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Abstract: As a key parameter in the adsorption process, removal rate is not available under most
operating conditions due to the time and cost of experimental testing. To address this issue, evalu-
ation of the efficiency of NH4

+ removal from stormwater by coal-based granular activated carbon
(CB-GAC), a novel approach, the response surface methodology (RSM), back-propagation artificial
neural network (BP-ANN) coupled with genetic algorithm (GA), has been applied in this research.
The sorption process was modeled based on Box-Behnben design (BBD) RSM method for indepen-
dent variables: Contact time, initial concentration, temperature, and pH; suggesting a quadratic
polynomial model with p-value < 0.001, R2 = 0.9762. The BP-ANN with a structure of 4-8-1 gave
the best performance. Compared with the BBD-RSM model, the BP-ANN model indicated better
prediction of the response with R2 = 0.9959. The weights derived from BP-ANN was further analyzed
by Garson equation, and the results showed that the order of the variables’ effectiveness is as follow:
Contact time (31.23%) > pH (24.68%) > temperature (22.93%) > initial concentration (21.16%). The
process parameters were optimized via RSM optimization tools and GA. The results of validation ex-
periments showed that the optimization results of GA-ANN are more accurate than BBD-RSM, with
contact time = 899.41 min, initial concentration = 17.35 mg/L, temperature = 15 ◦C, pH = 6.98, NH4

+

removal rate = 63.74%, and relative error = 0.87%. Furthermore, the CB-GAC has been characterized
by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET).
The isotherm and kinetic studies of the adsorption process illustrated that adsorption of NH4

+ onto
CB-GAC corresponded Langmuir isotherm and pseudo-second-order kinetic models. The calculated
maximum adsorption capacity was 0.2821 mg/g.

Keywords: response surface methodology (RSM); back-propagation artificial neural network (BP-
ANN); genetic algorithm (GA); coal-based granular activated carbon (CB-GAC); stormwater

1. Introduction

In recent years, with the development of intensive urbanization, population growth,
land use transformation, pollution, and changing climate patterns, fresh water availability
has become one of the main issues facing humankind [1]. In this context, stormwater is
being considered in water-stressed cities as an alternative water resource [2]. Stormwater
utilization is also an ecological and sustainable method of water management, resulting in
the reduction of urban runoff and flooding [3].

Despite its potential for augmenting water supplies and reducing runoff flood, urban
stormwater contains contaminants that pose risks to human health and aquatic ecosystems.
Stormwater is often contaminated by organic matter, nutrients (i.e., phosphorus and ni-
trogen) and heavy metals [4,5] (Some studies suggest it should be replaced with the term
potentially toxic elements [6]). Dissolved nitrogen species include nitrate (NO3

-), nitrite
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(NO2
-), ammonia and ammonium (NH3 and NH4

+), and organic N. The distribution be-
tween NH3 versus NH4

+ is pH dependent (pKa = 9.25), but NH4
+ dominates in stormwater

(typical pH values are 6–8) [7]. The high level of ammonia in water imparts taste and odor
problems, can cause symptoms in aquatic organisms such as hypoxia, coma, and decreased
immunity, resulting in slow growth and even a large numbers of deaths [8,9].

Over the years, various techniques have been used to remove ammonia nitrogen
from water, such as biological process [10], stripping [11], breakpoint chlorination [12],
chemical precipitation [13], and adsorption [14]. As the most commonly used nitrogen
removal technology, however, biological processes are critical to the environment. Low
temperature or high ammonia concentration may affect the activity of nitrobacteria and
reduce the treatment efficiency [10]. Nitrifying bacteria activity is reduced below 15 ◦C,
and life activities are inhibited below 5 ◦C [14]. Therefore, adsorption is considered to be a
feasible method to remove ammonia nitrogen from water, since adsorption is a more direct,
stable, and low-cost method for contaminants removal from water. Ideally, sorbents for
contaminants in stormwater should exhibit high selectivity and rapid sorption kinetics, as
well as sufficient sorption capacity [15]. Activated carbon is a kind of cheap, large specific
surface area, easy to obtain, and rich pore structure adsorption material, which is broadly
used in the water treatment process [16], but currently has limited application for other
types of contaminated water, including stormwater [17]. Coal-based granular activated
carbon is the most productive of all kinds of activated carbons due to its wide source of
raw materials, mature production process, and good adsorption effect, and 70% of it is
used for water treatment [18].

