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Abstract: Water distribution networks (WDNs) are critical infrastructure for the welfare of society.
Due to their spatial extent and difficulties in deployment of security measures, they are vulnerable to
threat scenarios that include the rising concern of cyber-physical attacks. To protect WDNs against
different kinds of water contamination, it is customary to deploy water quality (WQ) monitoring
sensors. Cyber-attacks on the monitoring system that employs WQ sensors combined with deliberate
contamination events via backflow attacks can lead to severe disruptions to water delivery or even
potentially fatal consequences for consumers. As such, the water sector is in immediate need of
tools and methodologies that can support cyber-physical quality attack simulation and vulnerability
assessment of the WQ monitoring system under such attacks. In this study we demonstrate a novel
methodology to assess the resilience of placement schemes generated with the Threat Ensemble
Vulnerability Assessment and Sensor Placement Optimization Tool (TEVA-SPOT) and evaluated
under cyber-physical attacks simulated using the stress-testing platform RISKNOUGHT, using
multidimensional metrics and resilience profile graphs. The results of this study show that some
sensor designs are inherently more resilient than others, and this trait can be exploited in risk
management practices.

Keywords: water distribution systems; water quality sensor; resilience; cyber-physical attacks; cyber-
physical systems; SCADA; sensor designs; contaminant warning system; stress-testing; risk management

1. Introduction

Water distribution networks (WDNs) are spatially large and complex systems supply-
ing drinking water to consumers by satisfying multiple objectives, such as maintaining ad-
equate hydraulic pressure, storing water for firefighting, maintaining disinfectant residuals
to limit microbial regrowth, and minimizing potential harmful concentrations of substances
in the water [1]. Because the requirement of clean drinking water is of utmost importance
to public health and societal welfare, WDNs are considered to be critical infrastructure [2].
Indeed, various incidents showcase that severe public hazard, including serious illnesses
and deaths and other sociopolitical impacts (e.g., great economic loss), can be the outcome
of contamination events in WDNs. Notable incidents include the 1993 cryptosporidium
outbreak in Milwaukee [3–5], the 2014 Elk River 4-methylcyclohexanemethanol (MCHM)
spill in West Virginia [6], the 2016 Beijing misconnection of reclaimed and drinking water
pipes, the 2016 lead contamination of Hong Kong’s water system [7], the 2019 Askøy water
supply system campylobacter outbreak, and the 2019 E. coli outbreak in Long Beach [8].

Due to the distributed size of WDNs even for smaller settlements, and the practical
difficulty of protecting the numerous potential contamination entry points, the policy dis-
course is concerned with the safety of such systems under various threats. These can stem
from deliberate, negligent, or accidental actions [9–11], including terrorism [10,12–15]. Of
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growing interest is the special case of cyber-physical threats in the form of cyber-physical
attacks (e.g., [16–21]) where, for example, a deliberate contamination event (a physical attack)
is combined with a cyber-attack on the water quality (WQ) monitoring system of the WDN,
usually a sub-system of the main SCADA (supervisory control and data acquisition) system.

SCADA systems typically employ central hosts, i.e., a server with a human–machine
interface (HMI) and a historian (database computer), and field devices, i.e., remote terminal
units (RTUs)/programmable logic controllers (PLCs), actuators, and sensors, connected
via communication protocols. These components form the cyber layer of a cyber-physical
system (CPS) that interacts in real time with the physical processes with feedback loops [22].
Practically all modern WDNs are CPSs, employing a wide variety of sensors for monitoring
the system. Among other properties of the hydraulic processes, e.g., tank level, delivery
pressure, flow rate, etc., sensors can be used to monitor water quality in a WDN. The water
quality sensors form a subset of the cyber layer responsible for contamination monitoring,
which is part of a contaminant warning system (CWS). The information acquired by WQ
sensors is subsequently used for mitigation measures such as preventing contamination
spread, issuing alarms to the public, and flushing the contaminant out of the network [23].

Naturally, there is a variety of technical challenges to be addressed with every design
of CWS [24], notably regarding two main aspects: (a) optimal placement of a limited
number of sensors, as it is cost-prohibitive to deploy them (ideally) at all possible locations
(nodes) in the network [25], and (b) the effectiveness of continuous real-time online water
quality sensors in detecting a contamination event by using surrogate measurements of
physiochemical parameters of water to identify anomalies and thus report a contamina-
tion [26,27]. The latter is a chemical engineering issue, so researchers in the water sector
analyze the sensor design from a civil engineering perspective, aiming at the best (i.e., per-
formance versus cost) topological placement in the WDN, as it is common in the literature
to assume “perfect” sensors [24], i.e., sensors with 100% reliability in measuring the WQ
parameters at the monitored node (there are studies that also consider non-perfect sensors,
e.g., [28]). The optimization of sensor placement is a well-researched topic with numerous
publications on optimization strategies, algorithms, and objective functions (e.g., [28–37]).

However, the resilience of such sensor designs under failure regarding the CWS
goal to maintain a level of protection for the WDN is still an under-investigated topic, as
recently reported by [31], despite some efforts in previous studies and identifying that
structural and communication failures as well as measurement errors are common in water
quality sensors (e.g., [38,39]). Moreover, to the authors’ knowledge, a holistic view of
WDNs as cyber-physical systems accounting also for failures (e.g., due to cyber-attacks)
in the cyber domain (i.e., control, communication, and monitoring) is still in its infancy.
Only recently have questions been raised regarding the cyber-physical resilience aspect
of such systems (e.g., [40,41]). In addition, software platforms able to stress-test WDN
CPSs under cyber-physical attacks have only recently been developed. Such tools include
epanetCPA [17] and RISKNOUGHT [19]. WQ cyber-physical simulation, i.e., simulating
the complete feedback loops between a CWS, other hydraulic controls of the SCADA, and
the real physical hydraulic and contaminant fate processes were made possible for the first
time with the recent expansion of RISKNOUGHT [42].

