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Abstract: Increasing food demand has exerted tremendous stress on agricultural water usages
worldwide, often with a threat to sustainability in agricultural production and, hence, food security.
Various resource-conservation technologies like conservation agriculture (CA) and water-saving
measures are being increasingly adopted to overcome these problems. While these technologies
provide some short- and long-term benefits of reduced labor costs, stabilized or increased crop
yield, increased water productivity, and improved soil health at farm scale, their overall impacts
on hydrology outcomes remain unclear at larger temporal and spatial scales. Although directly
linked to the regional hydrological cycle, irrigation remains a less understood component. The
ecological conditions arising from the hydrology outcomes of resource-conservation technologies
are associated with sustainability in agricultural production. In this paper, the philosophies and
benefits of resource-conservation technologies and expert perceptions on their impacts on temporal
and spatial scales have been reviewed comprehensively focusing on regional hydrology outcomes in
the Eastern Gangetic Plain (EGP). Due to data inadequacy and lack of knowledge-sharing among
disciplines, little is yet known about actual water saving by these resource-conservation technologies
and the level of their contribution in groundwater and surface water storage over large temporal and
spatial scales. Inadequate knowledge of the hydrological effects of water applied in the agricultural
field leads to the implementation of water management policy based on local perspectives only,
often with the possibility of deteriorating the water-scarcity situation. Therefore, multidisciplinary
future research should quantify regional hydrology outcomes by measuring the components of
regional water balance in order to develop a proper water management policy for sustainable
agricultural production.

Keywords: irrigation management; rice; percolation; scale effects; hydrologic cycle

1. Introduction

The global demand for food, energy and water by the ever-growing population has
been forecasted to increase by 50%, 50% and 30%, respectively, in 2030 compared to
2012 [1]; in the same base period, food demand will increase by 70% to 100% by 2050 [2].
The Indo-Gangetic Plains (IGP) comprising more than 250 Mha of area across Bangladesh,
India, Pakistan and southern Nepal have over 100 Mha of agricultural land and host
over 750 million people [3]. The Lower Gangetic Plain, called the Eastern Gangetic Plain
(EGP), comprises the adjoining states of Bihar and northern West Bengal in North-eastern
India, the North-West of Bangladesh and the Terai plains of Nepal (Figure 1). The EGP
is characterized by the world’s highest density of rural poor, persistent yield gaps, low
agricultural productivity, limited crop diversification, ample water resources [4,5], and
highly fertile lands [6,7] of agricultural importance [8]. The region is therefore a global
priority for sustainably increasing food production [9].
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Figure 1. Location and area map of the Eastern Gangetic Plain (EGP) region.

Agricultural productivity is critically dependent on the availability of water. Ade-
quate water supply significantly increases crop productivity [10,11] by introducing high
yielding crop varieties, a better cropping pattern, and increasing cropping intensity [12].
Compared to rain-fed agriculture, irrigated agriculture produces two to four times more
crop yields [13]. This contribution of irrigation increased global irrigated land by 76%
between 1970 and 2012 [14]; the reliance of agricultural production on irrigation is expected
to further increase in the future [15]. Farmers’ capacity to access and use water is a major
driving factor in obtaining the best yield and hence is an important variable for the food
security index [16]. However, the growing competition for water by various sectors will
affect farmers’ ability to produce food [17,18]. So, making food production sustainable,
while conserving diminishing water supplies, will be a great challenge in the future [19].

The Ganges basin has a tropical climate, with a distinct wet monsoon (June–September)
and a dry winter (November–February); the summer is characteristically hot and humid.
Except for the East and North-East hilly regions of the basin where annual rainfall often
exceeds 4000 mm, the average annual rainfall in most other parts is 1500 mm. The rainfall
is mostly concentrated in the monsoon season and the winter is almost rainless [20] but the
main cropping season. In many parts of the IGP, agricultural drought and other climatic
shocks severely affect crop production, thus, necessitating an adequate water supply to
stabilize agricultural production [21,22]. Surface water is inadequate in the dry season, but
groundwater plays a vital role in sustaining agricultural productivity. In India, 60% of the
agricultural water requirement is satisfied from groundwater, covering over 50% of the
irrigated area [23]; in Bangladesh, the corresponding quantities are 79% and 85% [24]. Of
the many factors now threatening sustainability in agricultural productivity, water is the
most crucial [25–33] since, without further improvement in water productivity, the amount
of water needed for crop agriculture is predicted to increase by 70–90% by 2050 [34].

Several resource-conservation technologies like minimum tillage, no/zero-tillage,
direct-seeding, bed-planting, laser land-leveling and residue retention [35–37], and water-
saving technologies like alternate wetting and drying (AWD) and deficit irrigation methods
have been developed over the past three decades and are being practiced in many parts of
the world, including the EGP. In addition to the benefits from the conserved resources, these
technologies can also change crop-water use and the regional water cycle [38] with negative
impact on groundwater dynamics [39]. They save water by reducing water application
in the fields, with resulting lower percolation and groundwater recharge. Large-scale
adoption of these technologies can therefore lead to significant decline in groundwater
levels [40–42], with possible degradation of soil quality and damage of vegetation [43]. In
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many parts of the EGP, groundwater level has declined significantly, and is now threatening
sustainable water supply for irrigation and drinking [44–49] with resulting negative impacts
on the economy, society and environment [50–53]. Although less than one-third of the
IGP has experienced declining groundwater levels [54] the situations in high-population
centers (e.g., Dhaka city) and other stressed areas (e.g., the Barind area) are potentially
alarming [49].

Agriculture in the IGP is mostly dominated by irrigated rice–wheat systems, which
cover 13.5 Mha and play a crucial role in the food security and livelihoods of millions of peo-
ple [37,55,56]. In Bangladesh and West Bengal, rice is produced on 6.05 Mha and 5.5 Mha,
respectively [57]. Both mechanized and tillage-based traditional agriculture and trans-
planted rice cultivation with flood irrigation requiring a huge quantity of water [58–60]
are a major challenge in agriculture, in order to maintain or increase rice production.
Shifting current agriculture to water-efficient ones [61–65] would conserve water from
being wasted through unintended purposes and make considerable water savings [66–69]
to face the challenge. Conversion of conventional agriculture to resource-conservation
methods [70–72] using resource-conservation technologies and water-saving measures has
been demonstrated as of particular interest in this regard [29,73–76].

