Study on the Efficiency of On-Site Sludge Reduction Using Ti/SnO2-Sb and Ti/RuO2-IrO2 Electrodes Based on a Cell Lysis-Cryptic Growth System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrochemical Cell Lysis Experimental Setup
2.2. The Source of Sludge
2.3. Analysis Methods
2.3.1. Determination of Cell Lysis Rate (C)
2.3.2. Determination of Sludge Disintegration Degree (R)
2.3.3. Determination of SOUR
2.3.4. Extraction and Determination of Extracellular Polymeric Substances (EPS) from Sludge
2.3.5. Other Analytical Methods
2.3.6. Data Analysis
3. Results
3.1. Investigation of Factors Influencing Cell Lysis Using Two Electrodes
3.1.1. Effect of Working Voltage on the Efficiency of Cell Lysis
3.1.2. Effect of Initial Sludge Concentration on Cell Lysis Efficiency
3.1.3. Effect of Plate Spacing on Cell Lysis Efficiency
3.1.4. Effect of Initial pH on Cell Lysis Efficiency
3.1.5. Effect of Duration of Electrolysis on Cell Lysis Efficiency
3.2. Effect of Electrolytic Cell Lysis on Sludge Physical Properties Using the Sn-Sb Electrode as the Anode
3.2.1. Concentration
3.2.2. Particle Size
3.2.3. pH
3.2.4. Settleability
3.2.5. Dewaterability
3.2.6. Microstructure
3.3. Effect of Electrolytic Cell Lysis on Biological Activity Using the Sn-Sb Electrode
3.4. Effect of Electrolytic Cell Lysis on Sludge Chemical Composition Using the Sn-Sb Electrode
3.4.1. COD
3.4.2. Concentrations of Nitrogen and Phosphorus
3.4.3. EPS Composition
3.4.4. Analysis of the Mechanism of Action of Cell Lysis Using an Electrode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, P.; Li, H.; Li, J.; Guo, X.; Liu, J.; Xiao, B. Evaluation of sludge reduction of three metabolic uncouplers in laboratory-scale anaerobic-anoxic-oxic process. Bioresour. Technol. 2016, 221, 31–36. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, W.; Wang, L.; Che, L.; Chen, C.; Li, S.; Wang, X.; Tu, R.; Han, S.; Feng, X.; et al. Alum sludge conditioning with ferrous iron/peroxymonosulfate oxidation: Characterization and mechanism. Korean J. Chem. Eng. 2020, 37, 663–669. [Google Scholar] [CrossRef]
- Wang, M.; Chen, H.; Liu, S.; Xiao, L. Removal of pathogen and antibiotic resistance genes from waste activated sludge by different pre-treatment approaches. Sci. Total Environ. 2021, 763, 143014. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, A.; Kitaichi, Y.; Uchikura, K. Degradation of Corticosteroids during Activated Sludge Processing. Chem. Pharm. Bull. 2014, 62, 72–76. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xu, S.; Lu, W.; Qasim, M.Z. High-throughput characterization of the expressed antibiotic resistance genes in sewage sludge with transcriptional analysis. Ecotoxicol. Environ. Saf. 2020, 205, 111377. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Huang, Q.; Cui, J.; Zhang, K.; Tang, C.; Peng, X. Determination of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in sewage sludge by ultra-high-performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2011, 399, 891–902. [Google Scholar] [CrossRef][Green Version]
- Li, L.; Tian, Y.; Zhang, J.; Zuo, W.; Li, H.; Li, A.; Huang, D.; Liu, J.; Liu, Y.; Sun, Z.; et al. Insight into the roles of worm reactor on wastewater treatment and sludge reduction in anaerobic-anoxic-oxic membrane bioreactor (A(2)O-MBR): Performance and mechanism. Chem. Eng. J. 2017, 330, 718–726. [Google Scholar] [CrossRef]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, G.; Wang, Q.; Yuan, Z. A review on sludge conditioning by sludge pre-treatment with a focus on advanced oxidation. RSC Adv. 2014, 4, 50644–50652. [Google Scholar] [CrossRef]
- Xiao, K.; Chen, Y.; Jiang, X.; Yang, Q.; Seow, W.Y.; Zhu, W.; Zhou, Y. Variations in physical, chemical and biological properties in relation to sludge dewaterability under Fe (II)—Oxone conditioning. Water Res. 2017, 109, 13–23. [Google Scholar] [CrossRef]
- Khursheed, A.; Kazmi, A.A. Retrospective of ecological approaches to excess sludge reduction. Water Res. 2011, 45, 4287–4310. [Google Scholar] [CrossRef]
