Climatic Controls on Mean and Extreme Streamflow Changes Across the Permafrost Region of Canada
Abstract
:1. Introduction
2. Data and Methods
2.1. Streamflow Data
2.2. Climate Data
2.3. Analyse
3. Results and Discussion
3.1. Spatial Variations of Streamflow Trends
3.2. Spatial Streamflow and Climatic Trends Relationships
3.3. Climatic Controls on Streamflow Variables
4. Discussion on Future Changes in Extremes
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Review of streamflow trends for major Pan-Arctic Rivers
River/Region | Reference | Study Period | Trends | |||
---|---|---|---|---|---|---|
Qmean | Qmin | Qmax | Qmax Timing | |||
Kolyma (Observed) | Box et al. [27] | 1971–2015 | ++1 (1) | |||
Lena (Observed) | Box et al. [27] | 1971–2015 | ++1 (1) | |||
Lena (Observed) | Ahmed et al. [28] | 1936–2009 | ++1 (1) annual volume | +NS10 (1) December–February volume | −− (1) | |
Lena (multiple stations) | Tananaev et al. [70] | Varying periods between 1925–2013 | ++29 (100); −−2 (100) | ++30 (55); −−2 (55) | ++6 (105); −−3 (105) | |
Lena + Eastern Siberia (multiple natural tributaries) | Smith et al. [21] | 1958–1989 | +46 (212); −17 (212) | |||
Yenisey (Observed) | Box et al. [27] | 1971–2015 | +NS10 (1) | |||
Yenisey (Observed) | Ahmed et al. [28] | 1980–2009 | ++1 (1) annual volume | ++1 (1) December–February volume | −NS10 (1) | |
Ob (Observed) | Box et al. [27] | 1971–2015 | −NS10 (1) | |||
Ob (Observed) | Ahmed et al. [28] | 1936–2009 | +NS10 (1) annual volume | ++1 (1) December–February volume | +NS10 (1) | |
Mackenzie | Box et al. [27] | 1973–2015 | +NS10 (1) | |||
Mackenzie | Yang et al. [47] | 1973–2011 | +NS10 (1) | +NS10 (1) | −NS10 (1) | −NS10 (1) |
Mackenzie and tributaries | St. Jacques and Sauchyn [34] | Varying periods between 1939–2007 | +9 (23) | +20 (23) January–March mean flow | ||
Yukon | Box et al. [27] | 1975–2016 | ++1 (1) | |||
Yukon (Canadian Portion) | Déry et al. [74] | 1964–2013 | +NS05 (1) | |||
Yukon and other rivers in Alaska | Bennett et al. [48] | 1954/1964–2013 | +3 (8) | −3 (8) |
References
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef][Green Version]
- Zhang, X.; Flato, G.; Kirchmeier-Young, M.; Vincent, L.; Wan, H.; Wang, X.; Rong, R.; Fyfe, J.; Li, G.; Kharin, V.V. Changes in temperature and precipitation across Canada; Chapter 4. In Canada’s Changing Climate Report; Bush, E., Lemmen, D.S., Eds.; Government of Canada: Ottawa, ON, Canada, 2019; pp. 112–193. [Google Scholar]
- Zhang, X.; He, J.; Zhang, J.; Polyakov, I.; Gerdes, R.; Inoue, J.; Wu, P. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Clim. Chang. 2012, 3, 47–51. [Google Scholar] [CrossRef]
- Vihma, T.A.; Screen, J.; Tjernström, M.; Newton, B.W.; Zhang, X.; Popova, V.; Deser, C.; Holland, M.M.; Prowse, T.D. The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. J. Geophys. Res. Biogeosciences 2016, 121, 586–620. [Google Scholar] [CrossRef][Green Version]
- Derksen, C.; Brown, R.; Mudryk, L.; Luojus, K. Arctic: Terrestrial Snow. State of the Climate in 2014. Bull. Am. Meteorol. Soc. 2015, 96, 133–135. [Google Scholar]
- Mudryk, L.R.; Derksen, C.; Howell, S.; Laliberté, F.; Thackeray, C.; Sospedra-Alfonso, R.; Vionnet, V.; Kushner, P.J.; Brown, R. Canadian snow and sea ice: Historical trends and projections. Cryosphere 2018, 12, 1157–1176. [Google Scholar] [CrossRef][Green Version]
- Derksen, C.; Burgess, D.; Duguay, C.; Howell, S.; Murdyk, L.; Smith, S.; Thackeray, C.; Kirchmeier-Young, M. Changes in snow, ice, and permafrost across Canada. In Changes in Snow, Ice, and Permafrost across Canada; Bush, E., Lemmen, D.S., Eds.; Government of Canada: Ottawa, ON, Canada, 2019; pp. 194–260. [Google Scholar]
- Romanovsky, V.E.; Smith, S.L.; Christiansen, H.H. Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: A synthesis. Permafr. Periglac. Process. 2010, 21, 106–116. [Google Scholar] [CrossRef][Green Version]
- Grosse, G.; Goetz, S.; McGuire, A.D.E.; Romanovsky, V.; Schuur, E.A.G. Changing permafrost in a warming world and feedbacks to the Earth system. Environ. Res. Lett. 2016, 11, 040201. [Google Scholar] [CrossRef]