When water is applied in a crop field, not all of it is consumed as illustrated in
Figure 2. The local surface and sub-surface hydrological systems retain a considerable
portion of the applied water, which might be reusable later by other users. Consequently,
irrigation has a direct link to the regional hydrological cycle, especially in areas with
shallow groundwater [54]. A large part of the applied irrigation water infiltrates below
the root zone and is stored in the underlying aquifer [7,43] or in downstream surface
water bodies. Figure 3 conceptualizes the flow paths of the components of water from a
rice field under conventional flood irrigation with pumped groundwater. The percolated
water is perceived as lost by the farmers and irrigation practitioners [77] but is a gain to
the local surface and sub-surface hydrological systems. The efficiency of water usage at
any separate component (e.g., crop fields, ponds) within the hydrological system may
be low, but the overall efficiency of the entire system can be much higher than in the
individual components. So, the general concept of water use efficiency undervalues the
real efficiency of the whole hydrological system. Water recycling must be integrated into
the concept of water-use efficiency to develop new realistic concepts [78]. The water
flux exchanging between the aquifer and vadoze zone greatly controls the dynamics of
the groundwater table [39] thus raising a valid question of how the currently advocated
water-saving measures impact on the hydrological cycle of a groundwater basin. Do these
water-saving measures assure proper utilization of groundwater reserves? In situations
where downstream aquifers and surface water bodies are fed from upstream aquifers, what
will be the effects of the water-saving measures on these downstream water resources
(Figure 3)? These important issues have not yet been investigated critically on the system
level; only some field-scale studies have investigated the possibilities, which are also
contrasting in nature. A summary of the major previous studies assessing the impacts of
various agricultural water-saving technologies on local and regional hydrology is presented
in Table 1. In light of this short-coming, this paper comprehensively reviewed the available
literature to evaluate the present state of knowledge and emerging knowledge-gaps on this
subject so as to guide future research on this topic. Note that since rice-based cropping
systems dominate the agricultural landscape of the EGP [56], this study focuses on the
exchange of water flux between irrigated rice fields and the underlying aquifers. The paper
is structured into five major sections in addition to an introduction and a concluding section.
The benefits and impacts of conservation agriculture have been reviewed in the second
section. The third section highlights the complementary and contemporary meanings of
water saving while the fourth section addresses the impacts of agricultural water-saving
methods on regional hydrology outcomes (i.e., links between various components of the
regional hydrological cycle). The next section identifies current knowledge gaps in the
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key water-saving issues, including scale-effects and policy, before an overall summary and
concluding section on water-saving measures and regional hydrology outcomes.

Figure 2. Utilization and fate of applied water to crop fields and hydrological links to groundwa-
ter resources.

Figure 3. The pathways of the components of water from a rice field under conventional irrigation
with groundwater.

2. Conservation Agriculture
2.1. Philosophies and Benefits

Conservation agriculture (CA) has been developed as a response to concerns about
sustainability in agriculture [55,79–83] with basic principles of rebuilding soil, optimizing
crop production inputs (resource and energy), enhancing food production and optimizing
profits [84–87]. It comprises application of three inter-linked principles: (i) no or minimum
mechanical soil disturbance through conservation tillage (e.g., minimum or zero-tillage), (ii)
biomass mulch soil cover (e.g., crop residues), and (iii) crop diversification, as well as other
practices of integrated crop management [88]. Under conservation tillage, approximately
30% of the soil surface is kept covered with crop residues, which reduces erosion of surface
soil by overland flow [89,90]; a crop is planted directly into a seedbed without any tillage
operation in the zero-tillage system. Cultivation of wheat under zero-tillage in the rice-
wheat cropping system is an emerging CA-based technology in the IGP [91]. A CA-based
sustainable intensification program was started in 2014–15 in two districts each of Nepal,
Bangladesh, and Bihar and West Bengal in India [92]. Globally, the cropland under CA
increased at 5.3 Mha annually since 1990 and reached 106 Mha in 2008/2009 [93] and
180 Mha in 2015/2016; 78 countries in the world have adopted CA practices.
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Table 1. Summary of major previous studies assessing the impacts of agricultural water-saving
technologies on local and regional hydrology. The studies are grouped by apparent and actual
water saving, impacts of water-saving measures on water usage and regional water balance, gaps in
current knowledge in certainty and scale-effect of water saving, and policy formulation for water
resources management.

Main Findings References

Apparent and actual water saving

Water-saving technologies make only narrowly perceived local water
saving without considering irrigation return flows. [94,95]

Percolation from irrigated fields recharges the underlying aquifer in
many groundwater basins, including the IGP basin, from where it is
recoverable for reuse; so is not a loss.

[54,96–102]

Water-saving by one user may be a loss to another over large spatial
scale. So, reducing percolation does not always save water. [75,95,103,104]

Reduction in evaporation and water-flows to non-recoverable sinks
(e.g., polluted water sources) makes actual water saving. [105–107]

Impacts of water-saving measures on water usage

Alternate wetting and drying (AWD) water management method saves
between 15% and 60% of water compared to continuous standing
water rice system.

[60,108–112]

Demand for water increases when technological intervention adds
more value to it (e.g., reduced cost of water due to increased irrigation
efficiency); this is the re-bound effect.

[75,113–116]

Re-bound effect is a potential hindrance in water
resource management. [117]

Impacts of water-saving measures on regional water balance

Water-saving measures over regional scales cause decline in
groundwater level by limiting recharge and exert stress on regional
hydrology and ecology.