In this work we present a methodology for the resilience assessment of sensor designs
under cyber-physical attacks. The attacks comprise the deliberate action of backflow
injection of a contaminant into the WDN (a physical attack by overcoming the network’s
pressure at an outlet to inject a contaminant) and combinations with cyber-attacks to hinder
the CWS’s ability to detect and mitigate the contamination. The assessment is performed
using an operational resilience definition by [43] and the RISKNOUGHT stress-testing
platform to simulate the scenarios.
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2. Sensor Design Resilience Assessment Methodology and Cyber-Physical Tools
2.1. Resilience Assessment

The concept of resilience originally stems from an ecological system’s ability to persist
stress [44] and has since been applied in engineering systems with different interpretations
in literature, mainly revolving around “continuity and efficiency of system function dur-
ing and after failure” [45] with various definitions, e.g., [46–48]. We use an operational
definition where resilience is defined as “the degree to which an urban water system
continues to perform under progressively increasing disturbance”, whereas robustness is
best defined as “the level of pressure that the system can sustain without failing (or without
performance loss)” [43]. With this definition, special types of curves, termed “resilience
profile graphs,” communicate the performance of the system to meet its objectives on the
y-axis as measured by a metric of reliability, whereas on the x-axis ticks lie scenarios of
increasing disturbance and is by definition an ordinal scale. Note that these disturbances
extend from stresses within design standards to stresses well beyond design standards.
Resilience for a given design is the area under the curve i.e., the integral of reliability over
the ordinal scale of scenarios. To scale resilience from 0 to 1, we compare this area to the
area of a totally reliable and robust design for all scenarios [43].

To adapt the methodology for the CPS system’s CWS performance under cyber-
physical attacks, we use a resilience profile graph as shown in Figure 1. The figure demon-
strates the performance of an ideal, perfectly robust, reliable, and resilient CWS design,
as well as two others with different properties. In this example, CWS design 1 is more
resilient than CWS design 2, as communicated by the respective areas under their reliability
curves. CWS design 1 retains higher reliability with the progressive increase in stress from
the scenarios, whereas CWS design 2 rapidly loses performance as stress increases. The
scenarios represent combinations of cyber-physical attacks that hinder the CWS’s ability to
detect contamination while the WDN water is deemed unsafe for consumption. The CWS
designs refer to different topologies of placed sensors (different total number and locations
monitored) and sets of controls for response and mitigation measures. The reliability metric
could be any metric that can describe the CWS performance and the impact on the WDN
in a systematic way, such as the detection rate of contamination events.
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2.2. Cyber-Physical Simulation Platform

RISKNOUGHT is a cyber-physical stress-testing simulation platform that simulates
WDNs as integrated CPSs. This is achieved by coupling two interacting models with
feedback loops: (a) the cyber model, a customizable SCADA layer that simulates the
control logic and behavior of PLCs, sensors, and actuators, and (b) the physical model,
a custom WDN simulator that leverages the WNTR [35] package (version 0.3 at time of
writing) to implement pressure-driven analysis (PDA) [49] and quality simulations using
the recent EPANET version 2.2 solver [50]. The RISKNOUGHT model is described in detail
in [19], whereas the analysis of WQ cyber-physical simulation is presented in [42]. In the
stepwise simulation, the physical layer feeds input data (e.g., tank level, concentration of
contaminant at nodes, etc.) from the hydraulic and quality simulation to the cyber layer,
which uses the information to resolve statements of the deployed control logic schemes and
then passes decisions to the physical layer, affecting the hydraulic state for the subsequent
simulation step (e.g., open a pump, close a valve, etc.). With regard to the implementation
of control logic to facilitate response and mitigation measures against contamination events,
RISKNOUGHT enables the use of district metered area (DMA) isolation commands via
isolation valves to minimize the extent of the contamination and activation of flushing units
to remove the contaminant from the system. As such, RISKNOUGHT can simulate the
impact of contamination events even after being detected and enforcing response measures.
The platform incorporates a cyber-physical attack model that simulates a variety of cyber-
attacks on cyber elements (e.g., denial of service (DoS) attacks, sensor data manipulation,
etc.) and physical attacks on elements of the WSN (such as backflow contaminant injections,
destruction of pipes, etc.) in stress-testing scenarios.

2.3. Generation of Sensor Designs

In order to generate different topologies of sensor designs, we use TEVA-SPOT [51],
a well-known software utilized for sensor placement optimization and the assessment
of consequences of contamination events in large WDNs. TEVA-SPOT can employ a
wide range of objective functions in sensor placement also common in other works in
literature, including the time to detection [29], extent of contamination (total length of
contaminated pipes) [52], number of failed detections [52] (which is similar to the inverse of
detection likelihood [53]), volume of contaminated water consumed, mass of contaminant
consumed [54], and population exposed [52], with the ability to differentiate between pop-
ulation killed and population receiving a specific dose and above. TEVA-SPOT also ranks
the sensors deployed from a specific optimization scheme from most to least important in
terms of reduced impact of contamination events due to its presence. It should be noted
that TEVA-SPOT estimates impact based on the assumption that when a contamination is
detected, mitigation and response measures will follow, but the software has no means to
actually simulate them, other than providing a specified response time. Therefore, other
sensor placement optimization tools could also be considered for the generation of sensor
designs, such as Chama [55].

2.4. Cyber-Physical Attack Scenarios
2.4.1. Selecting Cyber-Attack Scenarios

For proper resilience assessment and stress-testing, a scenario set of increasing pres-
sure from scenario to scenario should be constructed. As the focus of this work is to
assess the resilience of different sensor topologies against contamination attacks and cyber-
physical attacks, the increased stress is translated to progressively more sensors being
cyber-attacked. Due to the immense topological, hydraulic, and control complexity of large
WDNs, standardization is difficult, as different sensor designs differ in WDN coverage
and control sets, thus varying wildly in performance during failure. For normalization
reasons, the control sets for response and mitigation measures are similar for every sensor
design, i.e., we use isolation commands that cut off connections between all DMAs to stop
the contamination spread and activate flushers in all DMAs from where the detected con-
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tamination event could have originated. Note that demands on nodes remain unaffected,
i.e., are not reduced to zero, to represent consumer compliance to a do-not-use warning.
This could be used as another rule but is not dependent upon the system’s control logic
rather than consumers’ behavior, and we want to avoid the overhead of changing the
network’s properties during runtime. The cyber-attacks have similar attributes i.e., sensor
data manipulation to report normal water quality readings masking the contamination, and
to negate the effect of temporal hydraulic variance in detection capability, the cyber-attacks
happen from simulation start to end for all scenarios and combinations. To choose which
sensor to add to the attacked sensors set in a progressive manner, the TEVA-SPOT ranking
is used. Therefore, the least stressful scenario contains a single attack on the most important
sensor of the topology, then the second most important sensor is also attacked, and so on,
with the worst scenario including attacks on all sensors.