- Bintanja, R.; Andry, R.B.O. Towards a rain-dominated Arctic. Nat. Clim. Chang. 2017, 7, 263–267. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nat. Cell Biol. 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Barnett, T.P.; Pierce, D.W.; Hidalgo, H.G.; Bonfils, C.; Santer, B.D.; Das, T.; Bala, G.; Wood, A.W.; Nozawa, T.; Mirin, A.A.; et al. Human-Induced Changes in the Hydrology of the Western United States. Science 2008, 319, 1080–1083. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shrestha, R.R.; Cannon, A.J.; Schnorbus, M.A.; Alford, H. Climatic Controls on Future Hydrologic Changes in a Subarctic River Basin in Canada. J. Hydrometeorol. 2019, 20, 1757–1778. [Google Scholar] [CrossRef]
- Shrestha, R.R.; Cannon, A.J.; Schnorbus, M.A.; Zwiers, F.W. Projecting future nonstationary extreme streamflow for the Fraser River, Canada. Clim. Chang. 2017, 145, 289–303. [Google Scholar] [CrossRef]
- Rennert, K.J.; Roe, G.; Putkonen, J.; Bitz, C.M. Soil Thermal and Ecological Impacts of Rain on Snow Events in the Circumpolar Arctic. J. Clim. 2009, 22, 2302–2315. [Google Scholar] [CrossRef]
- Liston, G.E.; Hiemstra, C.A. The Changing Cryosphere: Pan-Arctic Snow Trends (1979–2009). J. Clim. 2011, 24, 5691–5712. [Google Scholar] [CrossRef]
- Hansen, B.B.; Isaksen, K.; Benestad, R.E.; Kohler, J.; Pedersen, Å.Ø.; Loe, L.E.; Coulson, S.J.; Larsen, J.O.; Varpe, Ø. Warmer and wetter winters: Characteristics and implications of an extreme weather event in the High Arctic. Environ. Res. Lett. 2014, 9, 114021. [Google Scholar] [CrossRef]
- Bokhorst, S.; Pedersen, S.H.; Brucker, L.; Anisimov, O.; Bjerke, J.W.; Brown, R.D.; Ehrich, D.; Essery, R.L.H.; Heilig, A.; Ingvander, S.; et al. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 2016, 45, 516–537. [Google Scholar] [CrossRef][Green Version]
- Bense, V.F.; Ferguson, G.; Kooi, H. Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef][Green Version]
- Smith, L.C.; Pavelsky, T.M.; Macdonald, G.M.; Shiklomanov, A.I.; Lammers, R.B. Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high-latitude hydrologic cycle. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef][Green Version]
- Matti, B.; Dahlke, H.E.; Lyon, S.W. On the variability of cold region flooding. J. Hydrol. 2016, 534, 669–679. [Google Scholar] [CrossRef][Green Version]
- Ye, B.; Yang, D.; Zhang, Z.; Kane, D.L. Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef][Green Version]
- Cherry, J.E.; Knapp, C.; Trainor, S.; Ray, A.J.; Tedesche, M.; Walker, S. Planning for climate change impacts on hydropower in the Far North. Hydrol. Earth Syst. Sci. 2017, 21, 133–151. [Google Scholar] [CrossRef][Green Version]
- Instanes, A.; Kokorev, V.; Janowicz, R.; Bruland, O.; Sand, K.; Prowse, T. Changes to freshwater systems affecting Arctic infrastructure and natural resources. J. Geophys. Res. Biogeosci. 2016, 121, 567–585. [Google Scholar] [CrossRef][Green Version]
- Durocher, M.; Requena, A.I.; Burn, D.H.; Pellerin, J. Analysis of trends in annual streamflow to the Arctic Ocean. Hydrol. Process. 2019, 33, 1143–1151. [Google Scholar] [CrossRef]
- Box, J.; Colgan, W.T.; Christensen, T.R.; Schmidt, N.M.; Lund, M.; Parmentier, F.-J.W.; Brown, R.; Bhatt, U.S.; Euskirchen, E.S.; Romanovsky, V.E.; et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 2019, 14, 045010. [Google Scholar] [CrossRef]
- Ahmed, R.; Prowse, T.; Dibike, Y.; Bonsal, B.; O’Neil, H. Recent Trends in Freshwater Influx to the Arctic Ocean from Four Major Arctic-Draining Rivers. Water 2020, 12, 1189. [Google Scholar] [CrossRef][Green Version]
- Heginbottom, J.A.; Dubreuil, M.A.; Harker, P.A. Canada—Permafrost, National Atlas of Canada, National Atlas Information Service; Natural Resources Canada, MCR: Ottawa, ON, Canada, 1995; p. 4177. [Google Scholar]
- Natural Resources Canada Index of Permafrost Database. Available online: https://ftp.maps.canada.ca/pub/nrcan_rncan/archive/vector/geology/Permafrost/ (accessed on 16 February 2021).
