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Abstract: Owing to the reduction of surface-water resources and frequent droughts, the exploitation
of groundwater resources has faced critical challenges. For optimal management of these valuable re-
sources, careful studies of groundwater potential status are essential. The main goal of this study
was to determine the optimal network structure of a Bayesian network (BayesNet) machine-learning
model using three metaheuristic optimization algorithms—a genetic algorithm (GA), a simulated
annealing (SA) algorithm, and a Tabu search (TS) algorithm—to prepare groundwater-potential maps.
The methodology was applied to the town of Baghmalek in the Khuzestan province of Iran. For model-
ing, the location of 187 springs in the study area and 13 parameters (altitude, slope angle, slope aspect,
plan curvature, profile curvature, topography wetness index (TWI), distance to river, distance to
fault, drainage density, rainfall, land use/cover, lithology, and soil) affecting the potential of ground-
water were provided. In addition, the statistical method of certainty factor (CF) was utilized to
determine the input weight of the hybrid models. The results of the OneR technique showed that
the parameters of altitude, lithology, and drainage density were more important for the potential
of groundwater compared to the other parameters. The results of groundwater-potential mapping
(GPM) employing the receiver operating characteristic (ROC) area under the curve (AUC) showed an
estimation accuracy of 0.830, 0.818, 0.810, and 0.792, for the BayesNet-GA, BayesNet-SA, BayesNet-TS,
and BayesNet models, respectively. The BayesNet-GA model improved the GPM estimation accuracy
of the BayesNet-SA (4.6% and 7.5%) and BayesNet-TS (21.8% and 17.5%) models with respect to the
root mean square error (RMSE) and mean absolute error (MAE), respectively. Based on metric indices,
the GA provides a higher capability than the SA and TS algorithms for optimizing the BayesNet
model in determining the GPM.

Keywords: groundwater-potential mapping; Bayesian network model; metaheuristic algorithms;
geographic information system (GIS); receiver operating characteristic; area under the curve
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1. Introduction

Rapid population growth and industrial development in most countries will pose a
shortage of freshwater by 2025 [1]. Groundwater is one of the natural resources that affects
biosphere and geosphere processes [2], and is one of the most considerable freshwater
resources in the world; the daily needs of 2.5 billion people depend on these resources [3].
Groundwater resources are also considered the primary water resources in arid and semi-
arid regions [4]. Globally, the use of groundwater is about 20%; it is a very efficient source
for drinking water, forestry, industry, livestock, and agriculture. It also is less exposed to
environmental contamination than surface water [5,6]. In many parts of the world, espe-
cially Iran, the uncontrolled abstraction of groundwater has led to the depletion of these
resources [7]. Increased demand for groundwater resources around the world is due to
components such as insufficient rainfall, surface-water scarcity, and population growth [8].
Improper management of groundwater resources reduces their quality, which will lead to
the deterioration of water resources [9]. Iran is facing a shortage of fresh water due to deser-
tification of about two-thirds of its lands, which are free of any forests and green pastures.
This has led to the high use of groundwater [10].

The existence of groundwater is dynamic from place to place and highly variable.
The occurrence of groundwater in a given area is not accidental, and is due to the interaction
of many causes, such as natural geography, climate, hydrology, geology, ecology, topogra-
phy, type of soil and underlying soil layers, fracture density, slope of the ground, and land
use [11,12]. Given that these factors are interdependent, the reliability of the estimates for a
given area is diminished by considering a single factor to describe the recharge process.
Four assumptions were made to guide the selection of variables that mainly affect aquifer
recharge: groundwater potential increases with (1) increasing groundwater recharge (pre-
cipitation level is capable of infiltrating), (2) higher soil and rock permeability (geological
and lithological units), (3) higher lineament density (geological structures), and (4) flat
slopes [12]. To manage groundwater resources effectively, it is essential to identify the areas
with high groundwater storage potential. One of the most effective approaches that can help
administrators to adopt management plans is to map the potential of groundwater [13,14].
Groundwater-potential mapping (GPM) includes the traditional approaches: geographic
information systems (GISs) and remote sensing (RS). Despite their accurate estimation of
the potential of groundwater, the traditional methods, due to time and cost, as well as
the unavailability of data and technology for extraction in many parts of the world, are a
barrier to its use [13]. The GIS-based methods provide the ability to store, manipulate,
and analyze data in various formats and scales, which ultimately lead to the production of
thematic maps [15–19]. Statistical, machine-learning, and hybrid models integrated with
GISs have been used over the last decade to achieve more accurate models for assessing the
potential of groundwater [20]. Statistical models also were used for groundwater-potential
mapping, including frequency ratio (FR) [21], logistic regression (LR) [22], Shannon entropy
(SE) [23], weight of evidence (WOE) [24], and the evidential belief function (EBF) [25].

