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Abstract: A distributed-framework basin modeling system (DFBMS) was developed to simulate the
runoff generation and movement on a basin scale. This study is part of a series of papers on DFBMS
that focuses on the hydraulic calculation methods in runoff concentration on underlying surfaces and
flow movement in river networks and lakes. This paper introduces the distributed-framework river
modeling system (DF-RMS) that is a professional modeling system for hydraulic modeling. The DF-
RMS contains different hydrological feature units (HFUs) to simulate the runoff movement through
a system of rivers, storage units, lakes, and hydraulic structures. The river network simulations were
categorized into different types, including one-dimensional river branch, dendritic river network,
loop river network, and intersecting river network. The DF-RMS was applied to the middle and
downstream portions of the Huai River Plain in China using different HFUs for river networks and
lakes. The simulation results showed great consistency with the observed data, which proves that
DF-RMS is a reliable system to simulate the flow movement in river networks and lakes.

Keywords: basin modeling; distributed-framework model; river network simulation; numerical
method; hydraulic calculation

1. Introduction

Floods are extreme phenomena that need to be accurately assessed for the protection
of mankind’s activities. Hence, mathematical tools focused on hydraulic simulations are
designated as the most holistic approach to describe/simulate flood events and determine
flood hazards [1]. Hydraulic modeling includes one-dimensional (1D), two-dimensional
(2D), or three-dimensional (3D) approaches, regarding the number of dimensions in which
the flow path is solved, as well as non-numerical models [2]. The current coupling of
hydraulic models with geographic information systems (GIS) has facilitated the develop-
ment and application of hydraulic models [3]. The use of remote sensing products, such as
digital elevation models (DEMs), in hydraulic modeling, is also a commonly used modern
approach [4]. In this study, we focused on the basic theories and concepts of hydraulic
modeling in the distributed-framework basin modeling system (DFBMS). The runoff con-
centration and routing model based on DEM is an essential component of the DFBMS [5,6],
which was introduced in the second paper in this series. In this paper, we introduce
another professional model system of DFBMS [7–9]: distributed-framework river model-
ing system (DF-RMS). The DF-RMS models the hydraulics of runoff movement through
rivers, lakes, reservoirs, and hydraulic engineering structures using a one-dimensional or
two-dimensional approach [10]. Based on the concept of a hydrological feature unit (HFU)
described in the first two series papers, the modeling/study area/region can involve a
combination of different HFUs for flow movement types such as plain river HFU, lakes and
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reservoir HFU, or hydraulic engineering structure HFUs. The DF-RMS contains different
types of river network components (Figure 1), such as a single river, dendritic river network,
island river network, and intersecting river network, that can be applied in complex river
network systems.
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The finite difference method (FDM) and finite volume method (FVM) are commonly
used to compute the flow movement in river networks and lakes in the previous study.
The FDM includes explicit and implicit methods such as the alternating direction implicit
(ADI) method [11,12] and the split-operator method [13]. Namiki [11] proposed a finite
difference time domain (FDTD) algorithm to eliminate the Courant condition restraint. The
algorithm is based on an alternating direction implicit method. The algorithm is stable both
analytically and numerically, even when the Courant condition is not satisfied. The newly
developed FDTD algorithm is more efficient than conventional FDTD schemes where the
minimum cell size in the computational domain is required to be much smaller than the
wavelength. Gustafsson [12] developed an alternating direction implicit difference scheme
for solving shallow water equations. Gustafsson’s scheme proved to be unconditionally
stable for solving the linearized flow equations. Different iteration methods were developed
for solving nonlinear algebraic equations including a quasi-Newton’s method. The different
iteration methods were tested numerically and compared for arbitrarily large time steps.
Carfora [13] developed a semi-implicit, semi-Lagrangian, mixed finite difference-finite
volume model for the spherical atmospheric shallow water equations. The main features
are the vectorial treatment of the momentum equation and the finite volume approach
for the continuity equation. Pressure and Coriolis terms in the momentum equation and
velocity in the continuity equation are treated semi-implicitly. A split-operator method
was introduced to preserve the symmetry of the numerical scheme.

The explicit methods are easy to adopt and code, while the computation time step
is limited to the Courant condition. A polarization effect [14,15] will occur when the
topography changes dramatically, and the Courant number will be larger than five for
the explicit method. For the river networks, the width is always far smaller than the
length. Therefore, a chasing method [14] could be used to solve the matrix for river
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network flow [16]. The split-operator method is suited to vast flow movement areas
such as lakes and simplified the procedures of lake flow movement simulation as an
explicit method [16]. In this study, the boundary-fitted coordinate method was adapted
to overcome the difficulties resulting from the natural stream’s complicated layout (or
stream orders) and the great disparity between length and width. Therefore, the irregular
domain on the physical plane could be transferred into a rectangular computation domain.
The splitting operator method and matrix chasing method was adapted to deal with the
two-dimensional river flow as the different one-dimensional problems which improved
the computation efficiency. The distributed-framework river modeling system was used to
simulate a real case to test the system’s computation efficiency and accuracy.

2. Materials and Methods
2.1. Plain River HFU

The runoff generated on the underlying surface was assigned differently to the river
network in the hill area and plain area based on the digital elevation model. For the river
network in the hill area, the runoff generated on the underlying surface was concentrated
at the outlet of the sub-watershed and assigned to be upstream of the river. In the plain
area, the land-use types for underlying surfaces included water, rain-fed land, construction
land, and paddy field. The runoff generation process of different land-use types was
calculated separately and lumped together for the sub-watershed based on the percentages
of different land-use areas. As introduced in the second paper in the series, the fastest
runoff concentration path (FRCP) with D8 procedure was promoted and adopted to deal
with depressed pits on surface DEM and runoff path generation. In the D8 procedure,
the runoff concentration path for a point was computed as the direction to the neighbor
(based on 8-connectivity) which had minimum elevation and which was lower than the
central point. The runoff on the underlying surface under grid processing was assigned to
the nearest river cross-section individually rather than concentrated to the sub-watershed
outlet or the upstream entrance. In the plain area, the runoff on each grid that was
assigned to the corresponding river’s cross-section could be determined based on the DEM
with the FRCP method. In the FRCP method, it was assumed that the runoff would be
concentrated along the path with the shortest time between the outlet and upstream cells in
the underlying surface. The detailed information about FRCP can be found in the second
paper in this series.