2.4.2. Sampling Contaminant Injection Locations

Because of WDN complexity, a single physical attack combined with a cyber-physical
attack scenario cannot capture the general expected impact of cyber-physical attacks, as
this injection may happen at a still adequately monitored part of the WDN and have
a low impact or on the contrary have a large impact if it coincides with an important
part of the WDN’s CWS being cyber-attacked. In addition, some injection locations are
inherently more topologically critical in terms of reaching other parts of the network,
whereas others may pertain only to small branches of the WDN, limiting the impact
despite being unnoticed by the CWS. Thus, it is imperative to combine the scenarios
with a multitude of different injection locations to calculate the expected outcome of the
cyber-physical attacks. Although ideally all injection locations should be considered, the
computational time for all the combinations increases drastically. The computational
budget may allow for a small number of examined injection locations, so we propose the
use of a weighted random choice of nodes from the network, with probabilities of choice not
uniform but according to the “fitness” fi of the node i as an injection location. In this work,
we use two metrics, equally weighted to calculate fi. The node betweenness centrality
(bc) [56] is a metric that is also used to optimally place sensors topologically without
hydraulic simulations [57,58] (among other centrality metrics and weighted variations of
them by characteristics such as diameters of pipes, etc., which could also be used here).
The betweenness centrality bci for each node i is calculated as

bci = ∑
w,e∈I

σ(w, e|i )
σ(w, e)

(1)

where I is the set of discrete node elements, s and e are pairs of network nodes, σ(w, e) is
the number of shortest (w, e) paths, and σ(w, e|i ) is the number of those paths passing
through node i. A higher value signifies nodes that are more central, in the sense of
residing along more of the shortest path between pairs of other nodes. This metric conveys
the expected probability for a node to be along the pathway of a contamination spread
from any source point to others, and so topologically lower values will be assigned to
nodes residing in smaller branches of the network and higher values along the main water
pipes. Because tanks and sources in a water distribution graph representation reside in
branches, the second metric considers the actual hydraulic traceability of each location and
is calculated from trace simulations in EPANET. These trace simulations are fast, as there is
no cyber-physical coupling, and, if required for large networks, a much coarser simulation
timestep can be used. After performing a trace quality simulation for each node i, we can
obtain pijt, which is the percentage of water originating from i for each other node j and
for each timestep t ∈ {1, m}, where m is the number of simulation steps. With n being the
number of nodes (i.e., the cardinality of set N), the node reach nri can be calculated as

nri =
∑∀i∈I Pij

n
(2)
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where

Pij =

{
1, if max

{
pij1, · · · , pijm

}
> 0

0, otherwise
(3)

This metric conveys the expected max contamination reach of an injection, thus
locations primarily near sources and secondarily near tanks have a bigger nr value.

After normalizing metrics bci and nri to the range 0 to 1 as bci and nri (by subtracting
the minimum value of each set and dividing by the respective range) and assigning equal
weights w1 = w2 = 0.5, fitness fi for each node is calculated as:

fi = 0.5bci + 0.5nri (4)

To get the probability distribution function P for the nodes, the following equation
is used:

P(i) =
fi

∑∀i∈I fi
(5)

Finally, using P for the weighted random choice (without replacement) we can gen-
erate a random set of k nodes for injection locations. For large WDNs and small k many
of the sampled nodes may be clustered in some areas. In this case, we can modify the
sampling procedure: Each time a sample is selected, we find the shortest paths of length
l = 1, · · · , llim from the sampled node, and the nodes in the paths are excluded from the
sampling pool to distribute the sampling selection to a wider area and increase network
coverage. The llim can be estimated empirically or by trial and error. For medium-sized
networks, smaller values (i.e., 1 or 2) of llim should work best. An example is showed in
the Section 3.

Furthermore, the actual starting time and duration of an injection can differentiate
the outcome even at a single location, due to temporal hydraulic variations (e.g., flow
can change direction, a pump could be open, etc.), whereas injected mass always affects
node concentrations. Because simulating the attacks for different time conditions linearly
increases the required number of total simulations, to confide within a time budget in this
work we standardize all injections to have the same characteristics in terms of starting
time, duration, and injection mass rate, even though for some physical attacks this may not
produce the worst contamination outcome. It should also be noted that other aspects such
as physical accessibility of a location and (if any) implemented security measures affect its
attractiveness and could be considered when making an informed selection.

2.5. Performance Metrics

The simulation-derived data of the WDN with its CWS impacted by a specific combi-
nation of physical and cyber-attacks (i.e., contaminant injection and a set of cyber-attacked
sensors for the work presented here) can be mapped by a variety of multidimension
metrics [59]. These metrics include:

• Unmet demand (UD), a hydraulic metric that describes the quantity of unsupplied
water to consumers during the simulation. For each simulation timestep t let dit be
the demand of node i in m3s−1, d̂it be the actual supplied quantity in m3s−1, and tstep
be the simulation step size in s, so that udi is the unmet demand of node i and UD the
integral for all nodes in I:

udi =
m

∑
t=1

dittstep −
m

∑
t=1

d̂ittstep (6)

UD = ∑
∀i∈I

udi (7)

• Mass consumed (MC), which describes the total contaminant mass consumed in
g for the entire simulation. Following the notation for UD and letting cit be the
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concentration in mg L−1 for timestep t, mci is the mass consumed for node i and MC
the integral for all nodes in I:

mci =
m

∑
t=1

citd̂ittstep (8)

MC = ∑
∀i∈I

mci (9)

• Nodes affected (NA), a spatial metric that describes the extent of the contamination as
a percentage of nodes that are affected by the spread of contamination. For node i the
metric nai denotes whether contaminated water has passed through or not and NA is
the integral for all nodes in I:

nai =

{
1, if max{ci1, · · · cim} > 0
0, otherwise

(10)

NA =
∑I

n=1 nan

n
(11)

• Population affected (PA), which describes the number of consumers affected by con-
sumption of a contaminant. If no census data exist for the nodes of the WDN, we can
use the average daily per capita demand pcd to estimate population per affected node
pai and the integral PA for all nodes (assuming that m corresponds to a single day,
otherwise this is modified accordingly):

pai = nai
∑m

t=1 dittstep

pcd
(12)

PA = ∑
∀i∈I

pai (13)

• Earliest detection time (EDT), a temporal metric that describes how fast the CWS can
detect the contamination event by measuring the earliest time in s that the CWS emits
a contaminant warning. For undetected events, we can assign to EDT the value of
the simulation duration with the assumption that by then the contamination will be
discovered by other means. If o is the number of sensors that detect contamination,
and dts is the detection time for each sensor s, then

EDT =

{
min{dt1, · · · , dto}, if o > 0
mtstep, if o = 0

(14)

• Mass consumption before detection (MCBD), which describes the impact of the cyber-
physical attack before being detected, therefore before being able to generate any
public warnings. This metric can be more representative of the actual impact than
MC. This may happen because MC is greatly affected by the mitigation measures
in effect after detection, e.g., flushing, isolation of DMAs, preemptive total cutoff of
water supply, issuing a general public warning, etc., that can affect both the supply of
water and the demand of the consumers.