[38,40,77,118]

Most rivers and aquifer systems are hydraulically connected in
Bangladesh and the Bengal Basin. [119,120]

Separate management of surface and groundwater in the
interconnected hydrologic systems hinders water resource allocation. [121–123]

Knowledge gaps in certainty and scale-effect in water saving

Impacts of water-saving technologies on the degree of actual
water-savings and overall water usage in groundwater-based irrigation
systems are poorly understood at larger spatial scales.

[75,95,115,116,124]

The components of water balance in the Eastern Gangetic Plain (EGP)
basin have not been quantified yet. [106,125]

Focusing on only local efficiency of water use and ignoring the return
flows is a risky perception. [126]

Knowledge gaps in formulating proper policy for water resources management

Lack of attention, improper legislation and ineffective/less-effective
institutions are the common problems in governing groundwater in
many countries, especially in the face of re-bound effect.

[75,127–129]

Reliable detail information on water reserves, safe yield, water
withdrawal patterns and water quality dynamics in the aquifers is
lacking in most of the EGP basin.

[130]

Whether water-saving technologies can maintain sustainable
development and what more need to be done for this in future
remain uncertain.

[39]

Appropriate strategy for water management should be regionally
suited and must establish strong regulation and policy. This is a topic
of future research for the Indo-Gangetic Plains (IGP) basin.

[9,131–134]
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Resource-conservation technologies have revealed some promising immediate [135–137]
and long-term benefits [138–140]. They reduce field-scale irrigation, fertilizer applica-
tions, labor shortages, energy use, greenhouse gas emission, and erosion of field soil;
while they increase soil organic matter and biotic activity, crop diversification, yields, and
farm incomes by improving resource-use efficiency [36,37,55,75,83,91,141–146]. Tillage
accelerates oxidation of soil organic matter to CO2 and loss to the atmosphere, but CA
reduces the oxidation rate [147,148]. Increased crop residues under CA and root exudation
of carbon compounds into the soil cause a reversal of soil carbon from net loss to a net
gain [86,149–151]. In spite of these multiple benefits [152–154] the farmers’ prime interest in
CA-based agriculture is mostly the monetary gain [155]. Nonetheless, CA is now emerging
as a major component of farming systems for ensuring food security in South Asia [85,87].

2.2. Impacts on Soil and Water Use

The effects of conservation agriculture on soil properties vary depending on the type
of chosen system, soil-type, climatic conditions, cropping history, etc. [156–158]. Soil
becomes more stable and less susceptible to erosion under zero-tillage compared to con-
ventional tillage [158,159] and provides more satisfactory physical properties for crop
production [160]. Soil organic carbon increases [92,161,162] and pH decreases [163] under
zero-tillage compared to a conventional tillage system over time [164,165]. Organic matter
improves soil aggregation, alters pore-size distribution, reduces soil bulk density, and in-
creases both total and effective porosities within 0–5 cm soil profile [166,167]. The increased
number of 0.5–50 µm pores augments soil-water storage and 50–500 µm pores enhance wa-
ter movement through the soil [92,168]. Conventional tillage creates a surface crust of high
bulk density, while long-term (e.g., 8–10 years) zero-tillage helps in forming many continu-
ous pores extending from the soil surface to the deeper layers causing significant increase
in infiltration [161,166,169–171]. Zero-tillage thus increases the saturated and unsaturated
hydraulic conductivity of soils [159,162,172,173]. Conservation tillage can increase the
capture of rainfall and reduce runoff due to stable aggregates and increased porosity in
the surface soil [174] and water-holding capacity due to increased organic matter [159]
with resulting reduction in surface evaporation. The magnitudes of water-, labor- and
energy-saving of some CA practices are listed in Table 2. However, generalization about
such gains in water saving for all hydrological situations can provide a wrong message in
many regions. In the dry season, there is not enough water on the soil surface to increase its
capture in the soil within the EGP. There are only occasional relatively ample rainfall events
in some areas of the EGP, in which cases CA can make more water available for plants’
use and increase the precipitation-use efficiency of the production system [166]. However,
water is almost always in excess of soil’s saturation capacity in the wet season, thus leaving
no scope for further capturing of rainfall into the soil. The important controlling factors in
conserving water in the wet season are the infiltration capacity and hydraulic conductivity
of the soil. However, this likelihood has not yet been investigated.

Table 2. Degree of benefits of conservation agricultural (CA) practices.

CA Practices Benefits Magnitude References

Zero tillage/ laser land leveling/
bed and furrow planting Water saving 23–45% [175]

Zero tillage Water saving 5–15% [176]
Laser land leveling Water saving 25% [177]
Permanent bed Water saving 10.6% [178]
Zero-tillage Water saving 21.8% [178]
Direct-seeded rice Labor saving 40–45% [179]
Direct-seeded rice Water saving 30–40% [179]
Direct-seeded rice Energy saving 60–70% [179]
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3. Agricultural Water–Saving
3.1. Water-Saving Measures

Water-saving irrigation, groundwater regulation, shifts to rain-fed agriculture, artifi-
cial recharge to groundwater, rainwater preservation, virtual water imports and indirect
approaches like energy pricing and regulation are the currently available measures to
reduce regional water use [134,180]. However, appropriate water-accounting is essential
to identify the scope of these water-saving practices [181]. Based on the approach of re-
ducing evaporation, runoff losses, and the extent of free water on the soil surface [182]
irrigation strategies like shallow water depth associated with wetting and drying [183,184],
alternate wetting and drying, AWD [108,124,185,186], semi-drying [187], aerobic rice culti-
vation [188,189], partial root-zone drying [190], and non-flooded mulching [191] are being
practiced in different rice-growing regions. The AWD technique allows the soil to dry
for a certain pre-determined number of days after depletion of the standing water in the
field before the next irrigation [192]. The multiple-shallow irrigation method (1–3 cm
irrigation applied frequently) can efficiently utilize rainfall and reduce percolation and
surface runoff [94]. In the aerobic cultivation method, rice is grown in well-drained dry
soils with supplementary irrigation, as with upland crops [188]. Furrow irrigation with
raised beds, mulching, conservation tillage, deficit irrigation [193–195] and improved weed
control can also achieve substantial water-saving.