GIS-based groundwater-potential mapping based on machine-learning models has
become very attractive among researchers recently. The selection of suitable parameters
that affect the potential of groundwater and appropriate models for identifying its potential
areas is one of the most valuable criteria for evaluating the potential of groundwater.
Since these models can predict the nonlinear relationship effectively, the diverse variables
affect the potential of groundwater [26]. In groundwater-potential mapping, the machine-
learning models used so far are classified as random forest (RF) [27], support vector
machine (SVM) [28], boosted regression trees (BRT) [29], classification and regression trees
(CART) [30], linear discriminant analysis (LDA) [31], multivariate adaptive regression
spline (MARS) [32], and naïve Bayes (NB) [33], respectively.

Despite the high accuracy of machine-learning models in predicting nonlinear data,
the overfitting problem is one of the drawbacks that affects the accuracy of the model [34].
In this regard, to achieve higher accuracy in preparing the groundwater-potential map-
ping, different hybrid models obtained by optimizing the base model with different algo-
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rithms [34,35] or group techniques [36–38] have recently been used. The Bayesian network
(BayesNet) model has been successfully used in hazard modeling so far [39,40], but one of
the disadvantages of this model is the inability to determine the optimal network structure.

The main objective of this research is to develop GPM using a BayesNet model
combined with genetic algorithm (GA), simulated annealing (SA), and Tabu search (TS)
algorithms to determine the optimal network structure of the BayesNet in the Bagh-
malek Plain, Iran. Second, the study aims to compare the prediction capabilities of the
different metaheuristic algorithms. For this purpose, the GA, SA, and TS algorithms
have been used to optimize the network structure of the BayesNet model to prepare a
groundwater-potential mapping. To our knowledge, the BayesNet-GA, BayesNet-SA,
and BayesNet-TS models have not been investigated to address this issue yet.

2. Materials and Methods

This research was accomplished in five levels. In the first level, a spatial database
was created, consisting of the locations of the springs and the criteria affecting the potential
of groundwater. In the second level, the important criteria affecting the potential of
groundwater was determined using the OneR technique. In the third level, the spatial
relationship between the effective criteria and locations of the springs was achieved using
the certainty factor (CF) method. In the fourth level, spatial modeling was performed using
ensembles of the BayesNet model and metaheuristic (i.e., GA, SA, and TS) algorithms.
In the last level, the GPM was evaluated using metric indicators. A flowchart of our
research is shown in Figure 1.
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Figure 1. Research methodology. TWI: topographic wetness index, GA: genetic algorithm, SA: simulated annealing,
TS: Tabu search, RMSE: root mean square error, MAE: mean absolute error, ROC: receiver operating characteristic,
AUC: area under the curve.

2.1. Study Area

The town of Baghmalek is in the east of Khuzestan Province, Iran. It is geographically
located at 49◦ 53′ E and 31◦ 31′ N, at an altitude of 917 m above sea level. The temperature in
the center of the study area in summer reaches a high of 42 ◦C, and in winter reaches a low
of 0 ◦C. The average annual rainfall is 500 mm. Due to the high use of groundwater in this
area for agriculture, in recent years there has been a clear decrease in groundwater levels.
The location of the study area, along with the distribution of the springs, is shown in
Figure 2.
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Figure 2. Study area with spring locations.

2.2. Spring Inventory Map

Our general assumption was that the presence of groundwater in regions with high
groundwater yields was highly likely [26]. A total of 187 springs were chosen, with a
yield greater than 11 m3/h and a mean pH and electrical conductivity (EC) of 7.1 and
490 µmhos/cm, respectively. In this study, the locations of the springs were provided by
the Water Resources Management Organization (WRMO) of Iran. Google Earth was used
to verify the locations of the springs. Of the locations, 70% (131 locations) were randomly
used for modeling (i.e., training), and 30% (56 locations) were randomly used for the
modeling evaluation (i.e., validation).