mcbdi =

EDT
tstep

∑
t=1

dittstep (15)

MCBD = ∑
∀i∈I

mcbdi (16)

• Flusher outflow (FO) and contaminant flushed mass (FM) are two more metrics that
can describe the performance of a CWS and the response strategy if flushing controls



Water 2021, 13, 647 8 of 23

exist. If Y is the number of flushing nodes in the WDN, for each flashing node y let
f oyt be the outflow in m3s−1 for each timestep t and cyt the contaminant concentration
in mg L−1:

f oy =
m

∑
t=1

f oyttstep (17)

FO =
Y

∑
y=1

f oy (18)

f my =
m

∑
t=1

cyt f oyttstep (19)

FM =
F

∑
y=1

f my (20)

Within this paper, all these metrics refer to scenarios comprising a single contaminant
injection (and a set of cyber-attacks), although they are valid for multiple simultaneous
injections as well. For a sampling set of scenarios with various different single contam-
inant injection locations, a statistical property of the metric set could be used to assess
performance, such as the mean, median, or worst value. There is one more interesting
performance metric that can be generated from the sampling location set: the detection rate
(DR) that describes the performance of the CWS regarding its ability to detect contamina-
tion events and can act as a reliability surrogate metric. It should be noted that this simple
metric does not differentiate between different injection scenarios and all have the same
weight. With J being the size of the injection sampling set, oj being the number of sensors
that detected the contamination originating from injection j, and Dj the Boolean operator
for detection,

Dj =

{
1, if oj > 0
0, if oj = 0

(21)

DR =
∑J

j=1 Dj

J
(22)

3. Case Study
3.1. Cyber-Physical System

The resilience assessment methodology for CWS under cyber-physical attacks was
demonstrated at the C-Town WDN, a benchmark model based on a real medium-sized
system used for various studies, e.g., [17,60–62]. We used RISKNOUGHT to create a
SCADA for the hydraulic controls, as shown in [19], then updated the cyber and physical
layers to include a CWS with:

• Four actuators and respective isolation valves that can separate the network into
DMAs 1 to 5, placed at pipes P409, P424, P310, P796, and P237;

• Five flushing units (one in each DMA in lower elevation nodes) as new nodes adjacent
to present nodes J1056, J416, J1208, J185, and J87 and the necessary actuators and
isolation valves for operation; and

• A variable number of water quality sensors depending on sensor design.

Figure 2 shows an example of CWS with these properties. The cyber-physical sim-
ulation had duration of 86,400 s, a hydraulic simulation timestep of 600 s, and a water
quality timestep of 300 s. The SCADA simulation timestep (how often sensors update and
control logic is checked and applied) was matched to the hydraulic step. For the pressure
driven demand analysis equations we used for all nodes a minimum pressure of 0 m and a
required pressure of 20 m. The pressure exponent was equal to 0.5.

The controls added for response and mitigation measures depended on the placement
of the sensors and had the following form:
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• If any sensor detects contamination, isolate all DMAs; and
• If a sensor placed within a DMA detects contamination, activate the corresponding

flushing unit and the flushing units in the DMAs that are within the possible path
of the contamination extent. For example, if contamination is detected in a node
in DMA5, activate the flushing units in DMA5 and DMA1 (from where the water
originates).

3.2. Sensor Designs

As the associated set of controls included the isolation of DMAs to minimize the spread
of contamination, the rational choice of objective function in placement optimization in
TEVA-SPOT was minimization of the mean contamination extent. We generated 12 sensor
designs of size N = 1, 2, . . . , 10, 15, 20, as seen in Table 1 with the sensor names and
their rankings, by employing 388 (i.e., for all junctions) injection scenarios. The spatial
representation is depicted in Figure 3. Designs of size N = 1 to 10 were selected to
explore a progressive increase in sensor number, and N = 15, 20 to explore designs
with a relatively high-monitored locations-to-total nodes ratio (roughly 3.8% and 5.1%
respectively).

Table 1. Sensor designs of size N and the sensor ranking of the design.

Size N Sensor Ranking Order (1st to nth)

N = 1 J301
N = 2 J301, J22
N = 3 J317, J22, J109
N = 4 J317, J496, J109, J256
N = 5 J317, J496, J109, J256, J67
N = 6 J304, J496, J109, J256, J67, J297
N = 7 J304, J496, J109, J256, J67, J297, J179
N = 8 J304, J385, J492, J109, J256, J67, J297, J179
N = 9 J304, J385, J109, J492, J256, J67, J297, J179, J382

N = 10 J304, J385, J109, J492, J256, J67, J297, J179, J382, J13

N = 15 J301, J385, J109, J496, J216, J67, J297, J179, J13, J128, J382,
J160, J441, J84, J511

N = 20 J301, J385, J408, J496, J67, J216, J297, J179, J128, J13, J382,
J160, J441, J84, J511, J101, J2, J88, J320, J168
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3.3. Cyber-Physical Scenarios

For the cyber–attack part, the scenarios had progressively more pressure by increasing
the number of k most important sensors being manipulated to show normal water quality
readings, with k values in the set {1, 2, 3, 4, 5, 10, 15}, producing 7 scenario sets. Sensor
designs with N ≤ k were effectively completely unmonitored. Table 2 presents the sensors
selected by each scenario set from each sensor design N.

Table 2. Sensors under cyber-attack for each scenario set and sensor design.