- Water Survey of Canada Water Level and Flow - Environment Canada. Available online: https://wateroffice.ec.gc.ca/ (accessed on 16 February 2021).
- United States Geological Survey USGS Current Conditions for USGS 15356000 YUKON R AT EAGLE AK. Available online: https://waterdata.usgs.gov/usa/nwis/uv?15356000 (accessed on 16 February 2021).
- De Rham, L.P.; Prowse, T.D.; Beltaos, S.; Lacroix, M.P. Assessment of annual high-water events for the Mackenzie River basin, Canada. Hydrol. Process. 2008, 22, 3864–3880. [Google Scholar] [CrossRef]
- Jacques, J.-M.S.; Sauchyn, D.J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Werner, A.T.; Schnorbus, M.A.; Shrestha, R.R.; Cannon, A.J.; Zwiers, F.W.; Dayon, G.; Anslow, F. A long-term, temporally consistent, gridded daily meteorological dataset for northwestern North America. Sci. Data 2019, 6, 180299. [Google Scholar] [CrossRef][Green Version]
- Hutchinson, M.F.; McKenney, D.W.; Lawrence, K.; Pedlar, J.H.; Hopkinson, R.F.; Milewska, E.; Papadopol, P. Development and Testing of Canada-Wide Interpolated Spatial Models of Daily Minimum–Maximum Temperature and Precipitation for 1961–2003. J. Appl. Meteorol. Clim. 2009, 48, 725–741. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada National Hydrometric Network Basin Polygons-Open Government Portal. Available online: https://open.canada.ca/data/en/dataset/0c121878-ac23-46f5-95df-eb9960753375 (accessed on 16 February 2021).
- Bronaugh, D.; Werner, A. Zyp: Zhang + Yue-Pilon Trends Package. 2019. Available online: https://cran.r-project.org/web/packages/zyp/zyp.pdf. (accessed on 27 February 2021).
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1955. [Google Scholar]
- Zhang, X.; Zwiers, F.W. Comment on “Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test” by Sheng Yue and Chun Yuan Wang. Water Resour. Res. 2004, 40, 03805. [Google Scholar] [CrossRef][Green Version]
- Bürger, G. On trend detection. Hydrol. Process. 2017, 31, 4039–4042. [Google Scholar] [CrossRef]
- Wilks, D.S. On “Field Significance” and the False Discovery Rate. J. Appl. Meteorol. Clim. 2006, 45, 1181–1189. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; US Geological Survey: Reston, VA, USA, 2002; Volume 323. [Google Scholar]
- Lehner, F.; Wood, A.W.; Vano, J.A.; Lawrence, D.M.; Clark, M.P.; Mankin, J.S. The potential to reduce uncertainty in regional runoff projections from climate models. Nat. Clim. Chang. 2019, 9, 926–933. [Google Scholar] [CrossRef]
- Chegwidden, O.S.; Rupp, D.E.; Nijssen, B. Climate change alters flood magnitudes and mechanisms in climatically-diverse headwaters across the northwestern United States. Environ. Res. Lett. 2020, 15, 094048. [Google Scholar] [CrossRef]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B. Caret: Classification and Regression Training. 2018. Available online: https://ui.adsabs.harvard.edu/abs/2015ascl.soft05003K/abstract (accessed on 26 February 2021).
- Yang, D.; Shi, X.; Marsh, P.D. Variability and extreme of Mackenzie River daily discharge during 1973–2011. Quat. Int. 2015, 380–381, 159–168. [Google Scholar] [CrossRef]
- Bennett, K.; Cannon, A.; Hinzman, L. Historical trends and extremes in boreal Alaska river basins. J. Hydrol. 2015, 527, 590–607. [Google Scholar] [CrossRef]
- Yang, D.; Shrestha, R.R.; Park, H. Heat Flux from 15 Canadian Northern Rivers Draining to Arctic Ocean and Hudson/James Bay. Glob. Planet. Chang. under review.
