sign can be negative, in which case we also use the 

term discharge to refer to an upward flux. The total mean annual flux across the soil-

aquifer boundary is zero for this dynamic equilibrium simulation. 

The mean groundwater recharge increases with increasing mean WTD, from 12.7 

mm/month for R1 to 16.89 mm/month for R9 (Table 2) (Figure 4g,j). This is, in part, related 

to shallower water tables causing the soil to become water-logged and transpiration to 

decrease; in R1, the mean water table is within the top soil layer across 41% of the catch-

ment, whereas this is the case for only 21% of the catchment area in R9. The relationship 

between the WTD and recharge also affects the difference in mean recharge between the 

simulations. In Figure 5a, mean WTD is plotted against mean recharge for those models 

cells where the flux is on average downward. Recharge increases from zero to a maximum 

value as the WTD increases to approximately 1.5 m, i.e., towards the base of the soil col-

umn zone A (Figure 5a). Recharge then decreases as WTD increases to approximately 5 m 

(zone B). Recharge remains constant for higher WTD as the vertical hydraulic gradient 

becomes one (zone C). Within the soil, the hydraulic properties are constant with depth, 

and therefore, the relationship between recharge and WTD is driven by the physical de-

scription of Equation (3) and (5). Cell-mean groundwater recharge has a bimodal distri-

bution (Figure 5b), with the two maxima associated with water-logged or discharging cells 

(zone A), or a downward flux (zones B and C). During the JAS monsoon season, mean 

recharge is higher, and there is a distinct tri-modal distribution of recharge, with maxima 

associated with: near-zero values where the water table is shallow (zone A); free drainage-

limited recharge rates for deep water tables (zone C), and higher values of approximately 

75 mm/month where the water table is close to the soil-aquifer boundary (zone B). During 

the dry season, there is very little recharge (Figure 5d). 
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.  

Figure 5. Groundwater recharge and discharge, ET, and runoff against WTD (a, e, i, m), and density distributions of cell-

mean fluxes for these four variables over annual (b, f, j, n), July–September (JAS) (c, g, k, o), and January–March (JFM) (d, 

h, i, p) periods for different aquifer parameterisations. The dotted line in a, e, i, m represents the depth of the soil layers. 

Note the broken axis on 10 of the plots. 

Groundwater discharge through the soil to the land surface is highest when the water 

table is very shallow, and decreases to zero as the WTD reaches approximately 5 m (Figure 

5e). Mean groundwater discharge increases with increasing 𝑇  as more groundwater 
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flows laterally to fewer discharging cells (Table 2); the mean discharge rate increases by 

approximately one third, from 12.7 mm/month in R1 to 16.89 mm/month in R9. This is 

associated with a reduction in the mean discharge area fraction, or proportion of the 

model domain discharging, from 0.63 to 0.29. Total groundwater discharge is highest dur-

ing the dry season when the distribution of cell discharge rates is bimodal (Figure 5h): 

near-zero, or approximately 50 mm/month (~82% of mean rainfall). The lowest discharge 

rates occur during the wet season, when a greater proportion of the aquifer receives re-

charge, and a cell is either recharging or discharging at any one time. The extreme values 

for discharge remain similar between the wet and the dry season (Figure 5g,h), implying 

that discharge to river valleys is maintained all year round. Similar to the mean annual 

values, the extreme discharge values for both the wet and dry season increase with in-

creasing aquifer 𝑇 (Figure 5f–h).  

For the low hydraulic conductivity aquifer (R1), the water table is within the soil 

across the entire model domain, resulting in recharge during the wet season and discharge 

during the dry season and little lateral flow. This is evident in Figure 4g as the mean an-

nual flux across the soil-aquifer boundary is zero for most of the model domain. In con-

trast for the high hydraulic conductivity aquifer, lateral groundwater flow results in per-

ennial discharge at certain locations in addition to the seasonal signal of recharge during 

the wet season and discharge during the dry season. 

3.1.3. Evapotranspiration 

The mean ET across the catchment increases from 29.19 mm/month (R1) to 33.27 

mm/month (R9) as T increases (Table 2). This is because when the soil is waterlogged, 

transpiration reduces (Figure 4m,p). The relationship between ET and WTD is shown in 

Figure 5i. ET increases to a maximum as the water table lowers within the soil column. As 

the WTD increases above approximately 3 m, the contribution of groundwater to ET re-

duces until it approaches a constant value determined by the soil water balance alone. 