N/k k = 1 k = 2 k = 3 k = 4 k = 5 k = 10 k = 15

N = 1 J301 - - - - - -

N = 2 J301 J301, J22 - - - - -

N = 3 J317 J317, J22 J317, J22,
J109 - - - -

N = 4 J317 J317, J496 J317, J496,
J109

J317, J496, J109,
J256 - - -

N = 5 J304 J317, J496 J317, J496,
J109

J317, J496, J109,
J256

J317, J496, J109,
J256, J67 - -

N = 6 J304 J317, J496 J304, J496,
J109

J304, J496, J109,
J256

J304, J496, J109,
J256, J67 - -

N = 7 J304 J304, J496 J304, J496,
J109

J304, J496, J109,
J256

J304, J496, J109,
J256, J67 - -

N = 8 J304 J304, J385 J304, J385,
J492

J304, J385, J492,
J109

J304, J385, J492,
J109, J256 - -

N = 9 J304 J304, J385 J304, J385,
J109,

J304, J385, J109,
J492

J304, J385, J109,
J492, J256 - -

N = 10 J304 J304, J385 J304, J385,
J109,

J304, J385, J109,
J492

J304, J385, J109,
J492, J256

J304, J385, J109,
J492, J256, J67, J297,

J179, J382, J13
-

N = 15 J301 J301, J385 J301, J385,
J109,

J301, J385, J109,
J492

J301, J385, J109,
J492, J216

J301, J385, J109,
J492, J216, J67, J297,

J179, J13, J128

J301, J385, J109,
J492, J216, J67,
J297, J179, J13,

J128, J382, J160,
J441, J84, J511

N = 20 J301 J301, J385 J301, J385,
J408,

J301, J385, J408,
J496

J301, J385, J408,
J496, J67

J301, J385, J408,
J496, J67, J216, J297,

J179, J128, J13

J301, J385, J408,
J496, J67, J216,

J297, J179, J128,
J13, J382, J160,
J441, J84, J511

For the physical attack part, we choose to analyze injections at 15% of the total number
of nodes (388), which gave 58 injection locations, sampled with weighted random choice
with llim = 1 based on the node criticality estimation described above. Figure 4 shows
the values of each metric, the nodes’ weighted probabilities, and the final sampled set of
injection locations. Each contaminant injection started at time 0 s and ended at time 3600 s
with a mass rate of 1 kg s−1 of a completely conservative contaminant (zero diffusivity and
no reactions with water or pipe materials).
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4. Results from Stress Testing

The 58 physical attacks were applied to 12 sensor designs with 7 scenarios of cyber-
attacks, as described in Table 2, and also accounting for baseline normal operation of the
system, and produced a total of 2900 cyber-physical simulations within a total computa-
tional budget of roughly 24 h. Figure 5 shows metric curves that aggregate the results with
descriptive metrics. Each curve refers to a scenario set with k attacked sensors with points
of the curve describing the mean impact of the scenario set (y-axis) to the topology of N
sensors (x-axis).
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4.1. Normal Operation

As expected, sensor topologies with more deployed sensors fared better in every
metric when no cyber-attack hindered the operation of the CWS, as communicated by
the blue curves in the subplots of Figure 5. There were some irregularities, such as, for
example, in the NA and PA metrics where the topology of N = 4 performed slightly worse
than the N = 3 (also true for N = 5 and N = 6), but this should be attributed to the small
random set of physical attack locations. Had the contaminant injection set included all
the possible nodes, the actual performance would have been at least equal. For most of
the metrics, performance gains dropped rapidly from N = 8 onwards, whereas N = 6
can be regarded as a good trade-off of performance versus deployment cost. Designs with
substantially more sensors (N = 15, N = 20) generally did not offer much improvement in
normal operation status, except for the EDT metric. This exception should be expected, as
more sensors equal better coverage and faster detection, but metrics such as MC and NA
are affected by the mitigation and response measures, which in this case were the exact
same for all sensor designs (i.e., isolation of the five DMAs and activation of the flushing
units in the contaminated DMAs). It should be noted that for DMAs where contamination
was not detected, no flushing took place. In reality, if contamination is detected usually the
water utility issues a public do-not-use warning, and that is why we also employed the
MCBD metric. In addition, FM plus MC quantities in scenarios generally do not equal the
total injected mass (the same is true for cyber-physical attack scenarios as well), as there
are instances where a contaminant mass resides in pipes by the end of the simulation and
is neither flushed nor consumed, due to pressure deficient conditions.

4.2. Cyber-Attack Impact
4.2.1. The Case of a Single Attack on the Most Important Sensor

For a small number of deployed sensors (N ≤ 5), the loss of the most important
sensor (curve k = 1) greatly affected most performance metrics because if detection of
the contamination were achieved, it would be at a much later stage, as communicated
by the EDT metric, which was inflated by the fact that undetected events received the
edti value of simulation duration. The large increase in impact was not true for NA and
PA metrics, where the performance drop was smaller, because these were spatial metrics
without a temporal dimension, and for small N values the contamination had a greater
spread regardless. For N > 5 generally the impact was greatly reduced or barely noticeable.
This happened because, as seen in Table 1 and Figure 3, the sensor placement optimization
algorithm for N ≥ 5 deployed in all cases sensors that could cover in a redundant way
DMA1 (even if not deployed inside, the sensors were close to it), which was the biggest,
and it happened that in all sensor designs the most important sensor in ranking was either
deployed in J301, J304, or J317, locations on the outskirts of DMA1. This algorithmically
unintentional fact gives an insight into the importance of redundancy as a property of
resilient design of CWSs.

4.2.2. Effects as k Increased for Designs up to 10 Sensors

Generally, as the strain of the scenarios increased, performance dropped rapidly for
most sensor designs. There were a few irregularities for some metrics and curves, such as,
for example, mean MC being slightly higher for k = 2 than k = 3 for the topology N = 6,
but these can be attributed to the small sample size and some hydraulic conditions that did
not alter linearly due to the set of controls for response measures. For metrics MC, MCBD,
and EDT, performance was retained for up to k = 3 attacked sensors for sensor designs
with N ≥ 8. Interestingly, the expected EDT, MC, and MCBD of N = 8, 9, 10 designs
even with the three first ranked sensors taken out were still lower than the N = 5, 6, 7
designs under normal operation conditions, even though the expected spatial extents NA
of the contamination events were higher. High performance of these designs up to k = 3
regarding the UD, FO, and FM metrics (i.e., high unmet demand, high volume of flushed
water, and high mass of flushed contaminant, respectively) signifies that the response
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and mitigation measures worked as they should, managing to isolate DMAs and flush
significant contaminant mass out of the system before being consumed. Therefore, these
sensor designs were robust, but when k > 3, performance rapidly dropped, which was not
a desired trait for the CWS, as for resilient designs, failure should be more gradual, i.e., a
design that is more safe-to-fail.

4.2.3. Effects as k Increased for Designs with 15 and 20 Sensors

The sensor designs with N = 15 and N = 20 proved to be both more robust and more
resilient, as demonstrated by their performance. Although it is expected that topologies
with significantly more sensors (i.e., at least 50% and 100% more compared to N ≤ 10
designs) outperform the rest, these designs possess an inherent trait of more gradual
performance loss. As demonstrated by the k = 10 curves in Figure 5, even with one quarter
and half of the sensors attacked respectively, the performance drop in all metrics was much
smaller than the counterparts in other sensor designs. Notably, even with only a quarter
of the deployed sensors still operating, N = 20 design still performed comparably to the
un-attacked N = 5 design in terms of UD FO and FM metrics, showing that the mitigation
measures can still provide significant protection fast enough, as communicated by the
expected EDT value, even though the contamination spread more (NA), affecting more
people (PA), and contaminant mass consumption was higher before detection (MCBD).

