Study on Environmental Factors of Fluorine in Chagan Lake Catchment, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Data Analysis Method
3. Results
3.1. Land Use Change
3.2. Hydrochemistry
3.3. Fluoride in Water
3.4. Fluoride in Soil
3.5. Pearson Correlation Analysis
4. Discussion
4.1. Effect of Sedimentary Environment on Fluorine in Soil and Groundwater
4.2. Effect of Evaporation on Fluorine in Soil and Groundwater
4.3. Effect of Hydrochemistry on Fluorine in Groundwater
4.4. Effects of Human Activities on Fluoride in Lake Water
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Guidelines for Drinking-Water Quality, 4th Edition, Incorporating the 1st Addendum; IWA Publishing: London, UK, 2017. [Google Scholar]
- Elumalai, V.; Nwabisa, D.P.; Rajmohan, N. Evaluation of high fluoride contaminated fractured rock aquifer in South Africa—Geochemical and chemometric approaches. Chemosphere 2019, 235, 1–11. [Google Scholar] [CrossRef]
- John, F.; Bailey, K.; Chilton, J.; Dahi, E.; Fewtrell, L.; Magara., Y. Fluoride in Drinking-Water; IWA Publishing: London, UK, 2006. [Google Scholar]
- Wu, Q. Researching Ecological Effects of Inorganic Fluoride on Aquatic Ecosystem. MSc Thesis, Nanchang HangKong University, Jiangxi, China, 2015. [Google Scholar]
- Zhan, X.; Wang, M.; Xu, Z.; Li, W.; Li, J. Effects of fluoride on hepatic antioxidant system and transcription of Cu/Zn SOD gene in young pigs. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. 2006, 20, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Wang, Y.; Chen, J.; Jiang, S.; Nordberg, A.; Guan, Z. Chronic fluoride toxicity decreases the number of nicotinic acetylcholine receptors in rat brain. Neurotoxicol. Teratol. 2002, 24, 751–757. [Google Scholar] [CrossRef]
- de Menezes, L.M.B.; Volpato, M.C.; Rosalen, P.L.; Cury, J.A. Bone as a biomarker of acute fluoride toxicity. Forensic Sci. Int. 2003, 137, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Sherlin, D.M.G.; Verma, R.J. Vitamin D ameliorates fluoride-induced embryotoxicity in pregnant rats. Neurotoxicology Teratol. 2001, 23, 197–201. [Google Scholar] [CrossRef]
- Li, X.; Wu, P.; Han, Z.; Shi, J. Sources, distributions of fluoride in waters and its influencing factors from an endemic fluorosis region in central Guizhou, China. Environ. Earth Sci. 2016, 75, 1–14. [Google Scholar] [CrossRef]
- Jia, H.; Qian, H.; Qu, W.; Zheng, L.; Feng, W.; Ren, W. Fluoride Occurrence and Human Health Risk in Drinking Water Wells from Southern Edge of Chinese Loess Plateau. Int. J. Environ. Res. Public Health 2019, 16, 1683. [Google Scholar] [CrossRef][Green Version]
- Ozsvath, D.L. Fluoride and environmental health: A review. Rev. Environ. Sci. Bio/Technol. 2009, 8, 59–79. [Google Scholar] [CrossRef]
- Kirk, N.D.; Jenne, E.A. Fluorite solubility equilibria in selected geothermal waters. Pergamon 1977, 41, 175–188. [Google Scholar]
- Zhang, Q.; Xu, P.; Qian, H.; Yang, F. Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: Assessment based on multivariate statistical approach and human health risk. Sci. Total Env. 2020, 741, 140460. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Adak, M.K.; Mukherjee, A.; Dhak, P.; Khatun, J.; Dhak, D. A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure. J. Hydrol. 2019, 574, 333–359. [Google Scholar] [CrossRef]
- Petrone, P.; Giordano, M.; Giustino, S.; Guarino, F.M. Enduring Fluoride Health Hazard for the Vesuvius Area Population: The Case of AD 79 Herculaneum. PLoS ONE 2011, 6, e21085. [Google Scholar] [CrossRef][Green Version]