2.1.1. River Network Component Generalization

Different types of river network components were considered in the DF-RMS (Figure 1),
including single river reaches (the red solid line), dendritic river networks (connecting
through a junction, shown inside green dotted lines), loop river networks (such as flow
around an island, shown inside purple dotted lines), and intersecting river networks (inside
red dotted lines). Figure 1 shows a combination of different river network types modeled
by DF-RMS. The general nodes inside the river network were used to connect different
components through the adjacent cross-section. Similarly, the boundary nodes were set
to connect with boundary conditions such as a time series of water surface elevation
or discharge.

2.1.2. One-Dimensional River Flow Simulation

In this case, the hydrodynamic method was used to determine the water surface
elevation and flow distribution along cross-sections for river networks in plain areas.
One-dimensional Saint–Venant equations were used to describe the flow in the rivers:

B
∂z
∂t

+
∂Q
∂x

= q

∂Q
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+
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αQ2

A

)
+ gA

∂z
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+ gA
|Q|Q

K2 = qVx

(1)
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where q is the lateral inflow (m2/s) from the surrounding surfaces; Q is the flow rate of
the cross-section (m3/s); A is the flow area (m2); B is the flow width (m); z is the water
depth (m); Vx is the velocity of lateral flow along the main river, which was zero in this
study; K is the conveyance coefficient, which indicates the actual river convey capacity; α is
the momentum correction coefficient, which describes the velocity distribution along the

cross-section. The momentum correction coefficient can be calculated with α =
A
K2 ∑m

j=1

K2
j

Aj
when the friction slopes are the same for the main channel and overbank area; m is the
number of the main-channel and overbank-area regions; Aj and Kj are the flow area and
conveyance of the jth flow region; A and K are the sum of Aj and Kj, respectively. α = 1
when the flow is limited in the main channel.

To discretize Equation (1) with a four-point linear implicit difference method for the
ith and (i + 1)th cross-section of the river will yield Equation (2): −Qj+1

i + Qj+1
i+1 + Ciz

j+1
i + Ciz

j+1
i+1 = Di

EiQ
j+1
i + GiQ

j+1
i+1 − Fiz

j+1
i + Fiz

j+1
i+1 = Φi

(2)

Figure 2 shows the discretization of a one-dimensional river branch between the
starting and ending cross-sections. Equation (2) was discretized as shown in Equation (3)
and solved by the chasing method. The relationship between the flow rate and water depth
at the starting and ending cross-section could be derived by the chasing method. Therefore,
the flowrate could be expressed as the linear relationship between the water depth at the
starting and ending cross-sections.{

QL1 = α + βz(I) + γz(J)
QL2 = θ + δz(J) + µz(I)

(3)

where QL1 and z(I) are the flow rate and water depth, respectively, at the starting cross-
section; QL2 and z(J) are the flow rate and water depth, respectively, at the ending cross-
section. From the ending cross-section to the starting cross-section, the flow rate at every
cross-section could be expressed as a linear relationship between the water depth at the
current cross-section and the ending cross-section as shown as Equation (4):

Qi = αi + βizi + γiz(J) (4)

where i = L2 − 1, L2 − 2, L2 − 3, . . . , L1.
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Figure 2. River discretization between the starting and ending cross-sections.

Similarly, from the starting cross-section to the ending cross-section, the flow rate at
every cross-section could be expressed as the linear relationship between the water depth
at the current cross-section and the starting cross-section as shown in Equation (5):

Qi = θi + δizi + µiz(I) (5)

where i = L1 + 1, L1 + 2, L1 + 3, . . . , L2.
Once the water depth at the starting and ending cross-sections was given (boundary

condition), Equations (4) and (5) could be solved for the ith cross-section between the
starting and ending cross-sections:



Water 2021, 13, 649 5 of 21

{
Qi = αi + βizi + γiz(J)
Qi = θi + δizi + µiz(I)

(6)

The water depth at the ith cross-section could be determined by solving Equation (6),
yielding to:

zi =
θi − αi + µiz(I) − γiz(J)

δi − βi
(7)

The flow rate at the ith cross-section could be determined by substituting zi into
Equation (6).

The intersection of two rivers was regarded as a computational node and treated via
two different methods: (1) a node with a large surface area whose ponding volume could
be calculated based on the surface area and ponding depth; (2) a node with a small surface
area whose ponding volume could be neglected when the water depth changed in the node.
The water depth in the node and the first cross-section were assumed to be the same, and
the mass balance equation (Equation (8)) was used to calculate the water depth at the node:

∑ Q = A(z)
∂z
∂t

(8)

where A(z) is the ponding surface area in different water depths and ∑ Q is the inflow
and outflow of the node.

In one-dimensional river flow simulations, computing the water depth at the node is
the key step for the river network flow simulation. The flow rate and water depth could
be determined after the water depth at the node was calculated. The water depth at the
node was also a key parameter to couple with the runoff generation module. A mass
balance matrix could be constructed for all nodes in the river network and solved with the
boundary node’s input value.

2.1.3. Two-Dimensional River Flow Simulation

The key step to couple one-dimensional and two-dimensional river network simula-
tions is to find the water surface elevation at the node, which connects the one-dimensional
model to a two-dimensional model. Different from the one-dimensional model, the com-
putational nodes in a two-dimensional river network simulation were mainly selected
from the smooth and steady section of the river branch. In the one-dimensional river
network simulation, the nodes were primarily selected at the connection points of different
river branches. Equation (9) is the governing equation that describes two-dimensional
nonconservative flow motion in river networks:

∂z
∂t

+
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+
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= q
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+ g
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∂

∂x

(
Ex

∂v
∂x

)
+

∂

∂y

(
Ey

∂v
∂y

) (9)

where t, x, and y are time, x- and y-coordinates, respectively; h and z are the water
depth and water surface elevation in the cell, respectively; u and v are the velocity in
the x- and y-direction, respectively; n and f are the Manning’s coefficient and Coriolis
coefficient, respectively; Ex and Ey are the dispersion coefficient in the x- and y-direction,
respectively; and q is the source and sink term in the continuity equation that includes
rainfall contribution, inflow, and outflow.