2.3. Criteria Affecting the Potential of Groundwater

The topography, meteorology, hydrology, human activities, and environmental fea-
tures from the earth are major criteria affecting the potential of groundwater among the
different elements [13,22]. To determine the GPM, 13 factors were selected in our research.
Considering the previous articles, these criteria included: altitude, slope angle, slope as-
pect, plan curvature, profile curvature, topography wetness index (TWI), distance to river,
distance to fault, drainage density, rainfall, land use/cover, lithology, and soil [26,35].
ArcGIS 10.3 and SAGA GIS software were used to prepare and classify the effective criteria.
The following is a description of each of the effective criteria. The method for preparing
and classifying the effective criteria is summarized in Appendix A Table A1.

Altitude: Because of differences in soil and vegetation caused by altitude differences,
groundwater is usually found at low altitudes. The shuttle radar topography mission
(STRM) digital elevation model (DEM) was downloaded from https://earthexplorer.usgs.
gov (accessed on 28 February 2021) at a spatial resolution of 30 m × 30 m. Topographic pa-
rameters were obtained from the DEM in ArcGIS10.3 and SAGA GIS 2.1.2 software, includ-
ing altitude, profile curvature, slope aspect, slope angle, and plan curvature (Figure 3a) [41].

Slope angle: The slope angle affects vertical water infiltration and surface runoff ve-
locity. In areas with lower slopes, runoff recharge is also higher (Figure 3b) [42].

Slope aspect: The amount of water in the soil is affected by the slope aspect, and the
physiographic trends and the direction of precipitation are related to the slope aspect
(Figure 3c) [22].

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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TWI: The TWI shows the location and size of saturated source areas, and the produc-
tion of surface runoff is affected by topographic/morphological conditions. The TWI is
calculated using Equation (1) (Figure 3d) [43].

TWI = ln
(

As

tanα

)
(1)

where As. is the specific surface of the catchment and α is the slope gradient.
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Plan and profile curvature: This controls the speed of water flow. The values of the
profile curvature represent the morphology of the topography, with a positive curvature
attesting to an upward concave curvature, a negative curvature attesting to an upward
convex curvature, and a value of zero attesting to a flat surface. For a longer period
of rainfall, a concave slope retains more water (Figure 3e,f) [26].

Distance to river: This is the primary source of groundwater recharge in semiarid
regions that affects the potential of groundwater (Figure 3g) [42].

Distance to fault: The movements of groundwater springs over an area can be con-
trolled by various faults (Figure 3h) [44].

Drainage density: The drainage characteristics of each basin control the subsurface
hydrological status of each area. The drainage density varies in different regions due to
land use effects, different climatic regimes, and natural landscapes (Figure 3i) [45].

Rainfall: One of the most essential and natural sources of groundwater recharge that
impacts the infiltration for the potential of groundwater is the amount of rainfall. A 30-year
average rainfall dataset for 22 meteorological stations obtained by the WRMO was used to
prepare the rainfall map. The rainfall map was constructed in ArcGIS 10.3 by using the
kriging interpolation method (Figure 3j) [17].

Lithology: Permeability and porosity are two criteria that affect the movement and oc-
currence of groundwater as its efficiencies increase with growing permeability and porosity.
Lithology plays a crucial role in permeability and porosity (Figure 3k) [46].

Soil: Surface-water permeability is controlled by soil properties and is directly related
to permeability (Figure 3l) [47].

Land use/cover: Groundwater movements are affected by diversity in land use/cover.
Evapotranspiration, surface runoff, and groundwater recharge are affected by land use/cover.
For the preparation of the land use/cover map, Landsat-7 images from 2013 and 2019
were used. To this purpose, 420 training points obtained via a Global Positioning System
(GPS) were used to create a land use/cover map, of which 70% were used for training,
and the remaining 30% were used to test the accuracy of the map. The land use/cover
maps were produced at an accuracy of 90% using the maximum likelihood algorithm in
ENVI 4.8 software (Figure 3m) [48].