4.3. Resilience Profile Graphs

Examining the metrics presented in Figure 5 allows us to fully describe the system’s
behavior under cyber-physical attacks and thus under failure in a variety of scenarios. In
addition, we need a well-defined, straightforward, and comprehensible way to measure the
reliability of the system to generate resilience profile graphs. Thus, we used the detection
rate of the contamination events metric, DR, as a surrogate for reliability. The resilience
profile graphs for each sensor design are presented in Figure 6. It is evident that sensor
designs N = 20 and N = 15 were the most resilient and robust. Notably, the resilience
score for N = 20 and this particular ordinal set of disturbances was 85.99%, signifying that
even under failure it retains most of its ability to detect contamination in most cases, even
when this means lower performance in most other metrics. On the contrary, the N = 6
sensor design, which seems the best trade-off between performance and cost in normal
operation, under these disturbances (some of which, i.e., k = 10, 15 were well beyond
its design capacity) had a much lower resilience score of 48.70%. Even scaled within its
design capacity for up to k = 5, the resilience score was 64.90% owing to its much lower
normal operation reliability and greater susceptibility due to the lower count of sensors. In
addition, seeming like a paradox, pairs (N = 20, k = 15) and (N = 20, k = 10) attained
better reliability (detection rate) than (N = 5, k = 0) and (N = 10, k = 0), but the actual
design goal was to place sensors to minimize the mean extent of contamination, and this
was a surprising side-effect. The remaining working sensors in N = 20 happened to fare
in detection rates better than the complete sets of sensors in N = 5 and N = 10, as these
were be placed in less central locations (due to their lower ranking) and thus, monitor more
locations, increasing network coverage. It should also be noted that designs N = 6 and
N = 7 had exactly the same resilience results. This was to be expected, as these designs
had the same sensors, except the lowest ranked sensor in N = 7 (placed at J179), which
was placed at a position monitoring locations that were a subset of locations monitored
by the sixth sensor (placed at J297) in both designs. The resilience scores are presented
in Table 3.
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Table 3. Resilience scores for the examined sensor designs and scenarios, as measured by comparing
the area under the reliability curve with the area of the ideal CWS design.

Design Resilience Score

N = 1 2.96%
N = 2 10.47%
N = 3 16.74%
N = 4 22.41%
N = 5 40.46%
N = 6 50.12%
N = 7 50.12%
N = 8 56.90%
N = 9 58.25%

N = 10 58.74%
N = 15 75.37%
N = 20 86.57%

5. Comparing Resilience of Different Sensor Deployment Strategies
5.1. Generating Topologies with Other Placement Optimization Strategies

The behavior of the N = 20 topology generated by optimizing the placement with
the objective function mean contamination extent (obj_ec) exhibited, as expected, better
performance than other topologies with a lower number of sensors, but also showed
robustness and resilience traits. This brings up the question of whether using other
topologies comparable in the number of sensors would fortify the network with better
performance under loss of function due to cyber-physical attacks. Using TEVA-SPOT, four
more topologies of 20 sensors were generated using the objective functions (i) minimize
mean mass consumed, obj_mc, (ii) minimize mean volume consumed, obj_vc, (iii) minimize
mean time before detection, obj_tbd, and (iv) minimize mean number of failed detections,
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obj_n f d. The sensors selected for each objective function are shown in Table 4. The same
selecting methodology of k best ranked sensors for cyber-attacks and the same injection
location set were used to compare performance. For better comparison purposes we used
all k sets for k ∈ {0, 15}. Figure 7 depicts the sensors’ locations in the network, color coded
by sets of attacks.

Table 4. Sensors generated from other objective functions, arranged by rank from most to least
critical.

obj_mc obj_vc obj_tbd obj_nfd

J237, J574, J360, J344,
J7, J61, J487, J81, J379,
J305, J157, J201, J296,
J439, J224, J232, J150,

J27, J499, J165

J257, J382, J86, J94,
J492, J7, J297, J67, J109,

J216, J32, J201, J414,
J169, J509, J226, J192,

J1170, J576, J61

J360, J224, J69, J345,
J1058, J81, J379, J123,
J237, J439, J296, J167,
J284, J150, J27, J153,
J487, J504, J305, J334

J224, J360, J70, J123,
J1058, J81, J345, J379,
J237, J144, J167, J439,
J150, J153, J27, J284,
J296, J334, J487, J504
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5.2. CWS Resilience Results of Various Sensor Placement Strategies

By subjecting the topologies of 20 sensors generated by the obj_mc, obj_vc, obj_tbd,
and obj_n f d to the same stress-testing procedure as the N = 20 topology of the obj_ec, we
acquired the results presented in Figure 8. As expected, the topology of the design strategy
of minimizing the mean detection failure (obj_n f d) yielded the best reliability score for
undisrupted service, near the ideal design at 98.27%. In this state, performance (it should
be noted that by performance hereafter we refer to detection rate—not the performance
of any other metric) was matched by strategy obj_tbd, which employed a very similar
sensor set but with different rankings for the exact same sensors (obj_tbd was better in
k = 7 but worse in k = 2, 11, 12, 13), then followed closely by obj_mc with 96.55%, obj_vc
exhibiting a high score of 93.10%, and the lowest performance attributed to obj_ec at 87.93%.
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Interestingly, as the disruption to the system increased with progressively attacking the k
most important sensors, the reliability in detecting contaminations of obj_n f d and obj_tbd
diminished to 70.68% (a performance delta of 27.59%), taking the last place, whereas obj_ec
rose to first place with 75.86% (a smaller performance delta of 12.07%). The two other
strategies shared the second rank, where obj_mc and obj_vc demonstrated performance
deltas of 22.41% and 18.97%, respectively. The performance curves exhibited different
characteristics: obj_tbd lost reliability immediately at k = 1, obj_n f d and obj_vc started to
lose reliability at k = 2, and obj_mc weathered the disturbance up to k = 3. The robustness
trait of obj_ec to withstand up to k = 8 is remarkable given that while it was not the top
performing strategy by design in reliability to detect contamination, by k = 6 it had closed
the performance gap with the other strategies and then outperformed them all at every
k > 9. Looking at the resilience scores, we got the following scores: obj_ec was the most
resilient with a score of 85.23%, then followed obj_mc with 84.54%, obj_vc with 83.85%, and
both obj_n f d and obj_tbd sharing the last position with 83.22%.
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6. Insights from the Case Study for CWS Design