3.2. Apparent and Actual Water-Saving

The impact of efficiency of water consumption and water productivity on water-
saving has been investigated at field scale on several occasions e.g., [196–200]. Any effort
toward improving irrigation efficiency is valuable [201], but the commonly used concepts
of water-use efficiency underestimate the system-level’s actual efficiency [78]. The actual
fraction of the applied water that is used efficiently at a regional scale has not yet been
quantified; current measurement methods are inadequate for such quantification.

All the water applied in the crop/rice fields ends up at any of, or a combination of,
consumptive use, non-consumptive use, non-recoverable flow (Figure 2), and change in
storage [95]. These water use-terms allow a clearer definition of various issues and options
for water usage in irrigated agriculture. Water-saving through a resource-conservation
technology refers to a narrow local perspective of water application by reducing percolation
rates, as conceptualized in Figure 4. This water-saving does not account for return flows
from the irrigated field that may be either non-recoverable outflow (e.g., to saline or
otherwise polluted groundwater or surface water as schematized in Figure 5) or recoverable
outflow, where it ends up in rivers or as useable groundwater source [94,95]. The return
flow may be a significant contributor to groundwater recharge [131,202–204].

Figure 4. Conceptualizing of impacts of water-saving measures on regional surface and groundwater
sources when irrigation uses groundwater.
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Figure 5. Water loss and water saving issues under conventional and water-saving irrigation from
surface water sources when underground aquifer contains polluted water (e.g., saline).

Due to various natural calamities (e.g., seasonal storms, hailstorms, cyclonic storms,
heavy rainfall and floods), dry season is the main and safe cropping season in the EGP,
which has an annually renewable groundwater system. Here irrigation is predominantly
done with groundwater; 79% of total irrigation in Bangladesh and more than 90% of
irrigation in North-West India uses groundwater. An individual farmer considers the
combined outflow of water by evapotranspiration, seepage and percolation as water usage
by his/her rice field and hence actual water loss in the field. However, when considering a
large spatial scale, achieving water-saving by one user may be a loss to another since the
seepage and percolation from one’s field enter the underlying aquifer or nearby surface
water sources, from where others can reuse the water [75,103] causing no net loss to the
system [205,206]. The real water-saving occurs only when the non-recoverable non-usable
water losses (Figure 2) are eliminated or reduced. Avoidance of peak evaporative demand,
use of short-duration varieties, cultivating less water-demanding crops, and changing from
ponded to non-ponded rice culture are the potential technologies for reducing evapotran-
spiration [205–207]. The practicability and effects of technologies on crop yields must,
however, be investigated before their large-scale field adoption.

Modifications of the water balance components by resource-conservation technologies,
the fate of water saved through reduced application, and hydrologic interactions across
spatial scales determine whether any reduction in water application leads to actual water-
saving and reduces water usage [75]. Farmers always intend to achieve maximum output
from the water resource, leading them to utilize as much water as they can have access to.
Society, on the other hand, prefers utilizing scarce water to maximize profits by shifting
water from agriculture to high-value economic sectors. The goals of the two entities in
utilizing the scarce water are clearly opposing, and therefore appropriate terminology to
describe real water-saving remains a central issue of debate [95].

Interactions between non-agricultural and agricultural water usages are scale-depen
dent and play a major role in water-saving [208]. At basin scale, the main interest is to
reduce water usage in irrigated agriculture and transfer water to other higher-valued
usages. This again implies that actual water-saving can be achieved only by reducing
evaporation and water-flows to non-recoverable sinks [107]. The basin approach, instead
of paying attention to individual water usage, assesses return flows, estimates water-
use efficiencies at field- and basin-scales and differentiates consumptive water-saving
from non-consumptive saving (Figure 2) while accounting for water and analyzing water-
use efficiencies [209–213]. Despite many complexities in perceptions of water-saving, its
ultimate objectives are clear and undisputable: to stop unsustainable exploitation of the
available water resources and to increase the quantity of water for other essential and more
beneficial usages. It is therefore essential to understand the scale-effects of water usage
clearly to improve water-savings and water productivity [124,210,214–216].
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3.3. Impacts on Water Use

AWD effect: Irrigation management through alternate wetting and drying is widely
practiced in many countries/regions like the Philippines, Vietnam, China and EGP [217–220].
Under AWD, the percolation rate decreases leading to water-saving; the reduction in
evapotranspiration plays only a minimal role [221]. Compared to the continuous standing
water rice system, the levels of water-saving by the AWD method are listed in Table 3.
Percolation from the crop fields controls the transport of nitrate [94], heavy metals [222],
salts [223], nutrients [224], and pesticides [225] to groundwater. So, with reduced percola-
tion the quality of groundwater remains under safeguard. The AWD method also reduces
greenhouse gas emission [226,227], uptake of arsenic in rice grain [228,229], the cost of
pumping water [230,231], and concentration of methyl mercury in field soil [232].

Table 3. Levels of water-saving by alternate wetting and drying (AWD) method compared to the
continuous standing water rice system.