- Guo, W.; Yang, S.; Xiang, W.; Wang, X.; Ren, N. Minimization of excess sludge production by in-situ activated sludge treatment processes—A comprehensive review. Biotechnol. Adv. 2013, 31, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Carrere, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenes, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Guo, W.; Cao, G.; Zheng, H.; Ren, N. Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment. Bioresour. Technol. 2012, 124, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Botte, G.G. Electrochemical treatment of sewage sludge and pathogen inactivation. J. Appl. Electrochem. 2020, 51, 119–130. [Google Scholar] [CrossRef]
- Rajeshwar, K.; Ibanez, J.G.; Swain, G.M. Electrochemistry and the Environment. J. Appl. Electrochem. 1994, 24, 1077–1091. [Google Scholar] [CrossRef]
- Yuan, H.; Zhu, N.; Song, F. Dewaterability characteristics of sludge conditioned with surfactants pretreatment by electrolysis. Bioresour. Technol. 2011, 102, 2308–2315. [Google Scholar] [CrossRef]
- Kirk, D.W.; Sharifian, H.; Foulkfs, F.R. Anodic-Oxidation of Aniline for Waste-Water Treatment. J. Appl. Electrochem. 1985, 15, 285–292. [Google Scholar] [CrossRef]
- Chaplin, B.P. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci. Process. Impacts 2014, 16, 1182–1203. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Huang, Z.; Lim, T. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Appl. Catal. A-Gen. 2014, 480, 58–78. [Google Scholar] [CrossRef]
- Lissens, G.; Pieters, J.; Verhaege, M.; Pinoy, L.; Verstraete, W. Electrochemical degradation of surfactants by intermediates of water discharge at carbon-based electrodes. Electrochim. Acta 2003, 48, 1655–1663. [Google Scholar] [CrossRef]
- Polcaro, A.M.; Palmas, S.; Renoldi, F.; Mascia, M. On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment. J. Appl. Electrochem. 1999, 29, 147–151. [Google Scholar] [CrossRef]
- Loginov, M.; Citeau, M.; Lebovka, N.; Vorobiev, E. Electro-dewatering of drilling sludge with liming and electrode heating. Sep. Purif. Technol. 2013, 104, 89–99. [Google Scholar] [CrossRef]
- Song, L.; Zhu, N.; Yuan, H.; Hong, Y.; Ding, J. Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment. Water Res. 2010, 44, 4371–4378. [Google Scholar] [CrossRef] [PubMed]
- Feki, E.; Khoufi, S.; Loukil, S.; Sayadi, S. Improvement of anaerobic digestion of waste-activated sludge by using H2O2 oxidation, electrolysis, electro-oxidation and thermo-alkaline pretreatments. Environ. Sci. Pollut. Res. 2015, 22, 14717–14726. [Google Scholar] [CrossRef]
- Yuan, H.; Guan, R.; Wachemo, A.C.; Zhu, C.; Zou, D.; Li, Y.; Liu, Y.; Zuo, X.; Li, X. Enhancing methane production of excess sludge and dewatered sludge with combined low frequency CaO-ultrasonic pretreatment. Bioresour. Technol. 2019, 273, 425–430. [Google Scholar] [CrossRef]
- Sun, F.; Xiao, K.; Zhu, W.; Withanage, N.; Zhou, Y. Enhanced Sludge Solubilization and Dewaterability by Synergistic Effects of Nitrite and Freezing. Water Res. 2018, 130, 208–214. [Google Scholar] [CrossRef]
- Nepa, C. Water and Wastewater Monitoring Methods, 4th ed.; Chinese Environmental Science Publishing House: Beijing, China, 2012. [Google Scholar]
- Zhou, X.; Jin, W.; Wang, L.; Ding, W.; Chen, C.; Xu, X.; Tu, R.; Han, S.; Feng, X.; Lee, D. Improving primary sludge dewaterability by oxidative conditioning process with ferrous ion-activated peroxymonosulfate. Korean J. Chem. Eng. 2020, 37, 1498–1506. [Google Scholar] [CrossRef]
- Apul, O.G.; Sanin, F.D. Ultrasonic pretreatment and subsequent anaerobic digestion under different operational conditions. Bioresour. Technol. 2010, 101, 8984–8992. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang, S.; Yuan, H.; Zhou, Q.; Gu, G. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 2007, 41, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Yuan, H.; Dai, X.; Lou, Z.; Zhu, N. Electrochemical pretreatment of waste activated sludge: Effect of process conditions on sludge disintegration degree and methane production. Environ Technol. 2016, 37, 2935–2944. [Google Scholar] [CrossRef]