This study is the first to the authors’ knowledge in which the resilience of different
sensor designs is assessed under complex cyber-physical attacks, including deliberate
contamination, where the cyber-physical model employs a series of realistic response and
mitigation measures in an integrated control scheme that affects the actual outcome of
the simulation, measured with multidimensional measures. The results obtained by this
case are transferable to real-world water distribution networks, and signify the interplay
between different attributes of sensor designs, such as increased sensor count, redundancy
in monitored locations, and control actions. As shown, small variations in sensor size design
can have anywhere from unnoticeable to big impacts on performance in metrics when
under loss of operation of some elements, with some designs unintentionally proving to be
more resilient or robust. It is self-explanatory that more sensors equal better performance,
but even one more sensor placed at a carefully chosen location can provide a great benefit
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against loss of function and redundancy in the network. Moreover, the examination of
the behavior of different sensor designs against the same sets of attacks shows that there
are cases where a generally less optimal solution in detecting contamination for normal
operation status (e.g., obj_ec versus obj_n f d) is eventually far more robust and resilient
against disturbance, perhaps counterintuitively. This insight is also shared with many
other engineered systems: A top-performing and reliable system at normal operation
status is not always resilient, as there are also robust systems that are not resilient [43,63].
This behavior can only be evaluated by systematic stress-testing procedures that assess
the performance of the system under failure, denoting the importance of such resilient
assessment methodologies for engineered systems.

Because in this study the cyber-attacks are deliberately chosen from sensor ranking
order, the fact that some designs can be more resilient can only be exacerbated by more
targeted attacks that can, for example, blind sensors monitoring the same DMA regardless
of ranking. As such, we conclude that sensor placement optimization methodologies
should generally take into account the possibility of a subset of sensors not operating. In
addition, by carefully examining the sensor placement locations of the various strategies
employed, it is evident that the strategies obj_n f d and obj_tbd deploy all sensors to the
outskirts of the network at terminal nodes, obj_mc places 40% of them, and on the contrary
obj_vc and obj_ec none of them. This fact suggests that there is some connection with the
choice of placement locations and inherent resilience against disturbances in the capacity
to eventually detect contamination due to loss of performance because of deliberate attacks
and could be exploited to design algorithms to place sensors with the goal of optimizing
CWS resilience. Moreover, the resilience assessment methodology presented here is gener-
ally applicable to case studies with simple malfunctions or inability of sensors to detect
contamination that may also not be deliberate, but accidental, and thus can be employed
outside of cyber-physical design studies without modification.

Although we study the problem from a “what-if” civil engineering perspective, there
are two more aspects of the resilience assessment performed here that can be improved
upon through interdisciplinary research efforts. The first is the fact that both the contami-
nant and the sensors are deprived from their chemical nature to simplify things. Obviously,
contaminants rarely are as persistent and conservative as in the simulations here and react
with water, pipe materials, etc., possibly forming even more dangerous substances. Sensors
typically monitor surrogate quality properties of water to detect anomalies, and thus may
not always detect a contaminant. A multi-species water quality analysis with an analysis of
the reactions and kinetics of the contaminant and the impact on sensor monitor properties
can give a more accurate representation of the cyber-physical control scheme and impact
assessment of the cyber-physical attack. The second is the IT (information technology)
aspect of the cyber-physical system. Although no cyber system is unsusceptible to hacking,
there can be solutions implemented that hinder certain types of attacks, or some elements
of the system that can be of different technology, and such measures should be addressed
in a more realistic representation of the problem and its scenario simulation.

7. Conclusions

We presented a formal resilience assessment methodology for different water quality
sensor designs in cyber-physical water distribution systems under cyber-physical threats.
We also demonstrated the use of the methodology through a comprehensive analysis of a
medium-sized real-world-based WDN under a multitude of cyber-attacks combined with
a wide range of deliberate physical contamination attacks and evaluated its performance
with multidimensional metrics. The results show that resilience and robustness are traits
of the system that can be assessed only by stress-testing methodologies that evaluate the
system’s performance under failure. It is suggested that this methodology can prove useful
to water utility risk assessment, risk mitigation studies, and strategic planning, as well as
inform water quality sensor placement decisions.
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41. Makropoulos; Savić Urban Hydroinformatics: Past, Present and Future. Water 2019, 11, 1959. [CrossRef]

http://doi.org/10.1080/23311916.2018.1456710
http://doi.org/10.1080/1573062X.2020.1864832
http://doi.org/10.1061/(asce)wr.1943-5452.0000969
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000749
http://doi.org/10.3233/978-1-61499-617-0-123
http://doi.org/10.1061/(ASCE)EE.1943-7870.0001722
http://doi.org/10.3390/s150304837
http://www.ncbi.nlm.nih.gov/pubmed/25730486
http://doi.org/10.1061/(ASCE)0733-9496(2010)136:1(48)
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000081
http://doi.org/10.1061/(ASCE)0733-9496(2004)130:5(377)
http://doi.org/10.3390/s20123432
http://www.ncbi.nlm.nih.gov/pubmed/32560552
http://doi.org/10.14419/ijet.v7i1.1.8921
http://doi.org/10.1080/10286600500308144
http://doi.org/10.1061/(ASCE)0733-9496(1998)124:4(192)
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000073
http://doi.org/10.1016/j.watres.2020.115527
http://www.ncbi.nlm.nih.gov/pubmed/32004913
http://doi.org/10.1007/s12205-015-0024-x
http://doi.org/10.1061/(ASCE)0733-9496(2008)134:6(516)
http://doi.org/10.1061/(ASCE)0733-9496(2006)132:4(218)
http://doi.org/10.1016/j.envsoft.2017.06.022
http://doi.org/10.1061/(ASCE)0733-9496(2006)132:4(225)
http://doi.org/10.1061/(ASCE)0733-9372(1992)118:1(4)
http://doi.org/10.1061/(ASCE)0733-9496(2009)135:4(253)
http://doi.org/10.1080/10286600701695471
http://doi.org/10.3390/w11020330
http://doi.org/10.3390/w11101959


Water 2021, 13, 647 23 of 23

42. Nikolopoulos, D.; Makropoulos, C. Cyber-Physical Quality Attack Modelling and Stress-Testing for Water Distribution Networks.
Urban Water J. 2020, 146, 04020061.