Type of Effect Quantity References

Water saving 23% [108]
Water saving 15–40% [109–111,221,233]
Water saving 30–60% [112]
Percolation reduction 50–80% [112]
Percolation reduction 19–28% [60]

Bund effect: An unsaturated zone beneath standing water and a higher hydraulic
conductivity zone beneath the bunds in rice fields are developed. This causes the applied
irrigation water to move through the bunds and recharges the underlying aquifer [234]. The
destinations of the applied irrigation in the rice fields were measured on several occasions
e.g., [205,235–238] and a significant portion was reported to percolate through the field
boundaries. This type of lateral seepage flow field is horizontal first and then vertical below
the bunds [239]. Often rice fields of irregular shape are transformed into regular rice fields
in order to improve irrigation efficiency, keeping part of the previously generated plow pan
beneath the bunds of the reformed rice field [234]. Consequently, the dominant movement
of water is in the horizontal direction through the bund. The seepage flux is, however, much
less than the deep percolation rate [239–241] except when rice is cultivated on terraced
fields, where the seepage water moves to the downstream plots through the bunds [239]. In
flat rice fields, the infiltration rate below the bunds remains close to the average infiltration
rate for the crop field with plow pan beneath the bunds, but may double or more without
plow pan beneath the bunds [205,239]. [234] demonstrated 50% of water lost through the
bunds, 25% through evapotranspiration, and 25% equally through infiltration providing
an estimated annual water loss of 41 km3 through percolation underneath the bunds of rice
fields in Bangladesh. Based on this field scale estimate, sealing of bunds (e.g., by puddling)
can reduce seasonal water use by 52 ± 17%. Much greater savings (~90%) can be achieved
in fields with larger perimeter-to-area ratio.

Puddling effect: Puddling eliminates large pores and alters the field soils to stratified
layers: a top puddled layer, muddy layer and plow pan overlying a lower layer [242,243].
A low-permeable layer, formed above the puddled layer, comprises a finer fraction of
the soils in suspension [244,245]. Puddling creates a 5 to 10-cm layer of plow pan, of low
hydraulic conductivity, 20–25 cm below the ground surface. The hydraulic properties of
plow pan regulate the water regime in the irrigated field [236–247]. Water flow occurs
under unsaturated conditions below the plow pan [243]. The percolation rate varies widely
with soil texture, 3–17 mm/day for clay and 13–30 mm/day for sandy loam [245,248]. The
intensity [249] and depth of puddling [250], soil-type and post-puddling time period [251],
and ponding water depth [252] regulate reduction of the percolation rate in the puddled
soils. The percolation rate is high during the early growth period but decreases by 35–45%
with the advance of the growth stage [253–255].
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Re-bound effect: The re-bound effect, a less-known proposition, suggests that when
efficiency of using a resource increases, its consumption rate also increases simultane-
ously [113]. Jevon’s contradiction/paradox in economics advocates that any technologies
aimed at saving energy actually end up by achieving the contrary of what they were
supposed to do. Although the re-bound effect is quite well-known in energy usage [256], it
is less known in the irrigation literature. Any intervention to modernize irrigation systems
will improve efficiency, reliability and flexibility of the system, with a consequent increase
in demand and consumption of water, especially by progressive farmers. The re-bound
effect is therefore a potential problem in water resource management as recognized by [117].

Water-saving technologies are promoted based on the supposition that a reduction
in water inputs per unit of output makes a comparable water-saving. However, this
assumption may not be factual for two reasons. First, whether the quantity of water spared
by reducing input transforms into real water-saving depends on the destination of the
saved water. A significant part of the applied irrigation water percolates to the underlying
aquifer, which can be pumped by the same or other farmers for reuse (Figure 1) and hence
is not lost or wasted [212]. So, there is a risk of focusing on local efficiency alone and
ignoring the return flows [126]. Secondly, based on economic theory [257], water-saving
technologies, by adding more value to water, may encourage farmers to use more water
as observed by [114] in Pakistan and Yemen where the overall water usage increased
significantly [127,258]. Contrasting evidence is also found in the central United States
where new technologies reduced water usage [74].

It is crucial to quantify water extracted and water consumed separately in order to
effectively investigate the re-bound effect in irrigation. The usage of extracted water can
comprise a consumed part and a non-consumed part. The consumed part may comprise
both beneficial and non-beneficial evapotranspiration and runoff or percolation loss that are
not recoverable. The non-consumed part comprises parts of the runoff and percolation that
are recoverable for further use [213,259]. So, efficiency improvements do not always reduce
overall water use; these actually reduce the effective cost of net irrigation encouraging the
farmers to achieve more benefit by increasing net irrigation [115,260–262].

4. Regional Hydrology Outcomes

Irrigation water is an important but as yet less characterized component of the hy-
drological cycle in regions with intensive agricultural irrigation, due to complexity in
monitoring [263]. Appropriate differentiation of the natural inter-connection between the
surface and groundwater resources is an impending problem [121]. In a highly connected
hydrologic system (e.g., EGP), separate management of surface and groundwater will cause
conflict in water resource allocation between various sectors (e.g., irrigation, households,
industry and fisheries) and exert stress on groundwater-dependent ecosystems [121–123].
Groundwater is mostly a renewable resource in the IGP because of its recharge and deple-
tion mechanisms associated with the regional hydrologic cycle. Water extracted from the
aquifers can follow a number of pathways in the hydrologic cycle (Figures 3 and 4), with
some travel only over a short distance, and may not join the aquifer [264,265]. Recharge
to the aquifers occurs through rainfall, seepage and percolation from rivers and canals,
and irrigation return flow [99], with rainfall and irrigation return flow remaining as the
major contributors for many groundwater basins ([97,98,102]). So irrigation return flow
that depends on soil hydraulic properties and irrigation management practices [266] is an
important outcome of irrigated rice fields [96,100,267].

Abstraction of groundwater lowers the water table in aquifers with resulting reduction
in groundwater pressure head that induces groundwater recharge by drawing down water
from surface sources into aquifers [268,269]. Most rivers in the Bengal Basin, having direct
hydraulic contact with aquifer systems [119,120] recharge the aquifers during March to
November and receive water from the aquifers during December to February. These
water exchange behaviors imply that groundwater tables can be deliberately lowered to
more extent in the dry season to accommodate more recharge during the monsoon. This
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intervention, first put forward in the 1970s [270] and then re-examined occasionally [271],
will increase groundwater reserve for irrigation during the dry season and also help control
flooding during the monsoon.