The distribution of cell-mean ET (Figure 5j–l) is again tri-modal, because it controlled 

by the groundwater table-influenced soil moisture content in the three soil zones, A–C. 

For the low T aquifer (R1–3), the soil is mostly either water-logged (zone A), or the water 

table is within the soil column (zone B). Consequently, ET values are generally either at 

the low or high end of the distribution. In contrast for the higher T aquifer (R7–9), the 

water table is either within zone B of the soil column or deeper. In these runs, ET either 

occurs at approximately its maximum rate, or at the medium rate related to when the 

water table is deep and the capillary fringe does not contribute to the soil moisture. Sea-

sonally, the mean ET is lower during the wet season and higher in the dry season in com-

parison with the mean annual values. 

3.1.4. Runoff 

Mean annual runoff is higher for R1 (31.89 mm/month) than for R9 (27.82 mm/month) 

(Table 2). The shallow water table for R1 results in a reduction in transpiration, and hence 

a higher soil moisture and a higher runoff compared to runs with a deeper water table. 

Therefore, runoff is high where ET is low and vice-versa. The spatial variation in cell mean 

runoff is lower with a lower T: the 1st and 99th percentiles are 12.4 and 44.2 mm/month, 

respectively, for R1, compared 11.9 and 168.2 mm/month for R9. This is because, for a 

higher hydraulic conductivity aquifer, groundwater flows to topographic low-lying areas, 

resulting in higher runoff at these locations. Seasonally, mean runoff is high (110.8/84 

mm/month for R1/R9) during the wet season, and lower during the dry season (2.3/4.4 

mm/month for R1/R9). The extreme values for R9, however, remain high during the dry 

season. 
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3.2. Impact of Grid Resolution on Water Table Depth and Water Fluxes 

This section presents the impact of grid resolution for different water fluxes and WTD 

for different aquifer 𝑇 values. Spatial plots of mean WTD, recharge, ET, and runoff are 

presented in Figure 4, cumulative distribution functions of WTD at different grid sizes in 

Figure 6, density distributions of WTD, groundwater recharge, groundwater discharge, 

ET, runoff and lateral groundwater flow for the different grid resolutions are presented 

in Figure 7, spatial plots of lateral groundwater flow for the three different grid resolutions 

in Figure 8, and spatial averages of cell-mean values are listed in Table 3. 

Table 3. Mean WTD, recharge, ET, runoff and lateral groundwater flow for three runs and the three grid resolutions. 

Run 

 
Grid size 

Mean WTD 

(m) 

Mean Recharge 

(mm/month) 

Mean 

ET (mm/month) 

Mean Runoff 

(mm/month) 

Mean Lateral 

Groundwater flow 

(mm/month) 

Mean Discharge 

Area Fraction 

1 1° 0.32 13.9 30.07 31.03 0.02 0.67 

1 0.25° 0.33 14.79 30.86 30.21 0.13 0.65 

1 0.05° 0.52 12.7 29.19 31.89 1.43 0.63 

4 1° 0.24 8.8 25.03 35.94 0.18 0.67 

4 0.25° 0.53 10.94 27.49 33.57 1.26 0.65 

4 0.05° 5.65 13.11 31.11 29.97 9.05 0.51 

7 1° 0.3 9.07 25.95 35.14 1.78 0.62 

7 0.25° 7.61 11.07 29.84 31.24 9.38 0.55 

7 0.05° 20.41 17.13 33.55 27.55 20.98 0.29 

3.2.1. Water Table Depth 

Maps of simulated cell-mean WTD are plotted in Figure 4a–f for the three different 

grid resolutions, and the models with the lowest and highest aquifer diffusivity (R1, R9). 

Overall mean values of WTD are also listed in Table 3 for the low, medium and high T, 

and low storage aquifers (R1, R4 and R7), and cumulative distribution functions of cell-

mean WTD plotted in Figure 6. 

