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Abstract: Every morning, water suppliers need to define their pump schedules for the next 24 h
for drinking water production. Plans must be designed in such a way that drinking water is
always available and the amount of unused drinking water pumped into the network is reduced.
Therefore, operators must accurately estimate the next day’s water consumption profile. In real-life
applications with standard consumption profiles, some expert system or vector autoregressive models
are used. Still, in recent years, significant improvements for time series prediction have been achieved
through special deep learning algorithms called long short-term memory (LSTM) networks. This
paper investigates the applicability of LSTM models for water demand prediction and optimal pump
control and compares LSTMs against other methods currently used by water suppliers. It is shown
that LSTMs outperform other methods since they can easily integrate additional information like the
day of the week or national holidays. Furthermore, the online- and transfer-learning capabilities of
the LSTMs are investigated. It is shown that LSTMs only need a couple of days of training data to
achieve reasonable results. As the focus of the paper is on the real-world application of LSTMs, data
from two different water distribution plants are used for benchmarking. Finally, it is shown that the
LSTMs significantly outperform the system currently in operation.

Keywords: decision support systems; long short-term memory networks; transfer and online learn-
ing; optimal pump control; time-series prediction; water consumption profiles

1. Introduction

Every day, water distribution companies are challenged with the decision of how
much drinking water should be produced for consumption during the next day. On the
one hand, water supply must be guaranteed 24/7. On the other hand, the energy to pump
drinking water into the distribution network should be used efficiently. Therefore, in order
for the water suppliers to plan the operation of pumping stations, it is crucial to make
reliable predictions of the drinking water consumption during the next day. With this
knowledge, they can evaluate different operation plans with respect to energy and cost
resulting in significant savings. As of today, German water supply operation is not entirely
automated. The staff is primarily responsible for the operation and makes use of process
control systems that communicate with the sensors installed throughout the network.
Based on the water flow and pressure inside the system, operators can decide to switch
water transport pumps on and off.

In the research project H2Opt [1], two different drinking water supply companies
have been observed with respect to their operation process. Results show that, oftentimes,
the pump operation depends heavily on the amount of water that the operator expects
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to be needed. As such, expectations are often uncertain, and operation planning is done
conservatively so that more water is pumped than necessary. Accurate prediction of
consumption allows the operators to consider other operational aspects beyond simply
guaranteeing the supply of drinking water under all circumstances and, thus, save energy
(and money) for the water company.

For the prediction of daily consumption profiles, traditional approaches like persis-
tence models or auto-regressive moving average (ARMA) models, e.g., in [2,3], show good
results. Normally, they are combined with some sort of heuristic, e.g., distinguishing
models for different seasons [4] to perform even better. Still, in recent years, a growing
popularity of machine learning algorithms, especially in the field of deep learning, have
led to new approaches in time series prediction. In particular, Long Short-Term Memory
networks (LSTM) show promising results. These recurrent neural networks are mainly
used in the field of sequence-to-sequence learning [5]. LSTMs have the advantage that ad-
ditional information can be directly incorporated into the model. Thus, in the case of water
distribution networks, the need to combine rigorous prediction models with heuristics
in order to take national holidays, weekends, etc. into account is omitted. A wide range
of recent literature investigates the possibility of using deep learning and standard ML
methods for water demand forecasting. Examples for short-term demand forecasting can
be found in [6,7], which consider the daily demand prediction for a single person. While the
work in [8] gives a broader review on machine learning and data analytic techniques for
urban water management.

This paper focuses on the application of LSTMs for the prediction of water consump-
tion as a base for reliable operation planning of a water distribution plant. The following
questions are examined in detail:

1. How does an LSTM behave compared with methods that are already in operational
use, in detail persistence and auto-regressive models?

2. How does incremental or online learning of LSTM models help to improve the
prediction accuracy?

3. When no historic data are available, can an LSTM model from a different water
distribution network be used instead as a starting point?

To answer these question, the performance of the LSTM models is evaluated regarding two
different quality criteria:

1. The prediction accuracy for the next day is analyzed, in particular, the predictive
performance of different LSTMs.

2. The applicability of LSTMs in the process of operation planning is investigated.

Note that the main focus of this work lies on the second quality criteria, as the aim of
the paper is not to evaluate the prediction accuracy of the methods themselves, but rather
the improvement of the operational planning. If the methods help to increase the water
consumption prediction but do not improve the operational planning, the current system
can be left in operation.

The paper is structured as follows. In Section 2, an overview of the related work in
terms of time series prediction is given and LSTM models are introduced. In Section 3,
the decision support methodology is explained and two use cases are illustrated. Section 4
describes how to set-up working LSTM models for the use cases. In Section 4, the prediction
performance is discussed followed by the results of optimal pump control based on water
demand prediction by means of the considered LSTMs. The paper concludes with Section 7
mentioning more ideas for further research.