The boundary-fitted orthogonal coordinate transformation method was used to simu-
late complex boundaries and set the cell sizes when gridding the simulation river networks.
The curvilinear grid system, with the computational boundary being coincident with the
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real river network boundary, was numerically obtained by solving the Poisson equation.
Grids in the boundary-fitted coordinate system were made up of two groups of lines,
ξ(x, y) = constant and η(x, y) = constant, respectively. Each point (x, y) in the physical
domain corresponded with (ξ, η) in the boundary-fitted coordinate system. The boundary
in the physical domain coincided with the isoline of ξ or η. Although the physical domain
may be irregularly shaped, the transformed computational domain was foursquare. To
simulate the irregular physical boundaries by the boundary-fitted coordinate transforma-
tion method, it was necessary to transform the basic differential equations and boundary
conditions from (x, y) space to a boundary-fitted coordinate system in (ξ, η) space. In
the DF-RMS, the grids were created by solving the Poisson equation, which means the
transformations meet the Poisson equation (Equation (10)):

∂2ξ

∂x2 +
∂2ξ

∂y2 = P(ξ, η)

∂2η

∂x2 +
∂2η

∂y2 = Q(ξ, η)

(10)

where P and Q are control functions that control the cell size and distribution.
With boundary-fitted orthogonal coordinate transformation, Equation (9) was trans-

formed to Equation (11) in the (ξ, η) space:

∂z
∂t

+
1
J
[
∂
(

gηu∗h
)
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+

∂
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gξ v∗h
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] = 0 (11)

∂u∗
∂t

+
u∗
gξ

∂u∗
∂ξ

+
v∗
gη

∂u∗
∂η

+
u∗v∗

J
∂gξ

∂η
− v2

∗
J

∂gη

∂ξ
+

gn2u∗
√

u2∗ + v2∗

h
4
3

− f v∗ +
g
gξ

∂z
∂ξ

=
1
gξ

∂

∂ξ

(
Eξ A

)
− 1

gη

∂

∂η

(
Eη B

) (12)

∂v∗
∂t

+
u∗
gξ

∂v∗
∂ξ

+
v∗
gη

∂v∗
∂η

+
u∗v∗

J
∂gη

∂ξ
− u2

∗
J

∂gξ

∂η
+

gn2v∗
√

u2∗ + v2∗

h
4
3

+ f u∗ +
g
gη

∂z
∂η

=
1
gη

∂

∂η

(
Eξ A

)
+

1
gξ

∂

∂ξ

(
Eη B

) (13)
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η ; J is the
cell area; J = gξ × gη , n and f are the Manning’s coefficient and Coriolis coefficient, respec-
tively; and Eξ and Eη are the dispersion coefficient in the ξ− and η-directions, respectively.

Figure 3 shows the boundary-fitted transformation and discretization of the physical
river simulation domain (Figure 3a) and the transformed numerical simulation domain
(Figure 3b). For convenience, the variables z, u, and v are hereafter used to stand for
water depth at the cell center, flow velocity in the x(ξ)-direction, and flow velocity in
the y(η)-direction in the (x, y) and (ξ, η) space. The variables of water depth and flow
velocity are numbered together in the computation code. The total variable number in the
simulation domain for water depth, flow velocity in the ξ-direction, and flow velocity in the
η-direction is (N + 1)×M, N ×M, and (N + 1)× (M + 1), respectively. For convenience,
three matrices were developed for variables z, u, and v, which are listed in the following text.
The variables with superscript “0” (z0, u0, v0) and “1” (z1, u1, v1) mean the parameter’s
value of the current time step (t) and next time step (t + ∆t), respectively.

Z2k+1 = [z2k+1,2, z2k+1,4, . . . , z2k+1,2l , . . . , z2k+1,2M]T k = 0, 1, 2, . . . , N
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U2k = [u2k,2, u2k,4, . . . , u2k,2l , . . . , u2k,2M]T k = 1, 2, . . . , N

V2k = [v2k+1,3, v2k+1,5, . . . , u2k,2l+1, . . . , u2k,2M−1]
T k = 0, 1, 2, . . . , N
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Two boundary conditions of riverbank could be selected in the model: (1) wall condi-

tion, which means v = 0 and
∂u
∂ξ

= 0 at the boundary; (2) inflow or outflow, which means v

= inflow or outflow velocity and
∂u
∂ξ

= 0 at the boundary. The water depth of upstream

and downstream are given as boundary conditions in the simulation.

(1) The discretization of continuity Equation (Equation (11))

To discretize the continuity equation (Equation (11)) at node (2k + 1, 2l) for
∂z
∂t

will yield:
∂z
∂t

=
z1

2k+1,2l − z0
2k+1,2l

∆t
For the nonlinear term, gηhu and gηhv, which yield:{

gηhu = gηh0u1 + gηu0z1 − gηu0z0

gξ hv = gξ h0v1 + gξv0z1 − gξ v0z0

In this case, the nonlinear term will be discretized as:

∂
(

gηhu
)

∂ξ
=

(gηh0u1 + gηu0z1 − gηu0z0)2k+2,2l − (gηh0u1 + gηu0z1 − gηu0z0)2k,2l

∆ξ

and

∂
(

gξ hv
)

∂η
=

(
gξ h0v1 + gξ v0z1 − gξv0z0)

2k+1,2l+1 −
(

gξ h0v1 + gξv0z1 − gξv0z0)
2k+1,2l−1

∆η

where z2k,2l is the water surface elevation of the node (2k, 2l), z2k,2l = (z2k−1,2l + z2k+1,2l)/2;
h2k,2l is the water depth of node (2k, 2l) and equal to the water surface elevation minus
cell bottom elevation; z2k+1,2l+1 is the water surface elevation of the node (2k + 1, 2l + 1),
z2k+1,2l+1 = (z2k+1,2l + z2k+1,2l+2)/2.