2.4. CF Method

To solve for uncertainty and heterogeneity of the input data for modeling, the CF
method was implemented. This method was developed by Shortliffe and Buchanan [49].
The weight of each category of criteria that affected the potential of groundwater was
calculated using Equation (2) [49]. cf = ppa−pps

ppa(1−pps)
if ppa > pps

cf = ppa−pps
pps(1−ppa)

if ppa < pps

(2)

where cf is the weight of each category, ppa is the conditional probability of the existing
number of springs in a category, and pps is the initial probability of the existence of all
springs in study area. The favorability values (ppa, pps) were obtained from overlaying the
existing spring distribution layer in GIS with each data layer and measuring the frequency
of occurrence of spring. The value of ppa is given by the ratio of the spring area falling into
a certain category and the total area of that category. The value of pps can be determined
by dividing the total area of the spring with the total area of the study. The value in
the CF method is between −1 and +1. Positive values indicate an increase in certainty,
and negative values indicate a decrease in certainty. In this research, the CF method was
used in order to match and take into account the effect of different classes of independent
parameters in the modeling [49].
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2.5. Baysian Network (BayesNet) Machine-Learning Model

The BayesNet machine-learning model is a knowledge representation tool that enables
effective management of dependency/independence relationships between the random
variables that make up the modeling-problem domain [50]. This model consists of two com-
ponents, structure and parameter. The structure of the BayesNet machine-learning model,

=

(→
V, E

)
, is a directional graph with no rotation where

→
V = {x1, x2, . . . ., xn} is a set

of nodes that represent system variables and E ⊂
(→

V ×
→
V
)

is a collection of edges. It

describes the relationship of direct dependence between these variables [39]. For each

variable
→
V xi ∈ is a set of conditional distributions of p(xi |pa (xi)) that pa(xi) represents

the set of parents of the variable xi. The cumulative distribution on
→
V can be calculated

using Equation (3) [18,50].

p(x1, x2, . . . ., xn) =
n

∏
i=1

p(xi |pa (xi)) (3)

2.6. Genetic Algorithm (GA)

A GA that mimics biological evolution can be used to solve optimization problems
with and without restrictions. This algorithm was introduced by Holland in 1975 as one
of the first metaheuristic algorithms [51,52]. In this algorithm, each individual solution is
called a chromosome, and consists of single arrays called genes. This algorithm repeatedly
modifies a population of solutions. At each step, the GA randomly selects individual solu-
tions from the present population and uses them as parent chromosomes to create offspring
chromosomes for the new generation. Genes are transformed from current chromosomes
into new generation chromosomes using operators. After creating successive generations,
the population moves toward an optimal solution [53,54].

2.7. Simulated Annealing (SA) Algorithm

The SA algorithm is a simple and effective metaheuristic search used to solve hybrid
optimization problems [55]. The SA algorithm simulates a gradual refrigeration process
to solve an optimization problem. The objective function of such a problem is similar to
the energy of a substance, which must be minimized by defining a virtual temperature.
The SA algorithm is a probabilistic algorithm in which a solution is proposed to exit
the local optimization. Also, it is a memoryless algorithm in the sense that there is no
mechanism for storing information during the search [56,57].

2.8. Tabu Search (TS) Algorithm

The TS algorithm is a direct search algorithm for optimizing complex nonlinear prob-
lems. In this algorithm, the transition from a possible initial solution to a possible sec-
ondary solution is called a move [58]. The list of the last points to be examined is called the
taboo list, which is proposed based on human memory. The purpose of addressed list is to
prevent relocation to areas that have already been surveyed. This can expand the algorithm
search area. First, the algorithm randomly selects an initial answer, then all neighboring
points are identified, and the value of objective function is calculated [59].

2.9. Hybrid Model

One of the main components in a BayesNet machine-learning model is the structure
of the network. The traditional methods for determining the best network structure in
their search space can acquire local optimization and ignore global optimization [60].
For this purpose, metaheuristic algorithms are an effective solution to determine the best
network structure. In our research, to optimize the structure of the BayesNet machine-
learning model, metaheuristic (i.e., GA, SA, and TS) algorithms were used. The objective
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function of optimizing the BayesNet structure (Bs) for the D dataset using metaheuristic
algorithms is defined in Equation (4):

QBayes(Bs , D) = P(Bs)
n

∏
i=0

qi

∏
j=1

Γ
(

N′ij
)

Γ
(

N′ij + Nij

) ri

∏
k=1

Γ
(

N′ijk + Nijk
)