2. Review of Methods for Time Series Prediction

One approach to the prediction of water consumption profiles is based on naïve
predictor models (e.g., in the simplest case assuming that the profile for tomorrow will be
the same as today). Several authors made an attempt to put this approach on an automatic
base: An et al. [9], for example, derived a method to automatically generate prediction
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rules, whereas Arampatzis et al. [10] defined a similarity index for days based on attributes
such as the day of the week, weather conditions or special events. Vector Autoregressive
Models (VAR), representing well-known methods in time series analysis, are also used
to predict hourly water consumption. One variant can be found in [11], for example.
Beyond these traditional approaches, machine learning methods entered the field of water
demand forecast and numerous studies have made use of artificial networks. Adamowski
and Karapataki [12] compare three types of artificial neural networks for the prediction of
weekly peak water demand with “classical” multiple linear regression models. A similar
study is done by Bougadis et al. [13]. However, machine learning methods are also used for
daily demand forecasts as looked at in this work. Candelieri et al. [14] imply a data-driven,
fully adaptive self-learning algorithm for water demand forecasting that combines time-
series clustering with a support vector machine regression. Herrera et al. [15] compare the
performance of several machine learning methods for water demand forecast, comprising
among others, artificial neural networks, random forests, and support vector regression.
Rodrigues Rangel et al. [16] even train one artificial neural network model for each hour of
the day and put their predictions together to set up the daily demand forecast.

Still, in recent years, significant advances in time series prediction have been achieved
through Long Short-Term Memory (LSTM) networks. These are a special kind of deep
learning model and are currently in the center-point of research. In the following, a short
introduction is given to naïve predictors and vector autoregressive model, while LSTMs
are explained in further detail as they are in the forefront of this paper.

2.1. Naïve Predictors

Naïve prediction models, also known as persistence models, usually follow some sort
of heuristic and have a straightforward approach. In most cases, these models are taken
as a baseline when testing against other, more sophisticated methods. Examples where
persistence models are used for benchmarking are, e.g., in Perez et al. [17] for solar radiation
forecasts, Takeyosi [18] for photovoltaic power generation forecasts, or in Kaushik et al. [19]
for healthcare. In this publication, a naïve predictor is used based on a heuristic to achieve
some sort of an expert system. In detail, a prediction profile is obtained by computing the
hourly-wise mean of the last similar days of the week and is considered as the prediction
of the next day. The model exhibits increased performance by taking holidays into account.
The approach of the naïve predictor is described in Algorithm 1:

Algorithm 1: Pseudocode for the naïve water consumption prediction model
Result: Prediction of water consumption for next 24 h

1 if next-day is a holiday or Sunday then
2 prediction = hourly-wise mean of last D Sundays ;
3 else if next-day is a bridge-holiday or Saturday then
4 prediction = hourly-wise mean of last D Saturdays ;
5 else
6 prediction = hourly-wise mean of last D similar week-days ;
7 end

2.2. Vector Autoregressive Models (VARs)

For multivariate time series forecasting, VARs are the most widely used method.
Besides the prediction of water profiles, vector autoregressive models have been success-
fully applied in the estimation of brain function connectivity [20], in aviation [21], or
economics [22]. Many other applications are, e.g., given in [23]. The main idea behind a
VAR is that each variable at time point t is predicted by all variables at time point t− 1.
Therefore, VARs assume that a time series follows a stochastic process and that linear
dependencies exist between the variables.
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More formally, a multivariate time series xt ∈ Rd of dimension d at time point t ∈ Z is
described by a first-order VAR model as

xt = β0 + Axt−1 + εεεt =


xt,1

...
xt,3

 =


β0,1

...
β0,d

+


A1,1 . . . A1,d

...
. . .

...
Ad,1 . . . Ad,d




xt−1,1
...

xt−1,d

+


ε1
...

εd

 (1)

where A is a d × d matrix representing the coefficients of the VAR model and εεεt =
{ε1, . . . , εd} is a sequence of independent normally distributed noise with mean 0 and
covariance Σε. In Equation (1), for example, the parameter A1,1 is the autoregressive effect
of xt−1,1 on xt,1 and A1,p is the cross-lagged effect from xt−1,1 on xt,p.