- Mekis, É.; Vincent, L.A. An Overview of the Second Generation Adjusted Daily Precipitation Dataset for Trend Analysis in Canada. Atmosphere-Ocean. 2011, 49, 163–177. [Google Scholar] [CrossRef][Green Version]
- Hamilton, S. Sources of Uncertainty in Canadian Low Flow Hydrometric Data. Can. Water Resour. J. / Rev. Can. des ressources hydriques 2008, 33, 125–136. [Google Scholar] [CrossRef][Green Version]
- Woo, M.-K.; Thorne, R. Winter Flows in the Mackenzie Drainage System. Arct. 2014, 67, 238–256. [Google Scholar] [CrossRef][Green Version]
- IPCC. Annex I: Atlas of Global and Regional Climate Projections. In Climate Change 2013; Van Oldenborgh, G.J., Collins, M., Arblaster, J., Christensen, J.H., Marotzke, J., Power, S.B., Rummukainen, M., Zhou, T., Stocker, T., Qin, D., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1311–1393. [Google Scholar]
- Jeong, D.I.; Sushama, L. Rain-on-snow events over North America based on two Canadian regional climate models. Clim. Dyn. 2017, 50, 303–316. [Google Scholar] [CrossRef][Green Version]
- Mudryk, L.; Santolaria-Otín, M.; Krinner, G.; Ménégoz, M.; Derksen, C.; Brutel-Vuilmet, C.; Brady, M.; Essery, R. Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere 2020, 14, 2495–2514. [Google Scholar] [CrossRef]
- Callaghan, T.V.; Johansson, M.; Brown, R.D.; Groisman, P.Y.; Labba, N.; Radionov, V.; Barry, R.G.; Bulygina, O.N.; Essery, R.L.H.; Frolov, D.M.; et al. The Changing Face of Arctic Snow Cover: A Synthesis of Observed and Projected Changes. Ambio 2011, 40, 17–31. [Google Scholar] [CrossRef][Green Version]
- Diffenbaugh, N.S.; Scherer, M.; Ashfaq, M. Response of snow-dependent hydrologic extremes to continued global warming. Nat. Clim. Chang. 2012, 3, 379–384. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shrestha, R.R.; Bonsal, B.R.; Bonnyman, J.M.; Cannon, A.J.; Najafi, M.R. Heterogeneous snowpack response and snow drought occurrence across river basins of northwestern North America under 1.0 °C to 4.0 °C global warming. Clim. Chang. 2021, 164, 1–21. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.; Johns, T.; Krinner, G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 1029–1136. [Google Scholar]
- Koirala, S.; Yeh, P.J.-F.; Hirabayashi, Y.; Kanae, S.; Oki, T. Global-scale land surface hydrologic modeling with the representation of water table dynamics. J. Geophys. Res. Atmos. 2014, 119, 75–89. [Google Scholar] [CrossRef]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bring, A.; Shiklomanov, A.; Lammers, R.B. Pan-Arctic river discharge: Prioritizing monitoring of future climate change hot spots. Earth’s Futur. 2017, 5, 72–92. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Kane, D.L.; McNamara, J.P.; Yang, D.; Olsson, P.Q.; Gieck, R.E. An Extreme Rainfall/Runoff Event in Arctic Alaska. J. Hydrometeorol. 2003, 4, 1220–1228. [Google Scholar] [CrossRef][Green Version]
- Kane, D.L.; Hinzman, L.D.; Gieck, R.E.; McNamara, J.P.; Youcha, E.K.; Oatley, J.A. Contrasting extreme runoff events in areas of continuous permafrost, Arctic Alaska. Hydrol. Res. 2008, 39, 287–298. [Google Scholar] [CrossRef]
- Dugan, H.A.; Lamoureux, S.F.; Lafrenière, M.J.; Lewis, T. Hydrological and sediment yield response to summer rainfall in a small high Arctic watershed. Hydrol. Process. 2009, 23, 1514–1526. [Google Scholar] [CrossRef]