Γ
(

N′ijk
) (4)

where P(Bs) is the previous network structure, Γ(.) is the gamma function, and N′ij and N′ijk
are Dirichlet distribution indices for a set of parameters. The hybrid model was applied
using the Waikato Environment for Knowledge Analysis (WEKA 3) software. To implement
the models, the data was prepared in ArcGIS 10.3 software and then transferred to the
WEKA 3 software for modeling. Finally, the output of WEKA 3 software was transferred to
ArcGIS 10.3, and the final groundwater potential map was prepared (Figure 4).
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2.10. OneR Technique

In this study, the OneR technique was used to determine the feature selection and select
the most effective criterion in modeling the groundwater-potential map [61]. The OneR
technique is a one-tier decision tree that contains a set of rules. It is simple and often
provides good rules for characterizing data structures. It also uses the computational error
ratio and several rules to gain the weight of each effective criterion [62].

2.11. Validation Indices

To evaluate the hybrid models, Precision, Recall, Specificity, Sensitivity, Kappa, re-
ceiver operating characteristic (ROC)–area under the curve (AUC), root mean square
error (RMSE), and mean absolute error (MAE) indices were used. The ROC curve is a
graph in which the occurrence or nonoccurrence of springs correctly predicted by the
model is plotted on the horizontal axis (1-Specificity) versus incorrectly predicted pixels
(Sensitivity) on the vertical axis. The area below the ROC curve is called AUC. Its value
varies between 0.5 and 1; the closer it is to one, the higher the modeling efficiency is.
These indicators were calculated using Equations (5)–(11) [61,63].

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
(7)

Sensitivity =
TP

TP + FN
(8)

Kappa =
(TP + TN)− ((TP + FN)(TP + FP) + (FP + TN)(FN + TN))

1− ((TP + FN)(TP + FP) + (FP + TN)(FN + TN))
(9)

RMSE =

√
∑n

i=1(Y− Y′)2

n
(10)

MAE =
1
n ∑n

i=1|Y− Y′| (11)

where TP is the number of spring values that were correctly predicted, FP is the number of
spring values that were incorrectly detected, TN is the number of spring values that were
rejected correctly, FN is the number of spring values that were incorrectly rejected, Y is the
real value,Y′ is the predicted value, and N is the number of samples. The RMSE and MAE
indices were used to measure the error between the actual and predicted values [64,65].

3. Results and Discussion
3.1. Determining the Important Criteria

The importance we determined for the criteria that affect the potential of ground-
water is shown in Figure 5. Based on the results of the OneR technique, the addressed
criteria of altitude (64.12), lithology (62.59), drainage density (62.21), TWI (62.1), rain-
fall (61.06), distance to river (59.54), plan curvature (59.16), profile curvature (57.25),
land use/cover (55.72), distance to fault (54.88), slope angle (51.145), slope aspect (50.76),
and soil (48.09) were determined for the potential of groundwater in the study area.
Based on the results of OneR technique, the criteria of altitude, lithology, and drainage
density had the most significant impact on the occurrence of groundwater in study area,
which is consistent with previous articles [66,67].
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3.2. Results of the CF Method

