Water Ecosystem Service Quality Evaluation and Value Assessment of Taihu Lake in China

Qingjian Zhao * and Qiuyan Wang

College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China; qiuyanwang0105@126.com

* Correspondence: zhao5190@126.com; Tel.: +86-1385-170-2610

Supplementary Material

Ecosystem service categories	Services	Equation	Description of the variable	References
Provisioning service	Water supply	$V_w = \sum_{i=1}^3 W_i \cdot P_i$	V_w : the total value of water supply W_i : the amount of water used for the <i>i</i> th application (tons) P_i : the water supply price for the <i>i</i> th use i = 1, 2, 3: industrial water, agricultural water, and residential water	[4]
	Provide aquatic products	$V_{scp} = A_s \cdot V_{dyy}$ $V_{dyy} = \frac{\sum_{n=1}^{4} V_n}{\sum_{n=1}^{4} A_n}$	V_{scp} : the value of aquatic products provided by Taihu Lake (100 million yuan) A_s : the water area of Taihu Lake V_{dyy} : the fishery output value per unit area (100 million yuan/km ²) V_n : the total fishery output value (100 million yuan) A_n : administrative division area (km ²) of each city n = 1, 2, 3, 4: Suzhou, Wuxi, Changzhou, and Huzhou, respectively	[1]
	Shipping function	$V_h = Q_{cargo} \cdot P_{cargo}$ + $Q_{passenger}$ $\cdot P_{passengert}$	V_h : shipping value Q_{cargo} : cargo turnover (ton- kilometer) P_{cargo} : cargo turnover price (yuan/ton-kilometer) $Q_{passenger}$: passenger turnover (person-kilometer)	[4]

Table S1. Description and equations of the variables.

			<i>P_{passengert}</i> : turnover price (yuan/person-kilometer)	
Regulation service	Regulate the atmosphere	$V_g = P_g \cdot Q_g$ $V_y = P_y \cdot Q_y$	V_g : the value of carbon sequestration P_g : the afforestation cost of an absorbed unit of CO ₂ (yuan/ton) Q_g : the annual fixed amount of CO ₂ (ton) of the water ecosystem V_y : the value of oxygen release P_y : the unit cost of industrial oxygen production (yuan/ton) Q_y : the amount of O ₂ released by the water ecosystem (ton) each year	[1][2]
	Water purification	$V_j = \sum_{k=1}^4 Q_{jk} \cdot P_{jk}$	<i>V_j</i> : the total value of water purification Q_{jk} : the reduction amount of the <i>k</i> th pollutant entering and leaving the lake (tons) P_{jk} : the cost of treating the <i>k</i> th pollutant by the sewage treatment plant (yuan/ton) k = 1, 2, 3, 4: the hypermanganate index, NH ₃ –N, TP, and TN, respectively	[3]
	Surface water storage	$V_d = Q_d \cdot P_d$	V_d : the storage value of surface water resources Q_d : the capacity of surface water storage (m ³) P_d : the unit storage value	[4]
Support service	Protect biodiversity	$V_{s} = D_{s} \cdot F_{s} \cdot A_{s}$ $D_{s} = \frac{1}{3} \sum_{m=1}^{3} S_{m} \cdot R_{m}$	V_s : the value of maintaining biodiversity D_s : the ecological service value of 1 standard equivalent factor F_s : the equivalent value of maintaining biodiversity service function in per unit area of water ecosystem S_m : the percentage (%) of the cultivated area of the <i>m</i> th crop in the total cultivated area of the crops	[5]

			R_m : the average net profit per	
			unit area of the <i>m</i> th crop in the	
			country (yuan/mu)	
			m = 1, 2, 3: rice, wheat, and	
			rapeseed, respectively	
			V_r : the soil conservation value	
	Soil conservation	$V_r = \frac{1}{3} \sum_{m=1}^{3} S_m \cdot R_m \cdot F_r \cdot A_s$	(yuan/year)	
			F_r : the soil conservation service	[5]
			value equivalent per unit area of	
			the water ecosystem	
	Tourism and leisure		It is calculated by the price	
Cultural service			substitution method. The	
			difference between operating	
			income and expenditure (i.e.,	[6]
			operating profit) was used to	
			quantify the value of tourism	
			and leisure in Taihu Lake	
	Research and education	$V_{ky} = P_{ky} \cdot A_s$	V_{ky} : the value generated by	
			scientific research and education	
			P_{ky} : the average value generated	[7]
			by scientific research and	[1]
			education per unit area of	
			wetland	

Figure S1. Biological species of Taihu Lake.

References

- Yan Renhua, Gao Junfeng, Huang Qi, Zhao Jiahu, Dong Chuanyong, Chen Xiaofei, Zhang Zhiming, Huang Jiacong. Service value of water ecosystem in the polder area of Taihu Lake Basin[J]. Journal of Ecological Sciences, 2015, 35(15):5197-5206.
- [2] Zhang Yunlin, Feng Sheng, Ma Ronghua, Liu Mingliang, Qin Boqiang. The spatial distribution of the true light layer depth and the estimation of phytoplankton primary productivity in Taihu Lake in autumn[J]. Lake Science,2008(03):380-388.
- [3] Zan Xin, Zhang Yuling, Jia Xiaoyu, Xiong Guangsen. Evaluation of water ecosystem service value in the upper reaches of Yongding River[J]. Journal of Natural Resources, 2020, 35(06):1326-1337.
- [4] Xiang Chen, Yan Lijiao, Han Yicai, Wu Zhixu, Yang Wenjie. Evaluation of Ecosystem Service Value of Qiandao Lake [J]. Journal of Applied Ecology, 2019,30(11):3875-3884.
- [5] Xie Gaodi, Zhang Caixia, Zhang Changshun, Xiao Yu, Lu Chunxia. The value of China's ecosystem services[J]. Resource Science, 2015, 37(09):1740-1746.
- [6] Xu Yan, Gao Junfeng, Huang Jiacong. Evaluation of Service Function Value of Taihu Wetland Ecosystem[J]. Resources and Environment in the Yangtze River Basin,2010,19(06):646-652.
- [7] Fu Wenfeng, Jiang Hai, Fang Juanjuan, Guan Yongxiang, Wu Tianxiang, Zhao Haiyan, Wu Hao. Evaluation of the comprehensive benefits of the ecological engineering of the lakeside buffer zone in Zhushan Bay: Taking Zhoutie Town, Yixing City, Jiangsu Province as an example [J]. Bulletin of Soil and Water Conservation,2017,37(02):268-273.