There is little change in mean WTD for the low T aquifers (R1–3) with decreasing cell 

size, however, for the medium (R4–6) and high (R7–9) T aquifers, there is a significant 

increase in WTD with decreasing cell size. For example, for the model with the highest 

aquifer diffusivity, R7, the mean WTD increases from 0.3 to 20.4 m, and the 99th percentile 

from 0.7 to 231 m. This pattern is comparable to a lesser extent to medium T model (R4), 

where the mean WTD increases from 0.24 m to 5.65 m with decreasing cell size from 1 to 

0.05 and the 99th percentile from 0.48 to 104.9 m. For the low T aquifer (R1), however, the 

water table is consistently shallow, and the variation of cell size has little impact on the 

WTD. The distribution of cell-mean WTD for the medium T aquifer and 0.05 grid is very 

similar to that of the high T aquifer and 0.25 grid (Figure 6). 
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Figure 6. Cumulative distribution functions of cell-mean WTD at three different grid resolutions 

for the low, medium and high transmissivity models. 

3.2.2. Groundwater Recharge 

Mean groundwater recharge increases with decreasing cell size for the medium and 

high 𝑇 aquifers (R4–9) (Figure 7b), which is attributed to an increase in WTD with de-

creasing cell size. This also results in a decrease in the discharge area fraction, and hence 

a larger proportion of the catchment receives recharge with decreasing cell size (Table 3). 

This is not the case for the low 𝑇 aquifer, where the relationship is complicated by the 

water table being predominantly located with the soil column; for R1 the WTD increases 

by only 0.19 m as cell size reduces from 1 to 0.05. The extreme values of both groundwater 

recharge and discharge increase with decreasing cell size. For example, the 99th percentile 

of cell-mean groundwater recharge increase from 22.5 to 33.1 mm/month for the low 𝑇 

aquifer (R1) and from 26.5 to 35.4 mm/month for the higher 𝑇 aquifer (R9). The 99th per-

centile of cell-mean discharge increases little for the low 𝑇  aquifer (R1) from 22.0 to 

25.7 mm/month, whereas for the high 𝑇 aquifer (R9) this is much more pronounced with 

an increase from 22.1 to 143.5 mm/month (Figure 7c). 

3.2.3. Evapotranspiration 

The spatial variation of cell-mean ET follows a similar pattern to that of groundwater 

recharge. It increases as the cell sizes decreases from 1 to 0.05, by 24 and 29% for the 

medium (R4) and high (R9) 𝑇 runs, respectively (Table 3) (Figure 7d). Again, the relation-

ship between ET and cell size is complicated by the fact that the water table is predomi-

nantly within the soil column for the low 𝑇 runs (R1). The distribution of cell-mean ET is 

bimodal in all but three simulations of the different aquifer 𝑇 and cell size combinations. 

In these runs, the soil is mostly either waterlogged or the water table is shallow. In con-

trast, for the medium 𝑇 aquifer simulated on the 0.05 grid, and for the high 𝑇 aquifer 

simulated on the 0.05 and 0.25 grids, the ET distributions are tri-modal; in these runs the 
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water table is located in either zone A, B or C (Figure 5a), which are associated with three 

different rates of ET. 

. 

Figure 7. Distributions of water table depth and cell-mean fluxes for different grid resolutions and aquifer parameterisa-

tions. Note the broken axis (c, e). 

3.2.4. Runoff 

Differences in cell-mean runoff between the simulations follow the opposite pattern 

to recharge and ET. Runoff reduces with decreasing cell size for the medium and high 𝑇 

aquifers, as the mean WTD increases (Figure 7e). For the low 𝑇  aquifer simulations 
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shown (R1, R3), there is no difference in the 99th percentile value (44.24 mm/month). 

However, for the high 𝑇  aquifer, the 99th percentile increases from 44.2 to 

168.3 mm/month as cell size reduces from 1 to 0.05°. The increase in the extreme runoff 

values for R9 as cell size reduces is also visible in Figure 4v–x. The spatial variation, as 

represented by the standard deviation of cell-mean runoff values, remains very similar 

for R1 for the three cell sizes (9.64, 9.27, 10.57 mm/month), however, this increases signif-

icantly for R9 (11.30, 14.41, 32.08 mm/month) with decreasing cell size. 

3.2.5. Lateral Groundwater Flow 

We consider lateral groundwater flow, 𝑞𝑙, for each grid cell as defined by Krakauer 

et al. [58]:𝑞𝑙 

𝑞𝑙 = −𝑞𝑟 + 𝑆
𝑑ℎ

𝑑𝑡
 (7) 

which is the net lateral groundwater flow, with negative values representing a net loss of 

groundwater from the cell. Cell-mean lateral groundwater flow consistently increases 

with decreasing model cell size and aquifer hydraulic conductivity (Table 3). Considering 

the median of the values of cell-mean lateral groundwater flow for all of the cells in the 

grid, ql50, then as the cell size decreases from 1 to 0.05, ql50 increases by 0.5, 4 and 13 

mm/month for the low (R1), medium (R4) and high (R7) T aquifers, respectively. Similarly, 

the 99th percentile of this metric, ql99, increases by 12, 44 and 138 mm/month for the three 

aquifers. 