- Somma, R.; Ayuso, R.A.; Vivo, B.D.; Rolandi, G. Major, trace element and isotope geochemistry (Sr-Nd-Pb) of interplinian magmas from Mt. Somma-Vesuvius (Southern Italy). Mineral. Petrol. 2001, 73, 121–143. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, G. Fluoride distribution in water and the governing factors of environment in arid north-west China. J. Arid Environ. 2001, 49, 601–614. [Google Scholar]
- Xu, P.; Bian, J.; Wu, J.; Li, Y.; Ding, F. Distribution of fluoride in groundwater around Chagan Lake and its risk assessment under the influence of human activities. Water Supply 2020, 20, 2441–2454. [Google Scholar] [CrossRef]
- Yan, J.; Chen, J.; Zhang, W.; Ma, F. Determining fluoride distribution and influencing factors in groundwater in Songyuan, Northeast China, using hydrochemical and isotopic methods. J. Geochem. Explor. 2020, 217, 106605. [Google Scholar] [CrossRef]
- Guo, W.; Wang, Y.; Shi, J.; Zhao, X.; Xie, Y. Sediment information on natural and anthropogenic-induced change of connected water systems in Chagan Lake, North China. Environ. Geochem. Health 2020, 42, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Li, R. The Water Environment Evolution and Ecological Risk Assessment of Chagan Lake Wetland. Ph.D. Thesis, Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology), Changchun, China, 2014. [Google Scholar]
- Tai, W. Investigation and Evaluation of Groundwater Resources in Songyuan. MSc Thesis, Jilin University, Changchun, China, 2017. [Google Scholar]
- Zhang, T. Water Quality Transport-Trans-Formation Regulations and Pollution Reasons Analysis for Changan Lake. Msc Thesis, Jilin Jianzhu University, Changchun, China, 2015. [Google Scholar]
- Dong, J.; Hu, C. The water quantity analysis for qianguo irrigation water front retreat into Chagan Lake. Jilin Water Resour. 2015, 10, 1–4+8. [Google Scholar]
- Lou, C.; Gu, X.; Dong, J. The evolution trends and driving mechanism of the ammonia in the nonionic of Chagan Lake. Jilin Water Resour. 2018, 3, 9–12. [Google Scholar]
- Dong, J.; Yang, J.; Yang, W.; Zhang, S. Eco-environmental issues related to river-lake connection in weatern part of Jilin Province. China Water Resour. 2014, 22, 26–30. [Google Scholar]
- Jilin Provincial Academy of Environmental Sciences. The Overall Plan for the Construction of Commodity Grain Capacity with an Increase of 10 Billion Catties in Jilin Province; Jilin Provincial Academy of Environmental Sciences: Jilin, China, 2008. [Google Scholar]
- Jilin Province Zheng Yuan Environmental Protection Technology Co. Ltd. The Environmental Impact Report of Chagan Lake Wetland Protection and Restoration Project; Jilin Province Zheng Yuan Environmental Protection Technology Co. Ltd.: Jilin, China, 2019. [Google Scholar]
- Josip, R.; Marija, B.; Mitja, K.; Boštjan, G.; Ante, P.; Ivana, M. Development of the New Fluoride Ion-Selective Electrode Modified with FexOy Nanoparticles. Molecules 2020, 25, 5213. [Google Scholar]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; Taylor and Francis: Oxford, UK, 2005. [Google Scholar]
- Chinese Research Academy of Environmental Sciences. Environmental Quality Standards for Surface Water; State Environmental Protection Administration; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2002; Volume GB 3838-2002. [Google Scholar]
- National Institute of Environmental Health, China CDC. Standards for Drinking Water Quality. Ministry of Health of the People’s Republic of China; Ministry of Health of the People’s Republic of China; Standardization Administration: Beijing, China, 2006; Volume GB 5749-2006, p. 16. [Google Scholar]
- China Environmental Protection Bureau. Background Value of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990.