2.3. Long Short-Term Memory Network (LSTM)

For time series prediction, VARs are state-of-the-art. Still, in recent years, the growing
popularity of machine learning algorithms, especially in the field of deep learning, has
led to new approaches for the prediction of time series. Because of their ability to learn
long term patterns in sequential data Long Short-Term Memory Networks, originally
introduced by Hochreiter and Schmidhuber in 1997 [24], have been applied to several
use cases. Recent examples in which LSTMs achieved comparative or better results that
established methods are handwriting recognition [25], speech recognition [26,27], machine
translation [5], reliability analysis [28], covid-19 transmission [29], and many more. In the
water sector, a recent publication in which LSTMs are used is in [30], the authors of
which developed a rainfall–runoff model; in [31], which uses LSTMs to forecast water
production in solar stills; the authors of [32] make a short-term water quality variable
prediction; and the authors of [33] use LSTMs to detect abnormal working conditions in
water supply networks.

As LSTMs are the primary models for demand forecasting in this paper, the following
subsections continue with further details. They are a special kind of a Recurrent Neu-
ral Network (RNN). The key difference is that traditional RNNs have the shortcoming
of a vanishing/exploding gradient during training, which makes them unable to learn
long-term dependencies in data. LSTMs aim to solve this problem, which makes them
especially interesting for the prediction of water consumption profiles, as there exist long-
term dependencies like seasons, different behavior for different days of the week, and
national holidays.

To cope with these types of dependencies, the main concept behind LSTMs is that
they consist of cells. A cell of a classic LSTM is shown in Figure 1. In the literature, a LSTM
cell is typically separated into three gates, each composed of a σ layer and pointwise
multiplication. Usually, these gates are called the input, output, and forget gates, and
are used to regulate the information passing through the cell. Furthermore, a LSTM cell
consists of the two cell states ct−1 ∈ Rn and ht−1 ∈ Rn which receive their values from the
previous cell. The dimension n describes the number of units (the model order) in the cell.
To finalize, xt ∈ Rd defines the input to the cell and the output can be generated through
the state ht. LSTM cells are best explained by passing the three gates one by one. Initially,
for the forget gate, the output ft ∈ Rn is generated by

ft = σ(W f xt + U f ht−1 + b f ) (2)

with W f ∈ Rn×d and U f ∈ Rn×n. Similar to the forget gate, the input gate is also added to
the cell state by calculating it ∈ Rn and c̃t ∈ Rn as

it = σ(Wixt + Uiht−1 + bi) (3)

c̃t = tanh(Wcxt + Ucht−1 + bc) (4)
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with Wi ∈ Rn×d, Ui ∈ Rn×n and bi ∈ Rn for ft and Wc ∈ Rn×d, Uc ∈ Rn×n and bc ∈ Rn for
c̃t. Then, the current cell state is calculated following the operation

ct = ft � ct−1 + it � c̃t (5)

with ct ∈ Rn and � representing the Hadamard product. Finally, the output of the cell
is calculated by using the output gate following an approach similar to the forget and
input gates:

ot = σ(Woxt + Uoht−1 + bo) (6)

ht = ot � tanhct (7)

with Wo ∈ Rn×d, Uo ∈ Rn×n and bo ∈ Rn×n resulting in ot ∈ Rn and ht ∈ Rn. In the
prediction of the water consumption profile, ht is used as the final output of the LSTM.

Figure 1. Basic architecture of a long short-term memory network according to Olah [34]).

2.4. Online Learning with LSTMs

In machine learning, online or incremental learning techniques are used to keep a
model up to date with recent data. Like other neural networks, LSTMs have the advantage
that their weights can be updated every time step without additional effort and an online
learning is easily achieved. Regarding the prediction of water consumption, this comes in
handy, as drift effects, occurring e.g., due to the four seasons, can be incorporated into the
model. For LSTMs, online learning has been proven to deliver good results, e.g., in speech
recognition [35] or land cover prediction [36]. In this paper, the online learning approach
for the LSTMs is demonstrated in Section 4, where the weights are updated every time a
new consumption profile for the day passed becomes fully available.

2.5. Transfer Learning with LSTMs

In general, transfer learning is used to improve the learning of a new task by trans-
ferring knowledge from a similar task to the current one. For LSTMs, as the weights
can be easily updated, transfer learning is straightforward. Recent work has been done,
e.g., in [37] for named-entity recognition or in [38] for speech recognition. Especially for
water consumption, daily profiles from different water utilities share similar behavior re-
sulting in one consumption peak in the morning and another one in the evening. Therefore,
it is expected that transferring LSTM knowledge from one network to another will yield
good results. This is demonstrated in Section 5.