Spatial variations in lateral groundwater flow are presented for the two runs R1 and 

R9, and the three different grid resolutions, in Figure 8. Cell-mean lateral groundwater 

flow for R1 and R9 and three different grid resolutions. For R1, the cell-mean lateral 

groundwater flow is very low, only increasing with increasing grid resolution from 0.02 

to 1.43 mm/month on average. Lateral groundwater flow on the 0.05 grid for the low T 

aquifer (R1) is very localised, with cells with positive lateral flow being close to those with 

negative lateral flow; the water table interacts with the land surface across the majority of 

area, and therefore, whilst the hydraulic gradient is steep, the lateral flow is low. In con-

trast, for the high T aquifer run (R9), cell-mean lateral groundwater flow increases signif-

icantly with decreasing cell size: from 1.8 to 19.4 mm/month. In this run, lateral ground-

water flow is positive in the river valleys, and negative over the upland interfluves. 

 

Figure 8. Cell-mean lateral groundwater flow for R1 and R9 and three different grid resolutions. 

3.3. Comparison of Groundwater Discharge through Capillary Rise and River Baseflow 

The discharge of groundwater to the land surface can occur via capillary rise through 

the soil, or through the river leakage mechanism where these boundaries are defined. To 
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assess the maximum difference of both discharge mechanisms, we compare the two ex-

treme cases, applying each discharge mechanism over the entire model domain. The var-

iation over the annual cycle of cell-mean fluxes and WTD is compared in Figure 9 for the 

R5 and R5_BF runs on the 0.05grid: in R5, groundwater discharges to the surface through 

the soil, and in R5_BF, groundwater discharges through the rivers boundaries via a 

groundwater head-dependent baseflow, when the water table rises to within zbase = 4 m 

of the land surface. In R5_BF, two components contribute to total runoff: that produced at 

the soil surface (Figure 9f), and that from baseflow to rivers (Figure 9n). In R5, runoff is 

only generated at the soil surface (Figure 9e). 

Considering R5_BF first, the spatial variation in cell-mean ET, surface runoff and soil 

moisture fluxes is negligibly small because the WTD is limited to being greater than or 

equal to 4 m, as the stage of the river was set to 4 m below the surface in all cells, and the 

envelope of the 10th and 99th percentiles is very narrow. The delay in the peak of the flux 

as it propagates downwards through the soil layer and to baseflow discharge is also clear; 

the peak of the median of the cell baseflow time series in September occurs two months 

after that for surface runoff. 

In contrast, the water table is shallower in R5 than R5_BF and within the soil column 

in low lying areas. The interaction of the groundwater table with the soil results in a spa-

tial variation in soil moisture, surface runoff, ET, fluxes within the soil, and groundwater 

recharge. Groundwater recharge is predominantly downwards between July and Septem-

ber. In contrast, between October and July, water exchange with the groundwater table is 

predominantly in an upward direction due to capillary forces, which results in a higher 

median ET than for R5_BF: especially for January–March 54.8 mm/month (R5_BF) versus 

60.3 mm/month (R5). 

On average, recharge is larger for R5_BF (19.3 mm/month) than for R5 (13 

mm/month), as in R5_BF the soil always drains to the 4 m or more deep water table. Total 

runoff, i.e., surface runoff plus baseflow, is slightly larger for the R5 (30.2 mm/month) than 

for the R5_BF (28.3 mm/month) model. This difference is because the water table for R5 is 

near the surface in the lowlands, resulting in reduced transpiration, and more runoff.  
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Figure 9. Time series of cell fluxes for: the R5 model in which all groundwater discharge occurs 

through interaction with the land surface, and the R5_BF model including groundwater head-de-

pendent baseflow. Precipitation is that reaching the soil surface, Q1 is the flux between soil layers 1 

and 2, Q2 is the flux between soil layers 2 and 3, baseflow is the river baseflow contribution for 

R5_BF. The solid line is the median of the model cell values and the shaded area is the range within 

the 10–90% tile. 
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4. Discussion 

The model simulations have been used to explore the magnitude of the changes in 

modelled state variables and fluxes as aquifer diffusivity and grid resolution are varied. 