- Sun, X. Distribution and Origin of Fluoride in Water and Soil Environment and Biological Effects in Jilin Qian’an. Msc Thesis, Jilin University, Changchun, China, 2007. [Google Scholar]
- Tang, J.; Bian, J.; Li, Z.; Bing, Z.; Cha, E.; Wang, C.; Mao, Z. The distribution regularity and causes of fluoride in groundwater of the fluorosis area, Songnen Plain. Geologyin China 2010, 37, 614–620. [Google Scholar]
- Toran, L.E.; Saunders, J.A. Modeling alternative paths of chemical evolution of Na-HCO3-type groundwater near Oak Ridge, Tennessee, USA. Hydrogeol. J. 1999, 7, 355–364. [Google Scholar] [CrossRef]
- Venturelli, G.; Boschetti, T.; Duchi, V. Na-carbonate waters of extreme composition: Possible origin and evolution. Geochem. Soc. Jpn. 2003, 37, 351–366. [Google Scholar] [CrossRef][Green Version]
- Ali, S.; Thakur, S.K.; Sarkar, A.; Shekhar, S. Worldwide contamination of water by fluoride. Environ. Chem. Lett. 2016, 14, 291–315. [Google Scholar] [CrossRef]
- Li, C.; Gao, X.; Wang, Y. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Sci. Total Environ. 2015, 508, 155–165. [Google Scholar] [CrossRef]
- Pi, K.; Wang, Y.; Xie, X.; Su, C.; Ma, T.; Li, J.; Liu, Y. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China. J. Hazard. Mater. 2015, 300, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Jin, Z.; Zhang, F. Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China. J. Geochem. Explor. 2015, 159, 252–261. [Google Scholar] [CrossRef]
- Wang, F.; Ding, Q.; Zhang, L.; Wang, M.; Wang, Q. Analysis of Land Surface Deformation in Chagan Lake Region Using TCPInSAR. Sustainability 2019, 11, 5090. [Google Scholar] [CrossRef][Green Version]
1989 | Total Area Increase | Total Area Change | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GL | PF | UF | WL | W | BL | RL | SL | Wt | ||||
2018 | GL | 8.96 | 231.88 | 9.26 | 114.61 | 7.32 | 17.65 | 643.91 | 115.15 | 1148.73 | 454.17 | |
PF | 155.22 | 311.59 | 11.36 | 70.88 | 53.40 | 24.45 | 78.91 | 97.39 | 803.20 | 745.61 | ||
UF | 363.73 | 12.08 | 65.84 | 18.38 | 15.36 | 48.17 | 68.26 | 12.99 | 604.79 | –129.63 | ||
WL | 25.27 | 9.29 | 75.01 | 7.92 | 4.93 | 3.49 | 2.86 | 6.49 | 135.25 | 38.91 | ||
W | 18.87 | 3.57 | 9.23 | 0.37 | 13.38 | 0.86 | 48.74 | 24.15 | 119.17 | –200.80 | ||
BL | 1.02 | 1.03 | 0.56 | 0.07 | 8.06 | 0.08 | 0.77 | 1.32 | 12.93 | –84.07 | ||
RL | 25.19 | 22.32 | 94.80 | 8.15 | 6.80 | 2.12 | 38.33 | 7.09 | 204.79 | 108.55 | ||
SL | 73.13 | 0.02 | 6.60 | 0.61 | 27.50 | 0.71 | 9.09 | 117.66 | –793.80 | |||
Wt | 32.14 | 0.31 | 4.75 | 0.68 | 65.83 | 0.50 | 0.85 | 29.67 | 134.74 | –138.92 | ||
Total area reduction | 694.57 | 57.59 | 734.42 | 96.35 | 319.98 | 97.00 | 96.25 | 911.46 | 273.66 |
Unit | Ground Water | Surface Water | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Min | Max | Mean | SD | Cv (%) | n | Min | Max | Mean | SD | Cv (%) | ||