Finally, the continuity equation was discretized as in the following formation:
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α1z1
2k−1,2l + α2z1

2k+1,2l−2 + α3z1
2k+1,2l + α4z1

2k+1,2l+2 + α5z1
2k+3,2l + β1u1

2k,2l+

β2u1
2k+2,2l + γ1v1

2k+1,2l + γ2v1
2k+1,2l+1 = Φ

k = 1, 2, 3, . . . , N − 1; l = 1, 2, 3, . . . , M

(14)

In Equation (14):
α1 = −

(
gηu0)

2k,2l/2

α2 = −
(

gξ v0)
2k+1,2l−1/2

α3 =
J2k+1,2l

∆t
+ [
(

gηu0)
2k+2,2l −

(
gηu0)

2k,2l +
(

gξv0)
2k+1,2l+1 −

(
gξ v0)

2k+1,2l−1]/2

α4 =
(

gηv0)
2k+1,2l+1/2

α5 =
(

gηu0)
2k+2,2l/2

β1 = −
(

gηh0)
2k,2l

β2 =
(

gηh0)
2k+2,2l

γ1 = −
(

gξ h0)
2k+1,2l−1

γ2 =
(

gξ h0)
2k+1,2l+1

Φ =
J2k+,2lz0

2k+1,2l

∆t
+ [
(

gηu0z0)
2k+2,2l −

(
gηu0z0)

2k,2l +
(

gξ v0z0)
2k+1,2l+1−(

gξv0z0)
2k+1,2l−1]/2.

The matrix was built-up with the following format:

A1kZ2k−1 + B1kZ2k+1 + C1kZ2k+3 + D1kV2k+1 + E1kU2k + F1kU2k+2 = H1k

k = 1, 2, 3, . . . , N − 1
(15)

where the dimensions of matrices A1k, B1k, C1k, E1k, and F1k are M×M; the dimensions
of the matrix D1k are M× (M− 1); and the dimension of the matrix H1k is M.

(2) The discretization of momentum Equation (Equation (12))

To discretize the momentum equation in the ξ-direction (Equation (12)) at node (2k, 2l)
will yield:

∂u
∂t

=
u1

2k,2l − u0
2k,2l

∆t

To discretize the terms
u
gξ

∂u
∂ξ

and
v
gη

∂v
∂η

with the upwind scheme will yield:

u
gξ

∂u
∂ξ

=
u0

gξ

∂u
∂ξ

v
gη

∂v
∂η

=
v0

gη

∂v
∂η

The term
g
gξ

∂z
∂ξ

was discretized as follows:

g
gξ

∂z
∂ξ

=
g
gξ

z1
2k+1,2l − z1

2k−1,2l

∆ξ

The term
uv
J

∂gξ

∂η
− v2

J
∂gη

∂ξ
was discretized as follows:
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uv
J

∂gξ

∂η
− v2

J
∂gη

∂ξ
= (

u0

J
∂gξ

∂η

−v0

J
∂gη

∂ξ
)× (

v1
2k−1,2l−1 + v1

2k−1,2l+1 + v1
2k+1,2l−1 + v1

2k+1,2l+1

4
)

The term
gn2u

√
u2 + v2

h
4
3

was discretized as follows:

gn2u
√

u2 + v2

h
4
3

= g
n2
√
(u0)

2 + (v0)
2

(h0)
4/3 u1

Substituting all discretized terms into Equation (12) and building-up the linear matrix
for the node (2k, 2l) yields:

A2kZ2k−1 + B2kZ2k+1 + C2kU2k−2 + D2kU2k + E2kU2k+2 + F2kV2k−1 + G2kV2k+1 = H2k

k = 1, 2, 3, . . . , N
(16)

Similarly, we can discretize the momentum equation in the η-direction (Equation (21))
at node (2k + 1, 2l + 1) and build-up the linear matrix in the following format:

A3kZ2k+1 + B3kU2k + C3kU2k+2 + D3kV2k−1 + E3kV2k+1 + F3kV2k+3 = H3k

k = 1, 2, 3, . . . , N − 1
(17)

where the dimensions of matrices A2k, B2k, C2k, D2k, and E2k are M×M; the dimensions
of matrices F2k and G2k are M× (M− 1); the dimensions of matrices A3k, B3k, and C3k
are (M− 1)× M; the dimensions of matrices D3k, E3k, and F3k are (M− 1)× (M− 1);
and the dimensions of matrices H2k and H3k are M and M− 1, respectively.

(3) Solving the continuity and momentum matrix with boundary condition

The u, v, and z variables could be solved by combining Equations (15)–(17) and the
known boundary variables with the chasing method.

For the upstream boundary condition, we have z1 = Z1 (t) and v1 = 0 to plot into
Equation (16), which is in the following format:

A21Z1 + B21Z3 + D21U2 + E21U4 + G21V3 = H21

We can rearrange the equation to develop the relationship between these unknown
variables:

U2 = (UZ1·Z3) + (UU1·U4) + (UV1·V3) + UF1 (18)

We plotted two upstream boundary condition variables and Equation (18) into Equa-
tion (17) to find V2k+1:

V2k+1 = (VZk·Z2k+1) + (VUk·U2k+2) + (VVk·V2k+3) + VFk

k = 1, 2, 3, . . . , N − 1
(19)

We plotted upstream boundary condition z1 = Z1 (t), substituting Equations (18)
and (19) into Equation (15) to find Z2k+1:

Z2k+1 = (ZZk·Z2k+3) + (ZUk·U2k+2) + (ZVk·V2k+3) + ZFk

k = 1, 2, 3, . . . , N − 1
(20)

We substituted Equations (18)–(20) into Equation (16) to find U2k+2:
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U2k+2 = (UZk·Z2k+3) + (UUk·U2k+4) + (UVk·V2k+3) + UFk

k = 1, 2, 3, . . . , N − 1
(21)

For k = N − 1, U2N was determined by the following equation:

U2N = (UZN ·Z2N+1) + (UUN ·U2N+2) + (UVN ·V2N+1) + UFN

where the dimensions of matrices UZk, UUk, ZZk, and ZUk are M×M; the dimensions
of matrices UVk and ZVk are M× (M− 1); the dimensions of matrices VZk and VUk are
(M− 1) × M; the dimensions of matrix VVk are (M− 1) × (M− 1); the dimension of
matrices UFk and ZFk is M; and the dimension of the matrix VFk is M− 1.