3. Application: Decision Support for Water Supply Systems

As mentioned in the introduction, in order to efficiently run pumping stations, it is
crucial to make reliable predictions of the daily consumption profile for the next day.
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However, good predictions do not necessarily imply that pumps run efficiently. Therefore,
in this paper, the methods are initially compared with respect to their prediction quality
of the consumption profile, but the main focus is regarding their ability to improve the
overall efficiency of a pumping station. Recent work in the field of the overall optimization
of water distribution systems is, e.g., given in [39] or [40], while a good literature review
is in [41]. This paper relies on the work that was accomplished in the research project
H2Opt [1], where several pilot studies have been conducted to optimize the operation
of water supply systems. In the end, a decision support software [42] was developed
for a German city of about 100,000 citizens. In further studies, operation was optimized
by following the approach of a naïve predictor and assuming that the drinking water
consumption of the day under consideration was like the day before.

3.1. Water Suppply System

Figure 2 shows the scheme of the water supply system. It consists of the waterworks
from which four pumps feed drinking water into the system which is consumed by the
city. Superfluous drinking water is stored in a cylindrical container which has a diameter
of 42.43 m and a limited filling height of 9 m. It is consumed by the city at times of high
demand or when the pumps are turned off. The container allows to delay and possibly
improve pump operation. In addition, it is required that 44% of the total container volume
must be hold back in case of fire emergency. This means, the container level may not fall
below 4 m.

Figure 2. Scheme of the water supply system used for benchmarking. This figure is taken from the
work in [42] and is slightly modified.

3.2. Decision Support Software

Figure 3 describes the daily interaction with the H2Opt decision support software
that the operator at the waterworks goes through in the morning. By means of the soft-
ware, the operation of the pumps feeding drinking water into the consumption network
(see Figure 2) is planned and analyzed. Given the final decision, the operator enters a sched-
ule into the process control logic to control the feed pumps for the next 24 h. This planning
horizon is typical for many water supply systems. The schedule is based on hourly time
steps. On the one hand, these time steps are fine enough to react to daily water consumption
patterns. On the other hand, they prevent pumps to be switched on and off too often. This
is important, as sudden pump switches can lead to pressure shocks in the piping system
causing wear in both the piping system and the pumps. To match the operation schedule,
water consumption shall be predicted on an hourly basis for the next 24 h, as well.

In this paper, the H2Opt software is used for benchmarking the prediction models performing
the following steps:
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1. The evaluated demand forecasting models are used to predict sequences of 24 h
consumption profiles for one year. Each profile starts at midnight.

2. The resulting profiles are fed into the decision support software and operation plans
are computed.

3. Beyond the simulation based on the predicted water demand and the computed oper-
ation plan, another simulation is performed based on the realized water consumption
and the same operation plan.

4. The latter simulation must be checked for feasibility. It stays feasible if the water
level inside the storage container neither falls below the lower bound given by the
firefighting reserve nor exceeds the upper bound, meaning that there is an overflow
and water is wasted.

5. Finally, both simulations are compared by means of the end-of-day container level
of the water tank. The difference measures the prediction quality of the method for
each day.

For the water supplier, it is not the complete daily consumption profile, but the end-
of-day container level that is the more important value, as the next day’s pump operation
is based on this information.

Figure 3. Daily workflow of the operator using the decision supporting software H2Opt.

3.3. Use Cases for the Prediction of Water Demand

Two use cases are selected for benchmarking the performance of the different methods
against each other. Use case 1 is used for a comparison, while use case 2 is used for the
LSTM with transfer learning. Table 1 summarizes the data sets of the two use cases, and
Figure 4 shows the daily profiles, including the day of week and the standard deviation.
As there is only low standard deviation in the data, Figure 4 covers training and evaluation
data in one plot for each of the use cases. For exemplary prediction results using the online
learning approach, please refer to Figure 8.

In the data sets, the sampling rate was set to 1 h, meaning that the daily profile
of the water consumption consists of 24 values. Furthermore, each sample has been
enriched with the following meta data: (1) Day of the week: As daily consumption profiles
differ especially between working days and weekends, each sample gets as additional
information the current day of the week in terms of a number between 0—Monday and
6—Sunday. (2) National holidays: On a national holiday, water consumption follows the
behavior of a Sunday. Therefore, each sample is enriched with the information whether it
is a normal day, a day before a national holiday or a national holiday.
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Table 1. Summary of datasets.

Label Use Case 1 Use Case 2

Measurement Flow in [m3/h] Flow in [m3/h]
Sampling Rate 1 h 1 h
Total Days 1095 335
Days for Training 365 113
Days for Validation 365 111
Days for Test 365 111

Figure 6 explains the splitting of the data from use case 1 and use case 2 into different
sets. For use case 1, data have been split into three equal sets, namely, for training,
validation, and testing, while training and validation have been used for model fitting,
and the test data set is being used for the actual benchmarking. As use case 2 is used for
the evaluation of transfer learning capabilities for LSTMs, the data set only needs to be
separated into a training and test set.