43. Makropoulos, C.; Nikolopoulos, D.; Palmen, L.; Kools, S.; Segrave, A.; Vries, D.; Koop, S.; van Alphen, H.J.; Vonk, E.;
van Thienen, P.; et al. A resilience assessment method for urban water systems. Urban Water J. 2018, 15, 316–328. [CrossRef]

44. Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [CrossRef]
45. Mugume, S.N.; Gomez, D.E.; Fu, G.; Farmani, R.; Butler, D. A global analysis approach for investigating structural resilience in

urban drainage systems. Water Res. 2015, 81, 15–26. [CrossRef]
46. Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, resiliency, and vulnerability criteria for water resource system performance

evaluation. Water Resour. Res. 1982, 18, 14–20. [CrossRef]
47. Butler, D.; Ward, S.; Sweetapple, C.; Astaraie-Imani, M.; Diao, K.; Farmani, R.; Fu, G. Reliable, resilient and sustainable water

management: The Safe & SuRe approach. Glob. Chall. 2017, 1, 63–77. [CrossRef]
48. Francis, R.; Bekera, B. A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliab. Eng. Syst.

Saf. 2014, 121, 90–103. [CrossRef]
49. Ciaponi, C.; Creaco, E. Comparison of Pressure-Driven Formulations for WDN Simulation. Water 2018, 10, 523. [CrossRef]
50. Rossman, L.A.; Woo, H.; Tryby, M.; Shang, F.; Janke, R.; Haxton, T. EPANET 2.2 User Manual; U.S. Environmental Protection

Agency: Cincinnati, OH, USA, 2020.
51. Berry, J.; Boman, E.; Riesen, L.A.; Hart, W.E.; Phillips, C.A.; Watson, J.-P. User’s Manual: TEVA-SPOT Toolkit 2.5.2; U.S. Environ-

mental Protection Agency: Cincinnati, OH, USA, 2012.
52. Watson, J.P.; Greenberg, H.J.; Hart, W.E. A multiple-objective analysis of sensor placement optimization in water networks. In

Critical Transitions in Water and Environmental Resources Management; American Society of Civil Engineers: Cincinnati, OH, USA,
2004; pp. 4609–4618. [CrossRef]

53. Ostfeld, A.; Salomons, E. Sensor Network Design Proposal for the Battle of the Water Sensor Networks (BWSN). In Proceedings
of the Water Distribution Systems Analysis Symposium, Cincinnati, OH, USA, 27–30 August 2006; American Society of Civil
Engineers: Cincinnati, OH, USA, 2006; pp. 1–16.

54. Ostfeld, A.; Uber, J.G.; Salomons, E.; Berry, J.W.; Hart, W.E.; Phillips, C.A.; Watson, J.-P.; Dorini, G.; Jonkergouw, P.;
Kapelan, Z.; et al. The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms. J. Water
Resour. Plan. Manag. 2008, 134, 556–568. [CrossRef]

55. Klise, K.A.; Nicholson, B.; Laird, C.D. Sensor Placement Optimization Using Chama; Sandia National Laboratories: Albuquerque,
NM, USA, 2017.

56. Freeman, L.C. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35. [CrossRef]
57. Giudicianni, C.; Herrera, M.; Di Nardo, A.; Greco, R.; Creaco, E.; Scala, A. Topological Placement of Quality Sensors in Water-

Distribution Networks without the Recourse to Hydraulic Modeling. J. Water Resour. Plan. Manag. 2020, 146, 04020030.
[CrossRef]

58. Santonastaso, G.F.; Di Nardo, A.; Creaco, E.; Musmarra, D.; Greco, R. Comparison of topological, empirical and optimization-
based approaches for locating quality detection points in water distribution networks. Environ. Sci. Pollut. Res. 2020. [CrossRef]

59. Moraitis, G.; Nikolopoulos, D.; Bouziotas, D.; Lykou, A.; Karavokiros, G.; Makropoulos, C. Quantifying Failure for Critical Water
Infrastructures under Cyber-Physical Threats. J. Environ. Eng. 2020, 146, 04020108. [CrossRef]

60. Taormina, R.; Galelli, S. Deep-Learning Approach to the Detection and Localization of Cyber-Physical Attacks on Water
Distribution Systems. J. Water Resour. Plan. Manag. 2018, 144, 04018065. [CrossRef]

61. Nikolopoulos, D.; Moraitis, G.; Bouziotas, D.; Lykou, A.; Karavokiros, G.; Makropoulos, C. RISKNOUGHT: A Cyber-Physical
Stress-Testing Platform For Water Distribution Networks. In Proceedings of the 11th World Congress on Water Resources and
Environment (EWRA 2019) “Managing Water Resources for a Sustainable Future”, Madrid, Spain, 2–6 July 2019.

62. Sankary, N.; Ostfeld, A. Bayesian Localization of Water Distribution System Contamination Intrusion Events Using Inline Mobile
Sensor Data. J. Water Resour. Plan. Manag. 2019, 145, 04019029. [CrossRef]

63. Read, D. Some observations on resilience and robustness in human systems. Cybern. Syst. 2005, 36, 773–802. [CrossRef]

http://doi.org/10.1080/1573062X.2018.1457166
http://doi.org/10.1146/annurev.es.04.110173.000245
http://doi.org/10.1016/j.watres.2015.05.030
http://doi.org/10.1029/WR018i001p00014
http://doi.org/10.1002/gch2.1010
http://doi.org/10.1016/j.ress.2013.07.004
http://doi.org/10.3390/w10040523
http://doi.org/10.1061/40737(2004)456
http://doi.org/10.1061/(ASCE)0733-9496(2008)134:6(556)
http://doi.org/10.2307/3033543
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001210
http://doi.org/10.1007/s11356-020-10519-3
http://doi.org/10.1061/(ASCE)EE.1943-7870.0001765
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000983
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001086
http://doi.org/10.1080/01969720500306253

	Introduction 
	Sensor Design Resilience Assessment Methodology and Cyber-Physical Tools 
	Resilience Assessment 
	Cyber-Physical Simulation Platform 
	Generation of Sensor Designs 
	Cyber-Physical Attack Scenarios 
	Selecting Cyber-Attack Scenarios 
	Sampling Contaminant Injection Locations 

	Performance Metrics 

	Case Study 
	Cyber-Physical System 
	Sensor Designs 
	Cyber-Physical Scenarios 

	Results from Stress Testing 
	Normal Operation 
	Cyber-Attack Impact 
	The Case of a Single Attack on the Most Important Sensor 
	Effects as k  Increased for Designs up to 10 Sensors 
	Effects as k  Increased for Designs with 15 and 20 Sensors 

	Resilience Profile Graphs 

	Comparing Resilience of Different Sensor Deployment Strategies 
	Generating Topologies with Other Placement Optimization Strategies 
	CWS Resilience Results of Various Sensor Placement Strategies 

	Insights from the Case Study for CWS Design 
	Conclusions 
	References