Percolation from irrigated rice fields is important to the economy, environment
and water resource conservation in irrigated rice-dominated South Asian countries like
Bangladesh, India and Taiwan. Flooded rice fields are comparable to wetlands [101,272]
and play an important role in raising groundwater level [273]. The recharge potential of
rice fields is 69.2 cm for sandy loam and 37.2 cm for clay loam in India [274], between
1–2 mm/day and 7.5 mm/day in Bangladesh [275], and 21.2–23.4% of the applied irrigation
water from the terraced rice fields in northern Taiwan [239]. The groundwater-dominated
irrigation in Bangladesh has changed the nature of aquifer recharge and the flow patterns
of groundwater with a resulting reduction in residence time of water in the aquifer, espe-
cially in the shallow aquifers [276]. Recharge from the irrigation fields can be significantly
modified by changes in irrigation management practices [77,118].

Adoption of agricultural water-saving technologies at the farm level changes crop-
water use and regional hydrology [38] by reducing groundwater recharge. In many ground-
water irrigated areas of the EGP (e.g., the North-West region of Bangladesh) the aquifers are
not currently recharged fully from other sources (e.g., rainfall and interflow from adjacent
aquifers). Consequently, water-saving technologies cause decreased opportunities for
groundwater irrigation. There are other factors (e.g., canal lining, reduced water diversion,
leveling undulating lands) that also reduce recharge by restricting percolation with even-
tual decline of groundwater tables. Some countries (e.g., China) widely use mulched-drip
irrigation system, which significantly modifies the dynamics of regional groundwater by
changing water exchange flux between the irrigation fields and underlying aquifer [39].
The exchange flux at the groundwater table during drip irrigation period is downward and
remarkably reduces after adoption of water-saving technologies [39]. Adoption of efficient
water-saving measures at regional scales would significantly restrict groundwater recharge
with a consequent decline in groundwater levels [40]. This will exert negative impacts on
regional hydrology and ecology by degrading soil quality and deforesting, particularly
in arid regions [43]. With decades of large-scale groundwater withdrawal and reduced
recharge opportunity due to increasing urbanization and decreasing wetlands, water tables
have already declined significantly and are continuously declining in many large urban
areas (e.g., Dhaka city in Bangladesh) over time [3]. There is, however, evidence of induced
groundwater recharge due to the creation of significant vertical head gradients by increas-
ing pumping in areas with shallow water tables and permeable upper soil formation [277].
This implies that dry season abstraction of groundwater can create storage space in the
aquifer that can be utilized for harvest in the monsoon. Such intervention would exert
a positive contribution on overall water availability in the area [131]. The main threat in
the IGP Basin is not considered to be the diminished quantity of groundwater, but the
degraded water quality resulting from high arsenic and salt contents [54].

5. Gaps in Current Knowledge
5.1. Uncertainty in Water-Saving

The reported impacts of conservation agriculture on water-saving are yet to be as-
certained and evaluated more rigorously [278–282]. Water moves through very complex
pathways and the impacts of conservation agriculture are so far understandable only at
field-scale, but not at the larger scale [75]. Puddling forms plow pan and also creates
soil cracks in addition to preferential flow paths. Consequently, increasing percolation,
instead of commonly reported decreasing percolation, has been also reported [283]. In
groundwater-based irrigation systems, improved irrigation efficiency and consequent
water-saving achieved by reducing irrigation applications with water-saving technologies
are clearly understood at the field-scale [115,116]. However, due to the lack of measure-
ment of the water balance components, these are poorly understood at a larger spatial
scale [75,106,116,125]. When farmers in a region reduce percolation substantially, which
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would ultimately recharge a usable aquifer or join to a usable surface water body on the one
hand but may also increase the irrigated area with the saved water on the other (Figure 4),
the overall impact may be unintended. Instead of saving water, it can actually increase
water consumption and reduce water availability for other users [95,116].

The growth period of rice with high evaporative demand can be avoided by shifting
planting time. Adoption of short-duration varieties will also reduce evapotranspiration
and percolation loss of water. The effects of these alternative crop technologies on water
losses and crop yield have not been investigated adequately yet. If field-level estimates of
water-saving are extrapolated to larger spatial scales in rice-based cropping systems that
utilize recycled water or surface and groundwater conjunctively, there is a possibility of
underestimating the real water-saving [284]. The concept of classical irrigation efficiency
for an entire basin becomes erroneous and misleading when irrigation management is
considered for the water resources of a region as a whole. The discrepancy arises since
the water losses with respect to which the classical irrigation efficiency is calculated are
not the actual water losses when considering the whole system. It is not possible to
clearly know the extent of water-savings until the destination of the lost water is correctly
known [95]. It is not yet clear how the water-saving technologies alter the dynamics of
overall water balance. Whether application of water-saving technologies can maintain
sustainable development and what else needs to be done for this in future are still major
questions [39].

5.2. Limited Knowledge of Recharge–Discharge Interaction

Groundwater recharge occurs from several sources (e.g., rainfall, flood water, irrigation
return flow, inter-basin transfer, etc.) through several processes, the complexity of which
varies widely. In an inefficient surface water irrigation system, a large fraction of the
applied irrigation water percolates to the underlying aquifer, causing a significant loss of
water when considering irrigation efficiency. However, this irrigation system appears as
one of the most efficient methods of recharging groundwater, as occurs in most parts of
Bangladesh, India, Pakistan and elsewhere [54,99]. So, the common perception of more
efficient irrigation systems that can reduce seepage and percolation losses must be thought
about with great caution.

A reliable quantification of groundwater recharge from irrigation fields, although
essential in order to know its impending impacts on the dynamics and quality of groundwa-
ter, is difficult and remains unresolved in regions with confined aquifers. The groundwater
table is confounded with both recharge from irrigation fields and extraction by irrigation
wells. Many factors like soil type and surface condition, vegetation, depth to groundwater
level, and chemical quality of soil and irrigation water control groundwater recharge.
Although groundwater flow and recharge from rice fields have been examined on many
occasions e.g., [101,246,285–287], the effects of land use conditions on recharge and ground-
water level are not yet clear [288]. When groundwater is abstracted from an aquifer,
recharge from surface sources occurs under transient conditions. The knowledge of soil-
water flux in the vadoze zone that can help understanding the transient recharge [289] is still
limited [290]. Therefore, a major pre-requisite for sustainable groundwater management is
to reduce the uncertainty in aquifer recharge from rice fields.