Figure 4. Mean daily consumption profiles with standard deviation from the use cases for the seven
days of the week day.

4. Experimental Approach
4.1. Model Parameters

For each of the different methods, several parameters need to be set and tuned;
these are described in the following.

Naïve predictor: The only parameter the naïve predictor uses as information is the
number of the last days of the week in order to calculate an average profile. For the use
cases, this means that the predictor always works on the data from last week, therefore the
parameter D is set to one.

VAR: As input sequence for the vector autoregressive model, preceding water con-
sumption data, the name of the current weekday and the information whether the day in
question is a national holiday or a day before a national holiday are used. The output of
the VAR is the daily consumption profile for the next 24 h.

LSTM Network: The LSTM network uses the same input sequence as that one of the
VAR model. It has one hidden layer and, for the final prediction, a dense feedforward layer
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that transforms the output into a 24-dimensional vector is used, describing the future water
demand of the next 24 h.

Neural networks are notorious for the number of hyperparameters that need not be
optimized. There are hyperparameters for the training process, parameters that define
the networks’ architecture, and so on. Concerning the architecture during the training
process, the LSTM network was configured with a dropout rate of 20% (Géron’s book
recommendation for RNNs); this arbitrarily set parameter is a popular regularization
method to avoid overfitting and increase accuracy. Dropout rate means that for each step
when the network is trained, there is an assigned probability, in this case of 0.2, for each
neuron to disappear or, which is the same, the associated weight is set to 0. Therefore,
the network is slightly different in every training step.

Moreover, two hyperparameters—the batch size and the number of units—were opti-
mized. The former refers to the number of days (samples), each with 24 data points, that
the network sees in order to calculate an error and update its weights W, whereas the latter
defines the dimension of the hidden state vector ht, that is, n in the equations that describe
the LSTM cell of Figure 1, also known as model order.

In preparation for finding optimal values for the number of units and batch size,
the data set from use case 1 was selected, setting the following search spaces:

SB = {1, 5, 73, 365} (8)

SU = {50, 100, 150, 200, 250, 300} (9)

The minimum batch size in the search space SB is set to one day, whereas the maximum
takes the whole year, i.e., 365 days. Note that all selected values for the batch size are
factors of 365, allowing the network to be trained with all the samples (days) contained in
the validation data set.

Regarding the number of units, the search space was set between 50 and 300 with
discrete step size of 50.

Given the small size of the search spaces resulting in 24 combinations of parameters,
namely, candidates, it is possible to scan each one in order to see when the best prediction
over the validation data is obtained. This brute force algorithm, known as grid search,
has a wide range of applications going beyond tuning the hyperparameters of a neural
networks. For instance, the reader can find a step-by-step description of the algorithm
in [43], where the aim was to find parameters to overfit a previously known function.
As far as for the validation strategy, 365 samples (days) were selected for training and
365 samples for validation (see data splits of the LSTM in Batch Learning from Figure 6).
This was decided after several trials with 3-fold and 5-fold cross-validation using the train
and validation data as one joined data set led to non-stable optimization results, making it
so the strategy unreliable even when the order of days and fold sequences were preserved.
After running grid search twenty times per combination of hyperparameters and averaging
the root mean squared errors (RMSE), that is,

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷ[i]− y[i])2 with i = 1, . . . , N (10)

where y is the water flow in the validation data set, ŷ is the predicted water flow using the
fitted network with the train data set an at hourly time step i and N = 24× 365, the ranks
of each combination was obtained as depicted below in Figure 5.
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Figure 5. Ranking of hyperparameters combinations. Each point represents the average of the twenty
RMSE calculations.

In general, keeping low values for the batch size (1 or 5) will yield better results than
taking the complete training data as one batch. Regarding the number of units, any selected
value from the search space will be able to model the function with enough flexibility,
thus generating similarly good results. Finally, a batch size of 5 and 100 units are used for
the network’s architecture. Note that these optimized parameters yield the best solution
for the validation set, meaning that they may not generate an optimal solution for the
test data set. The same architecture was also used to produce the forecasts for use case 2.
In this publication, the fitting of the LSTM hyperparameters was performed by taking into
account the measurements with the information about the weekday and if it is a work day,
national holiday, or the day before a national holiday.

4.2. Evaluation Metric for Model Comparison

For a quantitative comparison of the methods, the root mean square error (RMSE) for
each day as well as the RMSE for the whole test data set are calculated. The RMSE for each
days is calculated as follows:

ERMSE[j] =

√√√√ 1
Nd

Nd

∑
i=1

(ŷj[i]− yj[i])2 with j = 1, . . . , N (11)

with Nd being in our case the 24 h of the daily profile at day j. This describes the size of
the test data set, in our case 365 days, yj ∈ R is the correct consumption and ŷj ∈ R the
model estimate. Validating the performance of the models against the real consumption
profiles and against each other is done by using boxplots and by calculating the mean and
standard deviation of ERMSE. During the development of the methods, other performance
measures, like mean absolute percentage error (MAPE) or the mean absolute error (MAE),
have been taken into account and evaluated. As this led to similar results, they are not
considered in this paper.