The spatial relationship using the CF method between the criteria affecting the poten-
tial of groundwater and the location of springs is presented in Table 1. Based on the results
of altitude criterion, the class of 724–1084 m provided the highest correlation with the
presence of groundwater (0.355). As the altitude increased, the potential of groundwater de-
creased. Also, the reason for this phenomena can be expressed as the reduction of aquifer
thickness at high altitudes [26]. Considering the results of slope angle criterion, the slope
angle class of less than 8◦ supplied the highest weight (0.220). The potential of groundwater
decreased with an increasing slope. The main reason for this behavior is that the nature of
water tends to descend from points at high altitudes to lower altitudes, and also to move
in the direction of the slope and accumulate in the lowlands [14]. In the results for the
slope aspect criterion, the south direction with a weight of 0.392 supported the highest
importance. Due to receiving more rainfall and humidity than other areas, it played a more
significant role in controlling the formation of groundwater [41]. Regarding the results of
plan curvature criterion, the concave class yielded the highest weight and the most signifi-
cant impact on the occurrence of groundwater (CF = 0.427) [23]. Recognizing the results
of profile curvature criterion, the class of less than −0.0054 produced the highest weight,
equal to 0.608. With an increasing TWI, the speed of water passage from high altitudes will
decrease, and water will have more opportunity to penetrate the ground. Therefore, the po-
tential of groundwater will increase [68]. But in this study, the middle classes of TWI had
a greater impact on the occurrence of groundwater. One of the reasons for the negative
weight of the category larger than 6.1 is that a small number of springs (5) are located in this
category. The results show that values between 4 and 6 for this index are more important
in the occurrence of groundwater, which is consistent with [4]. For the results of distance
to river, the class of 0–100 m yielded the highest weight (CF = 0.744) [69]. For distance
to fault, the class of 0–300 m reported the highest value (CF = 0.474). Faults can transfer
groundwater in hard formations. The presence of a fault facilitates infiltration conditions.
Therefore, at distances closer to the fault, the potential of groundwater is higher [14]. In the
results for the drainage density criterion, the maximum weight was related to the class of
0.487–0.731, with a value of 0.618. As the drainage density increased, the area’s permeabil-
ity increased, and thus provided suitable conditions for groundwater recharge [16]. For the
results of rainfall criterion, the class of 550–500 mm had the highest weight (CF = 0.490).
With increasing rainfall, the probability of groundwater occurring increased. Since the
study area has a semiarid climate, the average rainfall of 500 mm had a more significant
impact on the occurrence of groundwater. In the study area, more rainfall occurred in
areas with a high altitude and slope, which are not prone to groundwater occurrence;
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therefore, the rainfall criterion was affected by these two criteria, and high amounts of
rainfall (>550 mm) had negative weight. Regarding the results for the lithology criterion,
the MuPlaj unit showed the highest weight (CF = 0.639). The MuPlaj unit, owing to its
high permeability, had the most significant impact on the potential of groundwater in the
study area [14]. Contemplating the results of the land use/cover criterion, the agricultural
class provided the highest weight (CF = 0.347) and the most significant impact on the oc-
currence of groundwater. Agricultural irrigation water, mainly supplied from river water,
penetrates the saturated aquifer and feeds the aquifer during irrigation [70]. Finally, for the
soil criterion, the Inceptisols class suggested the highest weight (CF = 0.370). The reason
for this is that the increased permeability of Inceptisols provides the necessary conditions
for the formation of aquifers in areas covered with this type of soil [26].

Table 1. Results of the CF model.

Class No. of Pixels
in Domain

No. of
Springs CF Class No. of Pixels

in Domain
No. of

Springs CF

Altitude (m) Distance to river (m)
<724 864,512 39 −0.076 0–100 151,724 29 0.744

724–1084 962,838 73 0.355 100–200 137,908 22 0.693
1084–1566 432,096 4 −0.810 200–300 142,610 7 0.0031
1566–2162 271,106 14 0.053 300–400 126,125 3 −0.513

>2162 150,608 1 −0.864 >400 211,880 70 −0.324

Slope angle Distance to fault (m)
0–8 973,112 61 0.220 0–300 53,716 5 0.474

8–16 691,532 38 0.110 300–600 52,757 1 −0.612
16–25 528,894 18 −0.303 600–900 51,893 0 −1.000
25–37 349,366 11 −0.355 900–1200 53,661 0 −1.000
>37 138,256 3 −0.555 >1200 246,514 125 0.035

TWI Drainage density
<3.48 655,123 12 −0.625 0–0.243 130,811 27 −0.570

3.48–4.31 775,835 28 −0.261 0.243–0.487 936,236 51 0.101
4.31–5.15 645,477 51 0.381 0.487–0.731 366,305 47 0.618
5.15–6.1 457,665 35 0.361 0.731–0.974 62,963 6 0.486

>6.1 147,060 5 −0.304 >0.974 3556 0 −1.000

Profile curvature Rainfall (mm)
<−0.0054 160,359 20 0.608 < 450 466,347 0 −1.000

-0.0054–0.0017 601,468 35 0.160 450–500 818,925 49 0.180
-0.0017–0.0011 101,300 46 −0.070 500–550 497,838 48 0.490
0.0011–0.0048 716,132 27 −0.220 550–600 426,536 18 −0.137

>0.0048 190,193 3 −0.670 >600 468,081 16 −0.301

Plan curvature Soil
Concave 644,059 55 0.427 Bad lands 123,049 61 0.014

Flat 136,304 60 −0.099 Inceptisols 579,991 45 0.370
Convex 674,060 16 −0.514 Entisols 871,261 25 −0.410