- Striegl, R.G.; Dornblaser, M.M.; Aiken, G.R.; Wickland, K.P.; Raymond, P.A. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001-2005. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef][Green Version]
- Aiken, G.R.; Spencer, R.G.M.; Striegl, R.G.; Schuster, P.F.; Raymond, P.A. Influences of glacier melt and permafrost thaw on the age of dissolved organic carbon in the Yukon River basin. Glob. Biogeochem. Cycles 2014, 28, 525–537. [Google Scholar] [CrossRef]
- Bliss, A.; Hock, R.; Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth Surf. 2014, 119, 717–730. [Google Scholar] [CrossRef]
- Tananaev, N.I.; Makarieva, O.M.; Lebedeva, L.S. Trends in annual and extreme flows in the Lena River basin, Northern Eurasia. Geophys. Res. Lett. 2016, 43, 10–764. [Google Scholar] [CrossRef]
- Yang, D.; Ye, B.; Kane, D.L. Streamflow changes over Siberian Yenisei River Basin. J. Hydrol. 2004, 296, 59–80. [Google Scholar] [CrossRef]
- Shiklomanov, A.I.; Lammers, R.B.; Rawlins, M.A.; Smith, L.C.; Pavelsky, T.M. Temporal and spatial variations in maximum river discharge from a new Russian data set. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Tan, A.; Adam, J.C.; Lettenmaier, D.P. Change in spring snowmelt timing in Eurasian Arctic rivers. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef][Green Version]
- Déry, S.J.; Stadnyk, T.A.; Macdonald, M.K.; Gauli-Sharma, B. Recent trends and variability in river discharge across northern Canada. Hydrol. Earth Syst. Sci. 2016, 20, 4801–4818. [Google Scholar] [CrossRef][Green Version]
Variable | Significant Increasing/Decreasing Trends/Total Stations | Field significant Increasing/Decreasing Trends/Total Stations |
---|---|---|
Qmean | 12/5/79 | 6/0/79 |
Qmin | 35/2/79 | 30/1/79 |
Qmax | 9/7/83 | 3/1/83 |
Qmax timing | 8/7/83 | 0/0/83 |
Qmax/Qmin | 2/33/79 | 1/19/79 |
O–M_T | 67/0/84 | 63/0/84 |
A–S_T | 60/0/84 | 55/0/84 |
O–M_P | 23/3/84 | 11/0/84 |
A–S_P | 13/1/84 | 2/0/84 |
Variable | Region 3 | Region 4 | Region 5 | Region 6 | Region 7 | Region 8 & 9 | Region 10 |
---|---|---|---|---|---|---|---|
Qmean | 0/3/5 | 0/0/5 | 0/0/6 | 4/1/15 | 0/0/9 | 4/0/14 | 2/1/25 |
Qmin | 0/1/5 | 0/0/6 | 2/0/7 | 4/1/15 | 2/0/9 | 11/0/13 | 14/1/24 |
Qmax | 0/2/5 | 0/1/5 | 0/0/7 | 2/1/15 | 1/2/9 | 1/1/14 | 4/1/28 |
Qmax timing | 0/0/5 | 2/0/5 | 3/0/7 | 1/0/15 | 0/0/9 | 0/2/14 | 2/5/28 |
Qmax/Qmin | 1/3/5 | 0/0/6 | 0/2/7 | 1/1/15 | 0/6/9 | 0/10/13 | 2/9/24 |
O–M_T | 4/0/5 | 4/0/6 | 4/0/7 | 10/0/15 | 8/0/9 | 10/0/14 | 27/0/28 |
A–S_T | 3/0/5 | 6/0/6 | 5/0/7 | 11/0/15 | 5/0/9 | 9/0/14 | 21/0/28 |
O–M_P | 0/0/5 | 1/0/6 | 2/0/7 | 5/0/15 | 3/0/9 | 0/0/14 | 12/3/28 |
A–S_P | 0/0/5 | 0/0/6 | 0/0/7 | 0/0/15 | 3/0/9 | 0/0/14 | 10/1/28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, R.R.; Pesklevits, J.; Yang, D.; Peters, D.L.; Dibike, Y.B. Climatic Controls on Mean and Extreme Streamflow Changes Across the Permafrost Region of Canada. Water 2021, 13, 626. https://doi.org/10.3390/w13050626
Shrestha RR, Pesklevits J, Yang D, Peters DL, Dibike YB. Climatic Controls on Mean and Extreme Streamflow Changes Across the Permafrost Region of Canada. Water. 2021; 13(5):626. https://doi.org/10.3390/w13050626
Chicago/Turabian StyleShrestha, Rajesh R., Jennifer Pesklevits, Daqing Yang, Daniel L. Peters, and Yonas B. Dibike. 2021. "Climatic Controls on Mean and Extreme Streamflow Changes Across the Permafrost Region of Canada" Water 13, no. 5: 626. https://doi.org/10.3390/w13050626