5.3. Uncertain Causes of Groundwater Decline

Large-scale withdrawal of groundwater, increased Boro rice cultivation, dry season
reduction in river flow, reduction in wetland areas, declining annual rainfall, low recharge
potentiality of soils, and lack of recharging of aquifers through artificial methods are re-
garded as the major barriers to sustainable groundwater use in the IGP basin [291]. These
factors, in their various combinations, are causing decline in groundwater level in some re-
gions in the EGP (e.g., North-West region of Bangladesh; [49]). In a groundwater irrigation
system, reduced application of irrigation may be an effective way to check groundwater
level depletion [292], although contrasting results were also reported [293–295]. These
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contrasting opinions and observations raise valid questions of how far irrigation return
flow contributes to groundwater recharge.

Field-level water-savings can make water use more profitable by increasing crop-water
productivity and may lead to greater total water use in the basin [75,116]. Mere adoption of
resource-conservation technologies cannot guarantee overall water-saving unless the usage
of saved water can be controlled by proper policies and regulations. However, regional-
scale study is still scarce for the evaluation of impacts of water-saving on evaporation
and groundwater levels [296]. A proper policy to achieve stabilized groundwater levels
must not consider only the adoption of technology and management of users’ demand;
recharging the aquifer artificially and finding alternative water sources, i.e., supply side
management, is also necessary in some situations [64]. To establish sustainable levels of
groundwater usage and achieve maximum benefit therefrom, investigation of the feasibility
of combination of demand management, recharge improvement and alternative water
supplies are crucial [297].

5.4. Inadequate Understanding of Scale-Effects

Improved irrigation methods and conveyance systems are essential to increase effi-
ciency of water use. However, water loss through deep percolation has the possibility of
reuse in another region and the quality of percolated water may undergo changes during
transmission through the hydrological units. It is therefore essential to account for the
usages of surface water and groundwater, losses of water while being used, and interac-
tions of various water components at the field scale and basin scale by adopting a system
approach [67]. The common system approach of water accounting requires that, in closed
basins, all lost water is presumed to be re-used somewhere downstream and hence any
intervention to increase efficiency of water use would not make significant water-savings.
So, there is hardly any scope for water-scarce regions to reduce water stress, especially
through improvement in efficiency of water use. This approach has three major faults [298].
This disregards a major element of unproductive water use, values only new water without
sufficiently considering water productivity in a broader aspect, and fails to account for sev-
eral co-benefits arising from increasing efficiency of water use (e.g., upgraded water quality,
increased reliability and less energy demand). Because of the complexity of the impacts of
water-saving technologies at large scales, good approaches must integrate the conceivable
spatial and temporal effects. Often a three-dimensional surface-groundwater interaction
approach [299] is considered for this; but the problem remains as yet unexplored.

5.5. Weakness in Policy

In the past, agricultural water management generally concentrated attention on irri-
gation options and water withdrawals from rivers and aquifers. Now it dedicates more
attention to managing rainwater, evapotranspiration and water reuse, and views land-use
decisions as water-use decisions [103]. In current perceptions of water management, con-
siderable water-savings can be realized if the water-saving options are assessed in terms
of technical, economic and institutional aspects and selections are made based on their
efficacy [67]. Although technologies play a vital role in reducing water applications per unit
of crop production, the re-bound effect is always a problem. If the increase in cultivated
area of a certain crop, or even the irrigated area due to the re-bound effect, can be ade-
quately known, the regional impacts of water-saving measures could also be scientifically
explainable. However, restricting the demand of water is a challenging issue [75,127] with
weak institutional arrangements. In the IGP, instability in the market price of agricultural
products often guides the farmers to choose crops irrespective of the set policy. The per-
formances of water-saving technologies contrast, and their adoption is a widely debated
issue. Nonetheless, promoting water-saving technologies is a popular policy for governing
groundwater in many countries (e.g., Bangladesh, India, China, Spain, Mexico, and the
USA). Lack of attention, proper legislation, and ineffective or less-effective institutions are
the main difficulties in governing groundwater in many least-developed and developing
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countries [128]. In cases when aquifers extend across more than one independent country,
groundwater governance becomes extremely complex [131].

When the groundwater table is very close to the surface (within capillary rise) the
declining groundwater table can increase percolation rates by increasing the hydraulic gra-
dient that would not have happened with a deeper groundwater table. It is speculated that
this will offset the gains, at least to some extent, that the adopted water-saving technologies
can offer. The recharge of shallow aquifers is therefore an important mechanism that needs
to be well-understood for effective management of aquifers [300]. As the scale of water use
extends, water loss increases, with resulting decrease in traditional irrigation efficiency. In
contrast, water recycling increases with extending scale of water use, with eventual increase
in net efficiency except when recycling is not feasible at the system level. This scenario
of water usage suggests that the term ‘irrigation efficiency’ can lead policy planners to
miscommunication and misunderstanding. While the problems of groundwater are clearly
intuitive, the solutions are not. Enactment of wrong, flawed or misemployed concepts of
efficiency in water-resource strategy and management can bring about many unexpected
problems [78]. An example is the assumption that the rate of natural groundwater recharge
is the safe yield of an aquifer [301]. This water budget myth ignores the factual possibility
of increasing recharge and/or decreasing discharge from the aquifer due to groundwater
extraction [199]. Our knowledge of the nature of interconnection between surface and
groundwater systems over a large spatial scale is not yet adequate. Consequently, many
water managers have been suffering in formulating strategy and establishments separately,
rather than based on the linked inter-connection of surface water and groundwater. It
is important that groundwater systems are treated as complex systems, which respond
dynamically to abstraction-induced perturbation. A correct account of the vadoze zone in
irrigation fields [302] can enable assessment of the impacts of change and of interventions
to be prioritized [77].