Lithology Slope aspect
Qft2 484,268 43 0.449 F 1623 0 −1.000

MuPlaj 118,043 16 0.639 N 312,384 12 −0.213
Mgs 953,888 32 −0.313 NE 324,921 10 −0.370
Kgu 35,391 0 −1.000 E 242,263 11 −0.070

OMas 598,244 14 −0.520 SE 243,474 9 −0.243
Kbgp 53,728 0 −1.000 S 373,092 30 0.392
Mmn 1,07201 3 −0.420 SW 482,906 24 0.016
Plbk 114,957 12 0.530 W 392,328 21 0.087

PeEpd 114,465 11 0.490 NW 308,169 14 −0.070
JKkgp 399 0 −1.000

KEpd-gu 101,159 0 −1.000
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Table 1. Cont.

Class No. of Pixels
in Domain

No. of
Springs CF Class No. of Pixels

in Domain
No. of

Springs CF

Land use/cover
Forest 468,449 18 −0.213

Agriculture 117,252 75 0.347
Pasture 100,168 36 −0.371

Bare land 7285 0 −1.000
Urban area 4071 0 −1.000
Water body 27,672 2 0.324

3.3. Results of the Hybrid Models

To optimize the BayesNet machine-learning model, a spatial database provided the
points of presence of spring (value 1) and the absence of spring (value 0). The weights
were obtained from all criteria by the CF method. Nonoccurrence points were randomly
created as equal to the training and validation points. The control parameters in the
metaheuristic algorithms are presented in Table 2. The diagrams for the comparison of
training and validation data with target data (occurrence and nonoccurrence of springs)
are shown in Figure A1. The evaluation results of the hybrid models using metric indi-
cators for the training and validation data are summarized in Table 3. As observed in
Table 3, the BayesNet-GA model provided the best approximation in training with the
lowest RMSE (0.2633) and MAE (0.2178), and the highest Kappa (0.8850), Precision (0.9470),
Recall (0.9430), and ROC–AUC (0.9870), followed by the BayesNet-SA model. Further-
more, the BayesNet-GA model supplying the lowest RMSE (0.334) and MAE (0.288),
and the highest Kappa (0.7500), Precision (0.8770), Recall (0.8750), and ROC–AUC (0.9480)
in validation performed superior to the BayesNet-SA, BayesNet-TS, and BayesNet mod-
els in mapping groundwater. The BayesNet-GA model improved the RMSE and MAE
accuracies by 4.6% and 7.5% compared to the second-best model (BayesNet-SA), and these
improvements with respect to the BayesNet-TS model were 21.8% and 17.5%, respectively.

Table 2. Parameters of the metaheuristic algorithms.

GA SA TS

Iterations = 200
Population Size = 50
Mutation Rate = 0.2

Iterations = 200
Subiterations = 10

Initial temperature = 10
Temperature reduction rate = 0.99

Iterations = 200
Tabu list = 5

Maximum number of parents = 2

Table 3. Results for metric indicators.

Index
BayesNet-GA BayesNet-SA BayesNet-TS BayesNet

Training Validation Training Validation Training Validation Training Validation

RMSE 0.2633 0.334 0.2844 0.3502 0.3415 0.427 0.3621 0.44
MAE 0.2178 0.288 0.2238 0.3112 0.297 0.349 0.3123 0.3721

Kappa 0.885 0.75 0.8168 0.7321 0.725 0.5 0.711 0.5
Precision 0.947 0.877 0.909 0.867 0.863 0.787 0.8321 0.7468

Recall 0.943 0.875 0.908 0.866 0.863 0.75 0.8321 0.7212
ROC-AUC 0.987 0.948 0.974 0.939 0.944 0.892 0.9212 0.8732

3.4. GPM Using Hybrid Models

After training (calibrating) the hybrid models, to generalize the hybrid models for the
entire study area, the entire area first was converted into points, and the values produced by
the hybrid models were prepared for the entire study area. We used ArcGIS 10.3 software
to prepare the GPM using hybrid models. The GPM was divided into five categories: very