The downstream boundary conditions are also given as z2N+1 = Z2N+1 (t) and
v2N+1 = 0. It was assumed that U2N+2 = U2N , so we can substitute these known
variables into Equation (21) to find the variables Z2N−1, V2N−1, U2N−2, . . . , U2 for the
current time step. Three properties were found in the matrix buildup and chasing method
procedure: (1) most of the matrix was composed of three diagonal matrices (A1k, B1k, C1k,
D1k, E1k, F1k, A2k, B2k, C2k, D2k, E2k, F2k, G2k, A3k, B3k, C3k, D3k, E3k, and F3k) and some
other diagonal matrices, which reduces the computational load and cost to a considerable
extent; (2) the ratio of river width to river length is tiny for most of the river network
(M� N), which means the matrix operation was not very complex; (3) this method was
mostly focused on the matrix operation, which is similar to the implicit method, and the
computational time step could be huge with a Courant number ~100 and different to the
explicit method.

2.1.4. Flow Simulation in River Intersections

Most previous studies treated the main river and tributary separately [17,18], which
only transfers the data between the main river and tributary at the river intersection,
rather than directly dealing with the river intersection in the algorithm. The alternating
direction implicit ADI method [12,19] was used to solve the shallow water equation so
that the polarization effect [14,15] would occur in the intersection part when the Courant
number was larger than five for the explicit method. The matrix for river intersection
was built-up to find the variables with the chasing method. Details of the matrix buildup
process can be found in the Supplementary Materials published with the paper about flow
simulation in river intersections; the process is similar to the two-dimensional river flow
simulation matrix buildup process. As shown in Figure 4, the water surface elevation and
flow velocity in the ξ-direction is Na + 1 and the flow velocity in the η-direction is Nb. The
computational node for the tributary in the first row was the same as the part of the nodes
in the main river (the dotted circle in Figure 4), which coupled the matrix of the tributary
with that of the main river. Different to the section between node k = 1 and k = (LI − 1)
of the main river, the connection between k = (LI − 1) and k = (LI − 2) + Mb of the main
river and tributary was discretized in the following format:

A1kZ2k−1 + B1kZ2k+1 + C1kZ2k+3 + D1kV2k+1 + E1kU2k + F1kU2k+2

+P1kUb
1 + Q1kZb

2 + R1kVb
2 = H1k

k = LI − 2, LI − 1, . . . , LI + Mb− 2

(22)

A2kZ2k−1 + B2kZ2k+1 + C2kU2k−2 + D2kU2k + E2kU2k+2 + F2kV2k−1

+G2kV2k+1 + P2kUb
1 + Q2kZb

2 + R2kVb
2 = H2k

k = LI − 1, . . . , LI + Mb− 2

(23)

A3kZ2k+1 + B3kU2k + C3kU2k+2 + D3kV2k−1 + E3kV2k+1 + F3kV2k+3

+P3kUb
1 + Q3kZb

2 + R3kVb
2 = H3k

k = LI − 2, LI − 1, . . . , LI + Mb− 2

(24)
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where the dimensions of matrices P1k, Q1k, P2k, and Q2k are M1 ×M2; the dimensions
of matrices R1k and R2k are Ma× (Mb− 1); the dimensions of matrices P3k and Q3k are
(Ma− 1)×Mb; the dimensions of matrix R3k are (Ma− 1)× (Mb− 1); the dimension of
the matrices UFk and ZFk is M; and the dimension of the matrix VFk is Mb− 1.
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2.1.5. Flow Simulation in a Loop River

Figure 5 shows the sketch of a loop river that includes the main river and a tribu-
tary. The start and end of the tributary coincide with two parts of the main river. More
generally, it deals with the flow around an island: upstream flow split and downstream
flow combination. The area of overlap was used to couple the main river and tributary
when discretizing the loop river. Three steps were adopted when discretizing the whole
loop river to make sure the system was orthogonal. (1) The boundary-fitted coordinate
system method was used to discretize the entire loop river system; (2) we discretized only
the main river and considered the overlap area as the boundary; (3) we discretized only
the tributary and considered the overlap area as the boundary. Steps (2) and (3) may be
repeated several times to make sure the whole system is orthogonal.
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The key to build up the matrix is to find the linear relationship between unknown
variables (water surface elevation and flow velocity) at different nodes and given variables
at the upstream and downstream boundaries. Details of the matrix buildup process can
be found in the Supplementary Materials (flow simulation in a loop river); the process is
similar to the two-dimensional river flow simulation matrix buildup process.

2.1.6. Flow Simulation for a River Network

Taking the combination of different kinds of river network as an example (Figure 1),
it is necessary to determine the water surface elevation at three boundary nodes (1, 2,
and 3) as well as the relationship between the flow of cross-sections (1, 2, and 3) and the
water surface elevation at boundary nodes to build the matrix. The flow and water surface
elevation at sub-cross-sections of river sections 1–3 and 2–3 can be obtained by solving
the matrix. However, the water surface elevation at node 3 and flow of cross-section (3) is
often unknown in reality. Therefore, it is necessary to obtain the water surface elevation
of node 3 first. Similarly, it is necessary to find the relationship between the water surface
elevation at the boundary node (node 3 and 4) and the flow at the main cross-sections (4)
and (5) to build the matrix for all variables of the loop river network. For the intersecting
river network component, the relationship of the water surface elevation at boundary
nodes (4, 5, 6, and 7) and the flow of main cross-sections (6, 7, 8, and 9) were necessary
to build the matrix. Overall, the matrix of boundary and general nodes was first built to
calculate the water surface elevation for every node in the river network. All these nodes
can be named water surface elevation nodes. Then the flow and water surface elevation of
sub-cross-sections can be achieved through the known node value.