Effective governance, although lacking in many countries, is a prerequisite for sound
water resource management [129]. Because of existing political structures and systems,
adopting a policy of restricting tube wells to reduce groundwater extraction in the IGP basin
seems unrealistic. Several states in India have adopted regulations to prevent/minimize
groundwater mining but could not implement these regulations totally [303,304]. In
Bangladesh, reliable and detailed information on water reserves, safe yield, water with-
drawal patterns and groundwater quality dynamics of aquifers is lacking [130]. These
knowledge gaps have raised serious concerns about sustainable use of groundwater for
irrigation, especially in the North-West region of the country [305]. Recently, emphasis
has been placed on increasing dry season Boro rice production in the southern zone to
reduce stress on groundwater use in the North-West region [306]. However, the viability
of this approach remains to be cross-examined. The potential major restrictive factors
are salinity problems of soil and water, weakness in synchronized water governance and
the likely effects of climate change in the southern region [130,307,308]. In Bangladesh,
there are specific problems in governing groundwater usage. The number of groundwater
users is very large, most water users are resource-poor, and the institutional settings are
mostly ineffective to ensure execution of laws and regulations. Under such a situation,
enforcement of water rights and controlling access to groundwater by permit systems
are probably not feasible options. A well-conceived rational and persistent strategy is
appropriate for groundwater governance. Some prospective drivers of success may be en-
gagement of users, refinements in water pricing structures, inspiring farmers to move from
high to less water-demanding crops [53], in situ rainwater conservation, deficit irrigation,
modifying rice–wheat areas [309], extensive investments in technology, and advancement
of proactive policies and decision-making systems. Certainly, all these options will not be
equally effective at all times and places since groundwater dynamics are localized; local
countermeasures, such as managed aquifer recharge, can be implemented [9]. The best
option(s) for governing groundwater at specific times and locations must be, however,
identified through policy research [130].
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Artificial recharge to aquifers through natural drains, canals and topographical depres-
sions is a technically feasible and economically viable option [310] in the EGP. However,
this option needs to be within a proper policy framework for its implementation. If
groundwater-irrigated areas are not further increased, groundwater levels are expected
either not to decline further or decline at much smaller rates than currently. With checked
groundwater-irrigated areas, the other possibility is that groundwater levels will attain a
new equilibrium that will be lower than at the current level. This proposition, yet to be
considered in national policy, implies that the existing abstraction rates of groundwater
can be continued and the presumed lower groundwater levels will not hamper the environ-
ment and economic and social developments [311]. However, these suggested potentials
are only propositions and because of widely variable hydro-climatic, political and socio-
economic conditions among the affected regions no single solution will be adequate for
groundwater management. The most logical strategy would be to select, from among the
available options, regionally-suited strategies and establish strong regulation and policy
for management of regional water resources [131–133]. Therefore, sustainable long-term
strategies that are appropriate and adaptable for individual regions need to be recognized
and exchange of knowledge and actions between regions must be established. Thus, estab-
lishing region-specific strategy and communication systems [134] will be important topics
for future research in the IGP basin.

6. Summary and Conclusions

Manifold attempts have been made in different regions of the world to increase food
production for the rapidly growing population since the early 1960s. There has been great
success in increasing food production globally but with a tremendous resulting pressure
on the production-linked resources, specifically water and soil. The accelerating stress
on these vital resources in the EGP raises sustainability concerns regarding agricultural
production systems. Researchers and practitioners have been facing these challenges,
both locally and regionally, over the last few decades. They have developed resource-
conservation technologies as a response to concerns about agricultural sustainability, with
basic principles of rebuilding the soil, optimizing inputs for crop production, increasing
food production, and optimizing profits [84,86,87]. This review study has summarized
the benefits of these technologies, and the scale-dependency and uncertainty of some of
the benefits. Also identified are the gaps in current knowledge regarding the conceptual
aspects of these technologies to make agriculture sustainable over a large regional scale so
as to guide the future research in proper directions.

Of these resource-conservation technologies, conservation agriculture and water-saving
measures are being practiced in many regions of the world, including the EGP [85,87]. Some
benefits of these technologies, such as reduced energy and nutrients usage and reduced
agrochemical leaching, are scale-invariant and intuitively clear [37,83]. However, the issue
of water-saving remains uncertain at the system level since it is both a temporal and
spatial scale-dependent element and linked to the regional hydrologic cycle [94,95]. Water
saved at the farm level could otherwise join the groundwater or surface water systems
to be used later by the same or other users [75,103]. Consequently, whether water-saving
achieved at the farm level makes any real saving when considering the entire groundwater
or river basin has not yet been adequately investigated. Furthermore, there is evidence
of increasing demand for water after adding more value by technological interventions,
such as increasing irrigation efficiency by adopting water-saving measures [114]; however,
contrasting evidence has also been observed [74]. Whether or not the reduced extraction of
groundwater, as well as reduced recharge, under resource-conservation technologies raise
groundwater storage/groundwater level or reduce it remains unresolved [306]. Apparently,
the reduced extraction of groundwater is expected to increase groundwater storage, but
this likelihood is also uncertain since most aquifers in the Gangetic basin discharge to
the rivers as base flow in the dry season. Thus, the current level of understanding of the
complexity of the hydrological link to field-applied water is inadequate due to lack of
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measured data on the components of regional water balance. Lack of shared knowledge
on the impacts of resource-conservation technologies on regional water balance among
the pertinent disciplines, such as agricultural production practitioners (e.g., agronomists,
economists, irrigation engineers) and hydrologists (e.g., groundwater hydrologists, surface
water hydrologists), is another drawback in planning and implementing holistic approach
to investigate regional hydrology outcomes. This inadequate knowledge of inter-linked
water systems may lead to the implementation of wrong policy [121–123] merely based
on local perspectives with eventual worsening of the water-scarcity situation. Therefore,
all pertinent disciplines should adopt integrated research approaches to measure the
components of local and regional water balance and quantify regional hydrology outcomes
over a large temporal scale. Only then proper water management policy can be planned
and implemented for sustainable agricultural production.
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