Water 2021, 13, 658 14 of 20

low potential, low potential, medium potential, high potential, and very high potential,
using the natural breaks classification method. The GPM using four models is shown in
Figure 6. According to the BayesNet-GA model of GPM, the percentages for the very low,
low, medium, high, and very high potential categories were 2%, 24%, 37%, 27%, and 10%,
respectively. The GPM using the BayesNet-SA model showed that the percentages for the
very low, low, medium, high, and very high potential categories respectively were 18%,
21%, 24%, 24%, and 13%, respectively. In the BayesNet-TS model, the percentages for the
very low, low, medium, high, and very high potential categories were 15%, 24%, 25%, 24%,
and 12%, respectively. The GPM using the BayesNet model showed percentages for the
very low, low, medium, high, and very high potential categories of 20%, 21%, 25%, 20%,
and 14%, respectively.
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3.5. Validation of GPM

To evaluate the results using the ROC–AUC, 30% of the occurrence data and the data
of the absence were used for the individual springs. The results of the GPM evaluation with
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three hybrid models using the ROC–AUC are shown in Figure 7 and Table 4. According to
the results, the ROC–AUC’s values for the BayesNet-GA, BayesNet-SA, BayesNet-TS,
and BayesNet models were 0.830, 0.818, 0.810, and 0.792, respectively. The results showed
that the BayesNet-GA model was more accurate than the other three models.
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Table 4. Results of the ROC–AUC for the hybrid models.

Model ROC–AUC SE 95% CI

BayesNet-GA 0.830 0.0378 0.748 to 0.895
BayesNet-SA 0.818 0.0393 0.734 to 0.884
BayesNet-TS 0.810 0.0419 0.725 to 0.878

BayesNet 0.792 0.0428 0.705 to 0.863

The results of the three hybrid models indicated a superior accuracy in preparing
the GPM. Therefore, it can be concluded that metaheuristic algorithms (i.e., GA, SA, and TS)
were very useful in optimizing BayesNet model to prepare GPM. Among the metaheuris-
tic algorithms, the GA was more accurate than the other two algorithms. The use of
objective-function values to perform the optimization process without the need for ad-
ditional information such as function derivatives, the simplicity of the search process,
and the flexibility can be demonstrated as the best advantages of the GA application [71].
After the GA, the SA algorithm had the next-highest accuracy in optimizing the BayesNet
model. The advantage of the SA algorithm was very low memory consumption and the
ability to pass local optimization due to a randomized process [72]. However, this algo-
rithm was less accurate in optimizing the BayesNet model than the GA due to its high
dependence on the initial values of parameters and the lack of proper determination for
the initial temperature parameter [73]. The TS algorithm may stop at a local optimization.
Still, it is not clear whether the result obtained is a local optimization or a global opti-
mization, and the local optimization obtained may depend on the initial response [74].
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Therefore, the TS algorithm was less accurate in optimizing the BayesNet model than the
other two algorithms.

4. Conclusions

Groundwater plays a vital role in human activities in various sectors, such as agricul-
ture and industry. Therefore, determining the potential of groundwater using a machine-
learning model is an effective step in groundwater management. To achieve higher accuracy
in determining the potential of groundwater and solving the BayesNet model’s problem,
metaheuristic algorithms were used. Based on the results, metaheuristic algorithms im-
proved groundwater-potential mapping with the BayesNet model. Based on the results
of metric indices and the ROC–AUC values for the GPM, the GA had a higher accuracy
than the SA and TS algorithms. According to the RMSE and MAE criteria, the BayesNet-
GA model improved the GPM estimation accuracy by 4.6% and 7.5% (21.8% and 17.5%)
compared to the BayesNet-SA and BayesNet-TS models. The results of the CF method
showed that the criteria of distance to river and lithology had a higher weight in modeling
compared to the other criteria. Also, the criteria of altitude, lithology, and drainage density
were of higher importance in groundwater in study area. Prepared maps can help manage
and control groundwater resources in arid and semiarid regions.
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Appendix A

Table A1. Database of the conditioning factors.

Factors Source Scale Classification Method

Altitude Natural breaks
Slope angle Natural breaks
Slope aspect Manual

Plan curvature SRTM DEM 1:60,000 Manual
Profile curvature Natural breaks

TWI Natural breaks
Distance to river Manual
Drainage density Natural breaks

Lithology Geological Survey of Iran 1:100,000
Lithological units

Distance to fault Manual
Soil Khuzestan Natural Resources Organization 1:100,000 Soil units

Land use/cover Landsat-8 image 1:60,000 Land use/cover units
Rainfall The annual average of 22 meteorological stations in Khuzestan 1:60,000 Natural breaks
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