2.2. Lakes and Reservoir’s HFU

Lakes, reservoirs, and floodplains are considered to have the same kind of runoff
storage components that provide the storage volume for the whole system. The flow
movement in the storage component was mainly driven by the factors of inflow, outflow,
wind, etc. Zero-dimensional and two-dimensional models were considered to simulate the
flow movement in lake and reservoir HFUs. In DF-RMS, zero-dimensional was adopted
to simulate the storage capacity of lakes, and a two-dimensional model was adopted to
simulate the flow movement in lakes.

2.2.1. Zero-Dimensional Flow Simulation in Lakes

A zero-dimensional model was used to simulate the storage capacity of lakes rather
than the flow movement. In the zero-dimensional model, the water surface elevation and
storage area were used to solve the mass balance equation (Equation (25)):

∑ Q = A(Z)
∂Z
∂t

(25)

where A(Z) is the storage area at different water surface elevations; ∑ Q is the sum of
inflow, outflow, and runoff generation.

Equation (25) was discretized in the following format to find the water surface elevation:

∑ Q = A(Z0)
Z1 − Z0

∆t
(26)

where ∆t is the computational time step and Z1 and Z0 are the water surface elevation of
the next time level and the current time level, respectively.

2.2.2. Two-Dimensional Flow Simulation in Lakes

A shallow water equation (SWE) was used to simulate the flow movement driven by
the wind, inflow, and outflow for lakes, flood plain, and reservoirs:
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

∂z
∂t

+
∂hu
∂x

+
∂hv
∂y

= q

∂hu
∂t

+ u
∂hu
∂x

+ v
∂hu
∂y

+ gh
∂z
∂x

= −gu

√
u2 + v2

c2 + f hv +
ρacw

√
w2

x + w2
y

ρ
wx

∂hv
∂t

+ u
∂hv
∂x

+ v
∂hv
∂y

+ gh
∂z
∂y

= −gv

√
u2 + v2

c2 − f hu +
ρacw

√
w2

x + w2
y

ρ
wy

(27)

where t, x, and y are the time, x-coordinate, and y-coordinate, respectively; h and z are the
water depth and water surface elevation in the cell, respectively; u and v are the velocities
in x- and y-direction, respectively; c and f are the Chezy coefficient and Coriolis coefficient,
respectively; τwx and τwy are the wind stress in the x-direction and y-direction, respectively;
ρ and ρa are the water density and air density, respectively; cw is the wind drag coefficient;
wx and wy are the wind velocity in x-direction and y-direction, respectively; and q is the
source and sink term in the continuity equation that includes rainfall contribution, inflow,
and outflow.

The split-operator approach is a popular algorithm in computational fluid dynamics:
operator-splitting techniques have been widely utilized in atmospheric modeling stud-
ies [20] to decouple reactions from convection and diffusion or convection from diffusion.
The split-operator method was also used to decompose the momentum equation of the
incompressible Navier–Stokes equations to solve the linked pressure–velocity problem [21].

The split-operator approach was used to split the governing equation into two steps:

(1) The first step:



∂z
∂t

= 0

∂hu
∂t

+ u
∂hu
∂x

+ v
∂hu
∂y

= 0

∂hv
∂t

+ u
∂hv
∂x

+ v
∂hv
∂y

= 0

(28)

(2) The second step:



∂z
∂t

+
∂hu
∂x

+
∂hv
∂y

= q

∂hu
∂t

+ gh
∂z
∂x

= −gu

√
u2 + v2

c2 + f hv +
ρacw

√
w2

x + w2
y

ρ
wx

∂hv
∂t

+ gh
∂z
∂y

= −gv

√
u2 + v2

c2 − f hu +
ρacw

√
w2

x + w2
y

ρ
wy

(29)

The finite volume method was used to solve the equations under an uneven rectangu-
lar grid cell coordinate. As shown in Figure 6, the flux between cell i and cell j could be
calculated using the following discretized equation:

qx − q0
x

∆t
+ gh0 zj − zi

∆x
+ g

|V|
c2(h0)

2 qx − f qy −
1
ρ

τwx (30)

where qx and q0
x are the flow discharge per meter of the next time level and the current time

level in the x-direction, respectively; h0, zi and zj are the water depth and water surface

elevation of cell i and j; |V| is a variable related to qx and qy, |V| =
√

q2
x + q2

y; τwx is the
wind stress in the x-direction; and qy is the flow discharge per meter in the y-direction.
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Finally, the equation was simplified and reorganized in the following format to calcu-
late the unit width flow from cell i to cell j:

qx = δ0(zi − zj) + β0 (31)

The flow in x-direction and y-direction can be calculated using the following equations:

Qx = δx(zi − zj) + βx (32)

Qy = δy(zk − zj) + β0 (33)

The continuity equation can be discretized in the following format:

zj − z0
j

∆t
+

∆qx

∆x
+

∆qy

∆y
= q (34)

which is simplified to the following format:

∑ Qi = A
zj − z0

j

∆t
(35)

where A is the area of cell j, and ∑ Qi is the sum of inflow to cell j.

2.3. Hydraulic Engineering Structure’s HFU

The hydraulic structures in DF-RMS such as weirs that belong to the runoff concen-
tration unit. The weirs are important hydraulic structures used to control water resource
distribution, urban flood inundation relief, and water landscape maintenance. The flow
through a weir could be calculated based on the weir equation. Two types of flow were
simulated: free outfall and submerged outfall weirs. The free outfall can be calculated
using the following equation:

Q f = mB
√

2gh1.5
u (36)

where m is the free outfall coefficient, which is between 0.325 and 0.385; B (m) is the weir
width; hu (m) is the water height over the crest of the upstream node for the weir.