The results show that changes in T produce more marked changes in modelled fluxes than 

changes in aquifer storage coefficient. This is because T controls the mean WTD, which in 

turn controls the vertical hydraulic gradient in the unsaturated zone and the soil moisture, 

which determine the recharge, ET and runoff rates. To further interpret the results, it is 

convenient to summarise the modelled fluxes as proportions of rainfall. Table 4 summa-

rises the differences in the modelled WTD, mean fluxes as a percentage of mean rainfall, 

and discharge area fraction, between the low (R1), medium (R4) and high (R7) T models 

on the 0.05 grid. Table 5 summarises the changes in the same modelled variables for the 

same three models, as the grid resolution increases from 1 to 0.05. 

On the 0.05 grid, rainfall is partitioned approximately equally into ET and runoff. 

However, 7.1% more of the rainfall becomes ET in the high T model than the low T model. 

This is balanced by a 7.1% reduction in runoff. This is due to the more waterlogged soils 

and lower transpiration in the lower T simulations. In the low T model, 20.6% of the rain-

fall becomes recharge, which contributes to runoff via slow flow through the aquifer; sub-

tracting this from the runoff indicates that 31.2% of the rainfall becomes rapid surface 

runoff generated by soil moisture excess. Recharge is 7.2% higher in the high T model than 

the low T model, due to the increase in mean WTD from 0.52 m to 20.41 m. Consequently, 

the surface (runoff minus recharge in Table 4) and subsurface (recharge in Table 4) com-

ponents of runoff decrease and increase, respectively, to 16.9 and 27.8% of rainfall. As the 

mean WTD increases as T increases, the area generating upward groundwater discharge 

decreases from 63 to 29% of the catchment. Groundwater flow in the low T system is lo-

calised with only 2.4% of the rainfall moving laterally from a grid cell in which it formed 

recharge to a neighbouring model grid cell. This increases to 34.1% flowing laterally in the 

high T aquifer. 

Table 4. Modelled mean fluxes as a percentage of mean rainfall between the low (R1), medium (R4) and high (R7) 𝑻 

models on the 0.05 grid. 

 Low 𝑻 (R1) Medium 𝑻 (R4) High 𝑻 (R7) Change R1 to R7 

WTD (m) 0.52 5.65 20.41 +19.89 

Recharge (% rain) 20.6 21.3 27.8 +7.2 

ET (% rain) 47.4 50.5 54.5 +7.1 

Runoff (% rain) 51.8 48.7 44.7 −7.1 

Lateral groundwater flow (% rain) 2.4 14.7 34.1 31.7 

Discharge area fraction 0.63 0.51 0.29 −0.34 

Considering all aquifer parameterisations, changes in the components of the model 

global flow balance as the grid resolution is increased from 1 to 0.05 vary between −1.4 

and 13.1% of mean rainfall (Table 5). For the medium 𝑇 model, the changes in the fluxes 

are similar to those produced by the hundred-fold increase in 𝑇 in the 0.05 grid model. 

In the low 𝑇 system, increasing the grid resolution has minimal effect as lateral ground-

water flow is low, and the VIC grid cells behave as vertical columns. However, in the high 

𝑇 aquifer, increasing the grid resolution has a large impact of the cell water balances. 

More accurate simulation of the spatial distribution of water table elevations causes: run-

off to decrease and ET to increase by 12.3% of the rainfall; lateral groundwater flow to 

increase to approximately one third of the rainfall; the area where recharge occurs to in-

crease from around one third to two thirds of the catchment. 

Snowdon et al. [59] have also recently shown the dependence of groundwater re-

charge and discharge on grid resolution when modelling shallow groundwater. Discretis-

ing a 715 km2 catchment using grids ranging in resolution from 3 to 250 m, they similarly 

demonstrated that exchange flux magnitudes are sensitive to the hydraulic conductivity 
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of the shallow bedrock and the hydraulic gradient, and therefore, that modelling at in-

creasingly lower resolutions becomes subject to greater uncertainty. The importance of 

representing the contribution of groundwater to ET has also recently been shown to be 

important in [60,61], where it was demonstrated that shallow groundwater can buffer 

plant water stress as the climate warms. Similarly, the importance of groundwater on ET 

fluxes was found to be significant on the Iberian Peninsula, where ET was modelled to be 

17.4% higher when a groundwater scheme was included compared to a simulation with-

out groundwater [62]. 