- Gasco, G.; Cueto, M.J.; Mendez, A. The effect of acid treatment on the pyrolysis behavior of sewage sludges. J. Anal. Appl. Pyrol. 2007, 80, 496–501. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J.; Dewil, R.; De Heyder, B. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J Hazard Mater. 2004, 106, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Erdincler, A.; Vesilind, P.A. Effect of sludge cell disruption on compactibility of biological sludges. Water Sci Technol. 2000, 42, 119–126. [Google Scholar] [CrossRef]
- Song, K.G.; Choung, Y.K.; Ahn, K.H.; Cho, J.W.; Yun, H.J. Performance of membrane bioreactor system with sludge ozonation process for minimization of excess sludge production. Desalination 2003, 157, 353–359. [Google Scholar] [CrossRef]
- Park, K.Y.; Ahn, K.H.; Maeng, S.K.; Hwang, J.H.; Kwon, J.H. Feasibility of sludge ozonation for stabilization and conditioning. Ozone-Sci. Eng. 2003, 25, 73–80. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Li, Y.; Zhao, Y. Innovative combination of electrolysis and Fe(II)-activated persulfate oxidation for improving the dewaterability of waste activated sludge. Bioresour. Technol. 2013, 136, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chen, J.; Wang, X.; Sun, Y.; Xu, Y.; Liu, Q. Enhancement of phosphorus release from waste activated sludge by electrochemical treatment. Environ. Technol. 2020. [Google Scholar] [CrossRef]
- Keiding, K.; Nielsen, P.H. Desorption of organic macromolecules from activated sludge: Effect of ionic composition. Water Res. 1997, 31, 1665–1672. [Google Scholar] [CrossRef]
- Yu, G.; He, P.; Shao, L.; He, P. Stratification Structure of Sludge Flocs with Implications to Dewaterability. Environ. Sci. Technol. 2008, 42, 7944–7949. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Tian, Y.; Li, N.; Kong, L.; Sun, L.; Yu, M.; Zuo, W. Changes of physicochemical properties of sewage sludge during ozonation treatment: Correlation to sludge dewaterability. Chem. Eng. J. 2016, 301, 238–248. [Google Scholar] [CrossRef]
- Thanomsub, B.; Anupunpisit, V.; Chanphetch, S.; Watcharachaipong, T.; Poonkhum, R.; Srisukonth, C. Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. J. Gen. Appl. Microbiol. 2002, 48, 193–199. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xu, G.; Chen, S.; Shi, J.; Wang, S.; Zhu, G. Combination treatment of ultrasound and ozone for improving solubilization and anaerobic biodegradability of waste activated sludge. J. Hazard Mater. 2010, 180, 340–346. [Google Scholar] [CrossRef] [PubMed]
Indicator | Range |
---|---|
pH | 6.2~6.8 |
Moisture content (%) | 97.9~98.8 |
Mixed liquor suspended solids (MLSS) (g/L) | 11.5~19.6 |
Mixed liquor volatile suspended solids (MLVSS) (g/L) | 5.69~9.74 |
MLVSS/MLSS | 0.46~0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Zhou, X.; Wang, W.; Jin, W.; Han, W.; Liu, W.; Ding, W.; Chen, Y.; Feng, X. Study on the Efficiency of On-Site Sludge Reduction Using Ti/SnO2-Sb and Ti/RuO2-IrO2 Electrodes Based on a Cell Lysis-Cryptic Growth System. Water 2021, 13, 616. https://doi.org/10.3390/w13050616
He Z, Zhou X, Wang W, Jin W, Han W, Liu W, Ding W, Chen Y, Feng X. Study on the Efficiency of On-Site Sludge Reduction Using Ti/SnO2-Sb and Ti/RuO2-IrO2 Electrodes Based on a Cell Lysis-Cryptic Growth System. Water. 2021; 13(5):616. https://doi.org/10.3390/w13050616
Chicago/Turabian StyleHe, Zhongqi, Xu Zhou, Wenhui Wang, Wenbiao Jin, Wei Han, Wentao Liu, Wanqing Ding, Yidi Chen, and Xiaochi Feng. 2021. "Study on the Efficiency of On-Site Sludge Reduction Using Ti/SnO2-Sb and Ti/RuO2-IrO2 Electrodes Based on a Cell Lysis-Cryptic Growth System" Water 13, no. 5: 616. https://doi.org/10.3390/w13050616