The submerged weir can be calculated using the following equation:

Qs = ϕmBhd

√
2g(Zu − Zd) (37)

where ϕm is the submerged weir coefficient, which is between 1.00 and 1.18; hd (m) is the
water height of the downstream node for the weir; Zu (m) and Zd (m) are the water surface
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elevation of the upstream and downstream node for the weir, respectively; g (m2/s) is the
gravity acceleration coefficient, which equals 9.81.

Equations (36) and (37) can be discretized into the following format:

Q f = δ f Zu + β f and Qs = δs(Zu − Zd) (38)

where Q f (m3/s) and Qs (m3/s) are the flow through the weir at the free outfall and
submerge conditions, respectively; δ f , β f , and δs are discretization coefficients that can be
solved with the known boundary condition by the iteration method.

2.4. Case Test of DF-RMS
2.4.1. Basic Information on the Study Area

The study area was located in the middle and downstream of the Huai River Plain,
which covers the rivers and lakes from Bengbu Gate in Bengbu City to the main outlet
of Hongze Lake (Sanhezha Gate) (Figure 7a). Along the mainstream of Huai River, there
are eight flood plain areas (Figure 7b). There are more than 380 polder areas along the
flood detention polder around Hongze Lake. Hongze Lake contains 158,000 square km of
incoming water from the upper and middle reaches of the Huai River. It is one of the four
largest freshwater lakes in China, which is a comprehensive plain lake integrating flood
control, irrigation, shipping, water supply, power generation, and aquaculture. During the
normal water period, the water flows mainly in rivers and lakes. During the flood period,
as the water level rises when the upstream flow exceeds the discharge capacity of the river
channel, measures such as flood diversion and discharge are used to make the water flow
through gates and weirs to the flood plain. Therefore, we not only need to simulate the
flood movement in the river but also the flood movement in the basin to design a flood
control plan, optimize the utilization of flood control structures, and reduce flood risk.
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The main inflow boundary sites of the study area include Bengbu station on the
mainstream of Huai River, Fengshan station on Huaihongxin River, Jinsuo station on Anhe
River, Sihong station on Suihe River, and Tuanjie gate on Xinbianhe River (Figure 7b). The
main outflow boundary sites include Sanhe Gate, Erhe Gate, and Gaoliangjian hydropower
station. These inflow and outflow stations with complete hydrological data provide
reliable boundary conditions for the hydrodynamic simulation model. The interaction
flow boundary conditions among different river basins were simulated by a hydrological
model based on rainfall data. For the hydrologic model, it was simulated through hilly
sub-watershed HFUs and hilly river HFUs that belong to the second paper in this series.
In this case study, the hydrologic simulation was not introduced. The hydrodynamic
model includes a zero-dimensional simulation of the polder area, a one-dimensional
simulation of the river, a two-dimensional simulation of the Hongze Lake and flood
retention areas as well as the coupling for all simulation components. The movement
of floods in the basin was simulated based on proper basin generalization, appropriate
numerical methods adopted for specific water flow conditions, and suitable coupling
among different simulation modules.

2.4.2. Model Conceptualization for the Study Area

The study area was conceptualized into a specific model according to the data of the
basin. Twenty-seven river channels were generalized along Hongze Lake, which were
simulated using the one-dimensional component described in Section 2.1.2 (Figure 7b). The
cross-section data of Huaihe River’s mainstream were available, simulated using a one-
dimensional algorithm. Nyushan Lake, Qili Lake, Douhu Lake, and 380 polder areas along
Hongze Lake were important to the storage volume and water level changes; therefore, a
zero-dimensional component described in Section 2.2.1 was used to simulate these polders.
There are eight large flood retention areas along the Huaihe River’s mainstream: Fangqiu,
Linbei, Huayuan, Xiangfu, Pancunwa, Yaotan, Hatan, and Chenggenwei. These eight flood
retention areas were considered as two-dimensional simulation areas (described in Section
2.2.2) so that using these areas to control flooding is accurately simulated/mimicked.
The cell size used for the two-dimensional simulation was 500 × 500 m. Fangqiu, Linbei,
Huayuan, Xiangfu, Pancunwa, Yaotan, Hatan, and Chenggenwei were divided into 326, 111,
920, 184, 570, 63, 44, and 52 cells, respectively (Table 1). Each two-dimensional simulation
zone was connected to Huai River through an artificial wide weir-type connection that
determined the flow interaction. Hongze Lake is a typical two-dimensional area. The lake
is wide, with a 1500 km2 storage area. The effects of wind stress should be considered to
establish the full two-dimensional simulation model. The Hongze unit was divided into a
total of 6174 computing cells with a cell size of 500 m.

Table 1. Model discretization of the simulation domain.

Name X-Resolution (m) Y-Resolution (m) Number of
Simulation Node

Fangqiu Lake 500 500 326
Linbei section 500 500 111
Huayuan Lake 500 500 920
Xiangfu section 500 500 184

Pancunwa 500 500 570
Yantan 500 500 63
Hatan 500 500 44

Chenggenwei 500 500 52
Hongze Lake 500 500 6174

Total - - 8444

Overall, the model included 582 cross-sections, 428 connections, and 9026 flood
computation nodes that were developed for the study area. In this model, the simulation
domain was generalized into 384 zero-dimensional simulation nodes, 582 one-dimensional
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simulation nodes, and 8444 two-dimensional simulation nodes. The simulation domain
boundary conditions were Bengbu station, Fengshan station, Jinsuo station, Sihong, and
Tuanjianzha with observed flow data as the boundary conditions. The rainfall–runoff
process in the simulation domain was simulated by the hydrological model and added to
the corresponding unit. The observed flow data of Erhe Gate and Gaoliangjian hydropower
station, such as the outlet at Hongze Lake, were adopted as the outflow boundary condition.
The observed water level data of the Sanhe gate were used as the boundary condition.