Table 5. Changes in modelled variables as grid resolution is increased for 1 to 0.05. Changes in 

fluxes are expressed as a percentage of the mean rainfall. 

 Low 𝑻 (R1) Medium 𝑻 (R4) High 𝑻 (R7) 

WTD (m) +0.2 +5.41 +20.11 

Recharge (% rain) −1.9 +7.0 +13.1 

ET (% rain) −1.4 +9.8 +12.3 

Runoff (% rain) +1.4 −9.8 −12.3 

Lateral groundwater flow (% rain) +2.4 +14.4 +31.2 

Discharge area fraction −0.04 −0.16 −0.33 

Both grid size and transmissivity are important, as lateral groundwater flow distrib-

utes groundwater spatially within the catchment and moves water from areas with higher 

hydraulic head to discharge at lower lying areas. The maximum possible difference in 

hydraulic head is constrained by the maximum and minimum elevation within a sub-

catchment, and therefore the averaging of the topography at increasing lower resolutions 

limits the hydraulic gradient. Krakauer et al. [58] compared grid spacing at a global scale 

and found that for a grid resolution of 0.1°, the magnitude of lateral groundwater flow 

was comparable to recharge. Krakauer et al. [58] further suggests that a model transitions 

from a state in which lateral flow contributes significantly to the cell water budget to it 

being insignificant as the modelled grid size increases from 0.1 and 1°. Therefore, Kra-

kauer et al. [58] justify to some extent the neglection of lateral groundwater flow in current 

climate models. 

However, as we have shown the impact of grid resolution on lateral groundwater 

flow also depends on the aquifer hydraulic properties, having little effect for low 𝑇 and 

a large effect for high 𝑇. Therefore, the efforts of modelling at a fine grid resolution be-

comes increasingly important when including lateral groundwater flow in catchments 

with a higher permeability. When considering the effects of groundwater abstraction, 

groundwater flow directions and magnitude can change within an aquifer and a high spa-

tial grid resolution is likely to be important for all aquifer typologies. 

The development of VIC to simulate lateral groundwater flow, and the effect of a 

dynamic water table on the exchange of water between the unsaturated zone and the sat-

urated aquifer represents an important improvement in its representation of catchment 

hydrological processes. When addressing questions that are dependent on the WTD, such 

as representing groundwater abstraction and groundwater-fed irrigation, the depth to the 

water table needs to be represented adequately. However, we have implemented a rela-

tively simple 2D groundwater model that simulates the aquifer using a single layer, which 

has to be connected to the soil column. Consequently, currently confined, leaky, and 

multi-layer aquifer systems cannot be modelled. 

A VIC grid cell can be subdivided into a number of tiles, corresponding to different 

land cover types and elevation bands [21]; however, VIC has been tested here for one 

elevation band and vegetation type per grid cell. It is possible to include several vegetation 

types and elevation bands within a VIC cell, but there is only one water table elevation 

value per grid cell. An approach to include topographic subgrid variability, including that 

of the water table, has been developed by Choi et al. [63] within a three-dimensional soil 

moisture transport model. The study showed this to be an important factor controlling 
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soil moisture dynamics and estimates of grid-scale surface energy fluxes. Subgrid varia-

bility for different plant functional types has been incorporated into a version of CLM 4.5 

including lateral flow by using a finer groundwater model grid than the CLM model grid 

and distributing each plant functional type proportionally on the groundwater grid [27]. 

For future work, similar approaches could be added to this enhanced version of VIC. 

However, for the current version, we suggest the use of a consistently fine model grid for 

both VIC and the groundwater model, representing the variation in topography and veg-

etation for each grid cell. 