5. Results for Consumption Profile Prediction

In the following, several methods are used for the prediction of the daily consumption
profiles and benchmarked against each other. This quality of the daily consumption predic-
tion can be seen as an important step with regard to the improvement of the pump schedule
planning. To compare the individual methods against each other, two scenarios—batch
learning, following the traditional approach in machine learning, and online learning—are
distinguished from each other. Both scenarios with the used methods are shown in Figure 6.
In the following, the results of the two scenarios batch learning and online-learning are
described in detail.
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Figure 6. Used scenarios for benchmarking the performance of the different methods.

5.1. Scenario 1: Batch Learning

In machine learning, a classic approach means to train a model on historical data and
then keeping its parameters unchanged for prediction. Not changing parameters has the
advantage that no abnormal behavior like flushing of pipes or pipe breaks are accidentally
learned by the model. Still, not updating the model also means that no long-term effects like
seasonality can be learned by the model. In the following, the two models VAR and LSTM
1 are initially trained on the data set from use case 1 and then kept constant. The results
on the test data set are given in Figure 7 in terms of boxplots. Furthermore, for a better
understanding on how the methods behave, the lower plot in Figure 7 shows the daily
consumption profile of a randomly selected week.

Regarding the root mean square error, the LSTM 1 achieves an ERMSE of 48.3 m3 per
day, while the VAR performs slightly worse, ending up in a value of 52.3 m3. Regarding
the boxplots, both methods result in a similar interquartile distance of 29.3 m3 (VAR) and
28.5 m3 (LSTM 1) per day. When calculating the mean (and not the median like in the box
plots) of LSTM 1 this results in 52.27 m3 and for the VAR in 56.58 m3 per day. To interpret
the ERMSE, in that case this means nothing else then the size by which the models have
missed the daily consumption on the average.

Finally, the question arises, why LSTM 1 significantly outperforms the VAR. Therefore,
LSTM 1 and VAR were trained again, while removing the weekday and holiday information
from the data set. In that case, both methods perform equally well, while the resulting
box plots are similar to the one of the VAR in Figure 7. This can be interpreted in the way
that during training the VAR neglects the information of the weekday, making the method
perform more poorly than the LSTM on the prediction of the week-end consumption
profiles. The LSTM, due to its long-term memory, can cope with this information, resulting
in a significantly better performance. Of course, it would be possible to develop a heuristic,
e.g., by using one VAR for the weekend and one VAR for weekends and national holidays
to achieve better results. Still, note that regarding the LSTM, no external logic from the
expert is needed as the LSTM can find the heuristic by itself. For the end user, this provides
a more comfortable possibility to connect it to different water distribution networks.
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Figure 7. Upper plot: Resulting boxplots when performing batch learning using a VAR and LSTM
model. Lower plot: Exemplary predicted daily profiles for water consumption profiles for one week.

5.2. Online Learning

Historical data are not always available for training: for the prediction of a consump-
tion profile, new sensors need to be installed or the cleaning and preparation of historical
data is not feasible. Regarding LSTMs, under these circumstances two approaches are
possible to train a model every time when a new daily profile is available: (1) Start with
an untrained model which only knows the architecture (e.g., how many units and which
layers should be used). This model learns to predict the water consumption “on the fly”,
meaning that the first couple of predictions will not give reasonable results, but, as more
data is available, the better the prediction will be. (2) Take a model from another water
distribution network which has a similar behavior. Use this model as a starting point
and adapt its hyperparameters through online learning. Furthermore, even when having
historical data available, it can also be interesting to perform an online learning on a well
fitted LSTM from batch learning (see scenario 1). One of the reasons in this use case is,
e.g., if one wants to integrate seasonality into the prediction of the model. In the following,
three approaches are compared to each other, one model being pretrained on use case
1 (LSTM 2), another model being pretrained on use case 2 (LSTM 3), and a third model
without pretraining (LSTM 4).

The results of all three LSTMs are sketched in Figure 8. The upper plot shows the
convergence rate on a daily base on the first 100 days and the lower plot shows an exemplar
of the first predicted consumption profiles for model LSTM 4 doing online learning without
pretraining.