3. Results and Discussion

The model was calibrated with the observed hydrological data of the year 1982 and
validated with the observed hydrological data of the year 1991. The roughness of the
Huaihe River was selected: 0.0185–0.0235 for the main channel and 0.035–0.040 for the
flood plain. The roughness of the river channel around Hongze Lake was 0.025–0.035, and
the roughness of the lake area was 0.015–0.065. The validation and calibration results are
shown in Table 2.

Table 2. Calibration and validation results of the DF-RMS model.

Location Station Name Zpsi (m) Zpob (m) R2 ∆Zp (m)

Input boundary
Bengbu 21.49 1 (22.11) 2 21.47 (22.2) 0.998 (0.997) 0.02 (−0.09)
Sihong 16.05 (15.19) 16.05 (15.11) −(−) 0 (0.08)

Tuanjiezha 18.79 (16.57) 18.75 (16.67) 0.955 (−) 0.04 (−0.10)

Internal part

Wujiadu 21.13 (21.75) 21.12 (21.81) 0.996 (0.997) 0.01 (−0.06)
Mohekou 20.46 (21.08) 20.42 (−) 0.996 (−) 0.04 (−)

Linhuaiguan 20.05 (20.68) 20.01 (20.64) 0.995 (0.995) 0.04 (0.04)
Wuhe 18.29 (18.93) 18.31 (18.88) 0.994 (0.994) −0.02 (0.05)

Fushan 17.4 (18.07) 17.39 (17.98) 0.993 (0.995) 0.01 (0.09)
Xiaoliuxiang 17.13 (17.79) 17.13 (17.74) 0.994 (0.995) 0 (0.05)
Huayuanzui 15.75 (16.60) 15.73 (16.64) 0.991 (0.987) 0.02 (−0.04)

Xuyi 14.58 (15.38) 14.63 (15.38) 0.977 (0.99) −0.05 (0)
Xinhetou 13.36 (14.42) 13.74 (14.42) 0.67 (0.81) −0.38 (0)
Laozishan 13.31 (14.18) 13.29 (14.23) 0.915 (0.981) 0.02 (−0.05)
Linhuaitou 12.91 (14.08) 12.93 (14.04) 0.935 (0.984) −0.02 (0.04)
Shangzui 12.88 (14.05) 12.74 (13.95) 0.906 (0.947) 0.14 (0.10)

Output boundary Gaoliangjian 12.88 (14.06) 12.77 (14.02) 0.944 (0.981) 0.11 (0.04)
1 The calibration results for the year 1982; 2 the validation results for the year 1991. Zpsi (m) is the simulated peak
water elevation, Zpob (m) is the observed peak water elevation, R2 is the determination coefficient of simulated and
observed results, ∆Zp (m) is the difference between the simulated and observed water elevation, ∆Zp = Zpsi − Zpob.

Figure 8a,b gives the calibration results of the case for the year 1982, and Figure 8c,d
gives the validation results of the case for the year 1991. The solid line in the figure is
the simulated result, and the dotted line is the actual observed data. Table 2 shows the
determination coefficients, which reflect the agreement between the observed data and
simulated results of each station.

Table 2 shows that the validation results for 1991 match the observed data well. The
difference between the simulated and observed peak water surface elevation for all stations
was within 10 cm, and the determination coefficient was above 0.94 (except for 0.81 for
Xinhetou). The validation results for the year 1982 showed that the observed and simulated
peak water surface elevation of all stations were in good agreement, with a determination
coefficient above 0.915 (except 0.67 and 0.906 for Xinhetou and Shangzui stations).

The difference in observed and simulated water surface elevations with calibrated
and validated model for Xinhetou was larger than for the other stations because Xinhetou
is directly linked downstream of Hongze Lake. A two-dimensional model with a cell size
of 500 m was used to simulate Hongze Lake, which is a very shallow lake. The cell size
was relatively large, and the lake is shallow in the inlet, so it was difficult to simulate the
flow of the Xiaohetou inlet. The two-dimensional simulation can reflect the actual inlet
flow when the lake water is deep. In 1991, the water surface elevation for the lake was
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deep, and the simulation results of the water surface elevation at the Xinhetou were better
than the results for the year 1982 (Figure 9).
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The results for the year 1982 and 1991 show that the calibrated and validated model
can simulate the flow movement in the river basin and correctly reflect the rainfall-runoff
process of the basin. The flow field distribution of Hongze Lake on 03/01/1991 is also
shown in Figure 10. The two large inflows from the Huai River and Huaihongxin River led
to large flow momentum. The main outflow at Sanhe Gate and Gaoliangjian hydropower
station show large velocities. Overall, it predicted the flow field distribution under actual
conditions reasonably well.
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4. Summary and Conclusions

The numerical procedures that DF-RMS uses to model the hydraulic processes in
runoff concentration, flow movement in river networks, and lakes are discussed in detail
in this paper. The river networks were generalized into different types: one-dimensional
river branches, dendritic river networks, loop river networks, and intersecting river net-
works. The matrix used for flow movement simulation for different kinds of river network
components was derived step by step. The matrix used to simulate flow in river network
intersections was also obtained with the consideration of two-dimensional flow in river
network intersections. The flow in lakes was treated as either a zero-dimensional ponding
node or two-dimensional flow movement simulated by the operator-split algorithm. One
testing case with different kinds of river networks and lakes was simulated with DF-RMS
and calibrated, validated by observed data. The simulation results of DF-RMS showed
great consistency with the observed data, which proved that DF-RMS is a reliable program
to simulate the flow movement in complex river networks and lakes. This is a direct contri-
bution to modeling hydrologic/hydraulic response from a non-homogenous catchment. It
could be applied to flood control planning scheme simulation and design.

Supplementary Materials: The detailed process of river intersection flow simulation matrix buildup,
loop river flow simulation matrix buildup, and part of the hydrologic simulation process about the
hydraulic modeling system in DFBMS are available online at https://www.mdpi.com/2073-4441/13
/5/649/s1.
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