pH | – | 38 | 7.23 | 9.21 | 8.73 | 0.51 | 5.80 | 7 | 8.23 | 9.36 | 8.63 | 0.41 | 4.75 |
TH | mg/L | 38 | 100.10 | 973.95 | 427.61 | 208.67 | 48.80 | ||||||
TDS | mg/L | 32 | 324.80 | 2700.80 | 884.79 | 500.64 | 56.58 | ||||||
F– | mg/L | 38 | 0.32 | 14.00 | 3.02 | 3.07 | 101.73 | 8 | 0.02 | 13.69 | 4.56 | 4.82 | 105.49 |
Ca2+ | meq/L | 38 | 1.25 | 9.37 | 3.31 | 1.82 | 55.11 | ||||||
Mg2+ | meq/L | 38 | 0.27 | 13.65 | 4.70 | 3.57 | 76.07 | ||||||
Na+ | meq/L | 32 | 1.43 | 29.13 | 6.12 | 5.72 | 93.53 | ||||||
K+ | meq/L | 32 | 0.01 | 0.05 | 0.02 | 0.01 | 58.45 | ||||||
Cl– | meq/L | 38 | 0.20 | 15.18 | 3.74 | 3.44 | 92.08 | ||||||
SO42– | meq/L | 38 | 0.00 | 3.52 | 1.01 | 0.76 | 74.70 | ||||||
HCO3– | meq/L | 38 | 1.46 | 13.02 | 5.67 | 2.98 | 52.53 | ||||||
CO32– | meq/L | 38 | 0.00 | 2.85 | 0.65 | 0.60 | 92.01 | ||||||
NO3– | mg/L | 38 | 0.00 | 600.00 | 153.17 | 166.76 | 108.87 | ||||||
NO2– | mg/L | 38 | 0.00 | 1.10 | 0.09 | 0.22 | 237.81 |
F– | pH | TH | TDS | Ca2+ | Mg2+ | Na+ | K+ | Cl– | SO42– | HCO3– | CO32– | NO3– | NO2– | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F– | 1 | |||||||||||||
pH | 0.418 ** | 1 | ||||||||||||
TH | 0.206 | 0.141 | 1 | |||||||||||
TDS | 0.541 ** | 0.02 | 0.748 ** | 1 | ||||||||||
Ca2+ | −0.207 | 0.144 | 0.689 ** | 0.284 | 1 | |||||||||
Mg2+ | 0.482 ** | 0.477 ** | 0.868 ** | 0.807 ** | 0.454 ** | 1 | ||||||||
Na+ | 0.721 ** | 0.253 | 0.352 * | 0.877 ** | –0.125 | 0.524 ** | 1 | |||||||
K+ | −0.034 | 0.077 | 0.113 | 0.005 | 0.036 | 0.124 | –0.101 | 1 | ||||||
Cl– | 0.401 * | 0.217 | 0.814 ** | 0.921 ** | 0.471 ** | 0.796 ** | 0.738 ** | –0.036 | 1 | |||||
SO42– | −0.003 | –0.519 ** | 0.104 | 0.693 ** | –0.175 | –0.068 | 0.666 ** | 0.053 | 0.283 | 1 | ||||
HCO3– | 0.797 ** | 0.539 ** | 0.337 * | 0.569 ** | –0.04 | 0.636 ** | 0.717 ** | –0.057 | 0.442 ** | –0.223 | 1 | |||
CO32– | 0.737 ** | 0.626 ** | 0.285 | 0.647 ** | –0.151 | 0.599 ** | 0.819 ** | –0.068 | 0.515 ** | 0.033 | 0.783 ** | 1 | ||
NO3– | 0.316 | 0.304 | 0.787 ** | 0.847 ** | 0.648 ** | 0.748 ** | 0.567 ** | 0.134 | 0.791 ** | 0.106 | 0.331 * | 0.438 ** | 1 | |
NO2– | 0.514 ** | 0.152 | 0.038 | 0.164 | 0.02 | 0.105 | 0.257 | 0.182 | 0.135 | –0.135 | 0.384 * | 0.114 | 0.138 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Dai, Y.; Wang, J.; Qu, Y.; Liu, B.; Duan, Y.; Li, Z. Study on Environmental Factors of Fluorine in Chagan Lake Catchment, Northeast China. Water 2021, 13, 629. https://doi.org/10.3390/w13050629
Tang J, Dai Y, Wang J, Qu Y, Liu B, Duan Y, Li Z. Study on Environmental Factors of Fluorine in Chagan Lake Catchment, Northeast China. Water. 2021; 13(5):629. https://doi.org/10.3390/w13050629
Chicago/Turabian StyleTang, Jie, Yindong Dai, Jingjing Wang, Yunke Qu, Ben Liu, Yucong Duan, and Zhaoyang Li. 2021. "Study on Environmental Factors of Fluorine in Chagan Lake Catchment, Northeast China" Water 13, no. 5: 629. https://doi.org/10.3390/w13050629