As one could have expected, LSTM 2 gives the best results. Additionally, the ERMSE
error stays almost constant, meaning that the model parameters are only slightly changing.
Investigating the learning process for the two other models gives some more interesting
results. First, already after four days, the model without pretraining, LSTM 4, outperforms
the model LSTM 3: the transfer learning model does not forget its old state fast enough.
After around 40 days, both LSTMs behave similar, slowly converging against LSTM 2.

As mentioned, the lower plot in Figure 8 shows the first six days from LSTM 4. In that
case results are remarkable, as the third day (meaning 4 days of training are used) is
already predicted quite well. Of course, this model still does not have any information
about weekends or national holidays, which leads to a large ERMSE when testing the
LSTM on the complete test data set. Still, especially from an end user point of view, this
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result is interesting as untrained LSTMs can be connected to distribution plant and deliver
reasonable results quite fast.

Figure 8. Results of online learning using three types of LSTMs. Upper plot: convergence of the
different LSTMS. Lower plot: First predicted consumption profiles from the LSTM doing online
learning “on the fly”.

6. Results for Optimal Pump Control

As a base for the computation of one year of optimal pump control for the water
supply system of a city with 100,000 inhabitants, the six different models from the previous
sections—four LSTM-models, the naïve predictor, and VAR-model—were used to predict
the water consumption of each day. The Naïve predictor, described in the beginning of the
paper, has already been implied in field tests in the considered water supply system [42].
Using the described decision support software H2Opt, optimization of the pump operation
was done for all prediction models over a period of one year. The simulations were
compared to simulations using the third year of use case 1 as realized consumption data
together with the optimized pump operation plans. For all prediction models, optimization
of the pump operation was possible for 346 out of 365 days of the year. All of the 19 missing
days could not be simulated as either the consumption-related data were missing or the
software could not handle special occurrences in the waterworks. Therefore, the problems
with simulating and optimizing pump operation on these days are independent of the
prediction models.

Further on to these days, seven additional days were manually classified as “outliers”
(Table 2). These days stand out in that the predicted water consumption of some hours
deviates by more than 500 m3/h from the real data. The reason for the deviations can
mainly be found in measurement data, although we do not always know if they are
measurement errors (as for 28 April 2014) or especially high or low water consumptions
(like pipe breaks, for example). The naïve predictor and VAR, which depend directly on
the data prior to prediction, are most sensitive to such non-typical measurement data. This
can be seen for example for the day 28 April 2014 which was classified as outlier due to
measurement errors in the true data (not shown). However, the following day was only
classified as outlier for the two models that use preceding day for prediction on that day,
but not for the four LSTM-based models.

Figure 9 and Table 3 summarize the results of the simulations. For the water supplier,
it is of importance that a planned schedule remains feasible under the realized water
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consumption. This means that the storage container of the system must neither over-
flow nor its content fall below a given threshold of water that is stored for firefighting.
When optimizing pump operation with respect to energy efficiency, the pumps are usually
operated such that the storage container is often at its lower limit. Therefore, even small
deviations of the true water consumption from the prediction used for optimization could
lead to infeasibility of the planned pump operation schedule. Table 3 shows that, as far as
feasibility is concerned, the LSTM 1 outperforms the other models clearly. It is followed by
VAR, LSTM 4, the Naïve predictor, LSTM 2, and LSTM 3.

Despite the feasibility of a plan, the end-of-day container level is an important figure
for water suppliers to rank the quality of a pump operation schedule, as it is the base for
starting the operation planning of the next day. Therefore, the optimization result should be
reliable concerning this number. Figure 9 reveals that the optimized end-of-day container
levels exhibit some difference to the true value when simulating the optimized pump
operation plan under the realized water consumption, i.e., the third year of the use case 1
data. Yet, the variance of the deviations is smaller for the LSTM-based methods and VAR
than for the naïve predictor-based optimizations. No matter which variances are looked
at (with or without the outliers given in Table 2), there is a clear ranking in performance
of this key parameter: The naïve predictor is the worst, followed by VAR and LSTM 1,
with at least 1% smaller standard deviation values. In contrast, the models incorporating
online learning all perform better in their mean values as well as in standard deviations of
end-of-day container level difference. The LSTM-based models 2–4, that all used online
learning, show only slight differences: The online (LSTM 2) and transfer learning model
(LSTm3) perform a little better than the LSTM without pretraining (LSTM 4). However,
the differences are within ±2 cm. This raises hope that even an untrained LSTM model
can very soon deliver high quality results. The deviations are larger in summer months,
when the water consumption is less uniform from day to day than in winter, and therefore
more difficult to predict. During this phase, the online learning LSTMs yield better results
than LSTM 1, which is more or less as good as VAR, but still better than the Naïve predictor.

Table 2. Results: Outliers. Days that are manually classified as outliers due to high deviations in
water consumption prediction from true water consumption.