In addition to improvement in model performance gained by increasing grid resolu-

tion, and thus a better representation of discharge areas alone, benefits can also accrue 

from the more detailed associated parameterisation. For example, Singh et al. [64] showed 

that for the land surface model CLM4.0, increasing the grid resolution from 100 to 1 km 

reduced errors between modelled and observed soil moisture, terrestrial water storage, 

sensible heat, and snow water equivalent. Using two groundwater models of New Zea-

land with different grid resolutions, Reinecke et al. [65] also showed improvements in 

modelled WTDs at higher spatial resolutions; however, this was also related to how 

groundwater level observations were aggregated within grid cells. They concluded that 

the density and range of observed values can vary greatly, which affects comparisons of 

models with different spatial resolutions. Furthermore, Reinecke et al. [65] showed that 

increasing the spatial resolution alone is not sufficient to simulate the hydraulic heads and 

the flows accurately, but that improvements in the modelled variation in the WTD can be 

achieved with a better representation of the spatial variation of aquifer properties, as pre-

viously considered by Westerhoff et al. [66]. Westerhoff et al. [66] refined the global scale 

equilibrium WTD model of Fan et al. [67] using higher resolution aquifer parameterisa-

tion, recharge, a fine model grid, and model calibration to observed groundwater levels, 

and this model simulated the WTD best compared to other global groundwater models in 

New Zealand [28,65,67]. Therefore, there is a need to update global hydrogeological pa-

rameterisations with local to national scale knowledge of aquifer properties, and include 

model calibration for a better representation of groundwater flows within large scale hy-

drological modelling. 

Linking hydrological modelling with groundwater modelling is important, because 

it connects interconnected disciplines. As Staudinger et al. [68] discuss, often either hy-

drology or hydrogeology is resolved in more detail whilst simplifying the other system 

considerably. For example, hydrology examines the water cycle of the land surface, often 

applied to estimate floods or droughts, and treats the deeper subsurface as a boundary 

condition. In contrast hydrogeology simplifies the land surface processes and often pre-

scribes a simplified groundwater recharge. By linking both hydrological and hydrogeo-

logical modelling, interactions and feedbacks between land surface processes and ground-

water processes can be studied [68]. Therefore, the inclusion of lateral groundwater flow 

into a hydrological model allows the water cycle to be closed within a catchment, and 

lateral groundwater flow to transport water across grid cells of a hydrological model. 

5. Conclusions 

We have incorporated a two-dimensional groundwater flow model into the image 

version of VIC 5.0.1 [20]. We replaced the baseflow formulation in VIC, which is a function 

of soil moisture, with a vertical flux across the soil-aquifer boundary. This flux is based on 

the SIMGM model by Niu et al. [12], and includes both gravitational drainage and capil-

lary rise. Depending on its sign, this flux across the soil-aquifer boundary can represent 

either groundwater recharge or groundwater discharge, and it is a function of the soil 

moisture and the current WTD simulated by the groundwater model. This enhanced ver-

sion of the VIC model was applied to an idealised system of the upper Ganges, India, 

using a homogeneous parameterisation, except for the topographic elevation. 
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The magnitude of cell ET, runoff, groundwater recharge, and groundwater discharge 

rates significantly depend on WTD in the new VIC model, which in turn can be signifi-

cantly affected by grid resolution. For the low (≤ 50 m2/day) transmissivity aquifer mod-

elled, increasing the grid resolution from 1 to 0.05 has a minimal effect as lateral ground-

water flow is low, and the VIC grid cells behave as vertical columns. However, in the 

medium (≤ 500 m2/day) and high (≤ 5000 m2/day) transmissivity systems, increasing the 

grid resolution resolves the water table distribution much more realistically, which has a 

large impact of the cell water balances. Decreasing the grid cell size from 1 to 0.05 causes 

mean ET and runoff to change by up to 12.3% of mean rainfall. For the medium transmis-

sivity aquifer, changes in mean fluxes associated with the 20-fold increase in resolution 

are similar to those produced by hundred-fold variation in transmissivity in the highest 

resolution model. The frequency distribution of cell-mean water table depths is similar for 

the 0.25 high transmissivity model and the 0.05 medium transmissivity model. The re-

lationship between WTD, model fluxes and grid resolution will, of course, differ for dif-

ferent aquifer types, climatic conditions, and topographic settings. However, because of 

the large variation of the WTD and cell fluxes with grid cell size in this application, we 

suggest that such an analysis should be undertaken as part of the model’s calibration pro-

cess. 

The inclusion of a groundwater model in VIC facilitates the inclusion of human pro-

cesses, such as groundwater abstraction and irrigation, which will be the focus of future 

development. This will improve the representation of feedbacks between water use and 

terrestrial water storage leading to, for example, better understanding of how ET and river 

flows are affected by the practice of groundwater-fed irrigation. 
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