Day Naïve Predictor LSTM 1 LSTM 2 LSTM 3 LSTM 4 VAR

2014-4-28 x x x x x x
2014-4-29 x x
2014-6-29 x
2014-7-4 x x
2014-7-6 x
2014-7-21 x
2014-12-31 x
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Table 3. Results of optimal pump control. Rows 1–3 show the results concerning feasibility of the simulation and the predictions of the consumption. Rows 4–7 show the mean end-of-day container
level differences between the simulations using predicted consumption and realized consumptions for the whole year (row 4–5) and the summer months (rows 6–7) either with or without the outliers
from line 3 and Table 2. Each cell in row 4–7 contains four entries: the mean and standard deviation of the absolute container level differences in meters and their representations in percentage of total
container height. Bold values: lowest and highest variance in percentage of container level deviations.

Naïve Predictor LSTM 1 LSTM 2 LSTM 3 LSTM 4 VAR

Optimized days days 346 346 346 346 346 346

Feasible days after re-simulation days 228 287 215 209 240 270
(65.9%) (82.9%) (62.1%) (60.4%) (69.4%) (78.0%)

Additional outliers days 5 2 1 1 2 3
End-of-day container level differences
All days m −0.01± 0.55 −0.14± 0.42 0.04± 0.37 0.02± 0.37 −0.01± 0.37 −0.17± 0.43

% −0.1± 6.1 −1.6± 4.7 0.4± 4.1 0.2± 4.1 −0.1± 4.1 −1.9± 4.8

All days without additional outliers m −0.01± 0.50 −0.13± 0.51 0.04± 0.35 0.02± 0.35 −0.00± 0.36 0.01± 0.36
% −0.1± 5.6 −1.4± 4.6 0.4± 3.9 0.2± 3.9 −0.1± 4.0 0.1± 4.0

April-September m −0.03± 0.73 −0.08± 0.53 0.03± 0.46 0.03± 0.47 −0.03± 0.46 −0.10± 0.54
% −0.3± 8.1 −0.8± 5.9 0.2± 5.3 0.3± 5.2 0.3± 5.1 −1.1± 6.0

April-September without
additional outliers

m −0.00± 0.66 −0.08± 0.52 0.03± 0.44 0.03± 0.45 −0.03± 0.45 −0.09± 0.53
% −0.0± 7.3 −0.9± 5.8 0.3± 4.9 0.3± 5.0 −0.3± 5.0 −1.0± 5.9
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Figure 9. Differences in end-of-day container levels between pump operation optimization using predicted water consump-
tion and simulating the optimized pump operation plan with the realized water consumption. The outliers given in Table 2
are excluded.
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7. Conclusions

In summary, all methods can be used for the definition of pump schedules for the next
24 h. All investigated methods have shown reasonable results for the prediction of the next
days consumption profile.

By passing the methods one by one, initially the vector autoregressive model, as a
traditional method for time series prediction, achieved the expected results only lacking
the possibility to integrate categorical data, like day of the week and national holidays.

The LSTM, being in focus in this paper, was investigated in several points of view.
First, it was benchmarked against the VAR. Due to its characteristic to have a long-term
memory, it has the possibility to separate different days of the week from each other leading
to a better performance compared to the VAR. In a next step, the LSTM has been examined
regarding suitability for online learning. In that case, the results are quite promising.
Especially the learning rate of the completely untrained LSTM, which only needs a couple
of days to achieve reasonable results, should again be emphasized. Using a pretrained
model from another network should be done with care as worse results are achieved
compared to a completely untrained one. One reason is that the LSTM does not forget its
initial parameterization state fast enough and therefore performs worse than a completely
untrained one. This leads to the research question whether the LSTM architecture can be
adapted appropriately, e.g., by adding a parameterizable forgetting factor into a cell to
improve the transfer learning. Another leftover research question is whether the results
achieved on this use case (remember use case 2 was only used for pretraining a LSTM) can
be generalized to predict consumption profiles from other networks.

Beyond evaluating the prediction models themselves, they were tested in a typical use
case: In a one-year-long simulation study, they served as input for optimizing the pump
operation of the next day. As benchmark, a naïve predictor model was used, which had
already been proven to be valid in several field tests. The results strengthen the trust in
the LSTM method which performed very similar or even better than the benchmark in
all performance indicators. Especially, the good quality of the LSTM with no pretraining
is of interest for small water suppliers that have no capacity to store large amounts of
historical data.

Finally, less of a research but more of an IT challenge will be to bring LSTM models
into a real production environment. A question that arises in that setting is how to verify
that the LSTM is in its working range and does not produce faulty results, e.g., due to some
changes in the input data set which it is not informed about.
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