Removal rate is a key parameter in the adsorption process, but it is not available under
most operating conditions due to the time and cost of experimental testing. Therefore, it is
important to optimize experimental conditions and obtain the maximum removal rate by
using modeling and optimization. The adsorption process is a complex process, which is
difficult to describe by statistical model due to the complexity of the relationship between
input parameters and output. Computational intelligence models are generally more
flexible than statistical models in modeling complex data sets that may contain nonlinear
or missing data [19]. In order to reveal the influence of the interaction between variables in
the adsorption process on the dependent variables, analyze the relative influence degree
of different variables, and obtain the optimal conditions of the adsorption process, more
reasonable and accurate methods need to be developed.

Response surface methodology (RSM) is widely used in the optimization of chemical
and physical processes. It is an optimization method that integrates mathematical modeling
and experimental design [20]. Through experiments on representative local points, the
functional relationship between factors in the global scope and experimental results is
fitted by regression, and the optimal value of each factor is obtained. The difference
between the response surface method and the traditional orthogonal experimental design
method is that the response surface method has high precision of regression equation, short
experimental period, and the ability to study the interaction between multiple factors at
the same time [21].

In addition, a number of data analysis tools have evolved into sophisticated modeling
techniques, such as fuzzy logic (FL) and artificial intelligence (AI). As one of the main tools
of artificial intelligence, artificial neural networks (ANNs) have been widely used due to
their general ability to simulate nonlinear changes and process incomplete data. ANN does
not require mathematical description of the phenomena in the process, so the simulation of
the complicated systems could be performed more efficiently [22–24]. Compared with the
RSM focusing on the statistical importance of the individual process variables and their
interactions via ANOVA, AAN is more reliable in capturing the nonlinear relationship
between the removal rate and process variables [25]. Although, ANN is an effective tool
to predict and optimize any complex process parameters, it cannot guarantee the global
optimal solution [26]. Genetic algorithm (GA) can be used to minimize (or maximize) the
global search and to obtain feasible solutions with a known fitness function [19]. GA is a
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kind of adaptive heuristic optimization search algorithm based on a Darwinian genetic
evolution principle, taking “survival of the fittest” as the concept, and using genetic
operators such as selection, mutation, and crossover to find the optimal solution of the
problem [27]. Therefore, the combination of artificial neural network and genetic algorithm
can generate the optimal operating variables of the process under study.

This study was aimed at modeling and optimizing the NH4
+ removal process from

stormwater by coal-based granular activated carbon (CB-GAC). RSM experimental design
was selected to establish the regression model. The model involved four parameters
(i.e., contact time, initial concentration, temperature, and pH) as independent variables
and NH4

+ removal rate as dependent variable. The interaction effect of the independent
variables with the response using the response surface plots was illustrated. Meanwhile,
the back-propagation artificial neural network BP-ANN model was also developed and the
optimal number of hidden neurons was determined by trial and error method. Coupled
with GA, the ANN-GA model was used for optimization of the operating conditions to
determine the maximum NH4

+ removal rate. The predictive capabilities and modelling
efficiencies of the two models are compared and verified. Furthermore, the CB-GAC has
been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and
Brunauer-Emmett-Teller (BET). Finally, adsorption isotherm model (Langmuir, Freundlich,
and Temkin) and adsorption kinetics model (pseudo-first-order, pseudo-second-order) had
been investigated to explore the mechanisms of the NH4

+ removal process.

2. Materials and Methods
2.1. Materials and Characterization

All the chemicals (NH4Cl, NaOH, HCl) used were analytical grade and were pur-
chased from Beijing Yili Fine Chemicals Co., Ltd. (Beijing, China). The coal based granular
activated carbon (CB-GAC) is columnar and has a diameter of 2–3 mm, washed three times
with deionized water, then drying at 105 ◦C for 24 h before use. All the solutions were
prepared by the deionized water.

Scanning electron microscopy (SEM) (HITACHI, SU8020, Tokyo, Japan) was per-
formed to study the surface characteristics and morphology of the coal based activated
carbon. X-ray diffraction (XRD) was carried out on a Bruker Analytical X-ray (D8 Advance,
Bruker, Germany) to indicate crystallinity and phases of the CB-GAC. Surface area, pore
volume, and pore size distribution were determined through the adsorption/desorption
isotherms of N2 at 77 K in a Surface Area and Pore Size Analyzer (Micromeritics Instru-
ments, ASAP 2460, Norcross, GA, USA).

2.2. Batch Adsorption Experiments

The adsorption experiments were conducted by adding 10 g of the CB-GAC to 100 mL
ammonium chloride solution in a 250 mL conical flask, which was shaken in a constant-
temperature shaker (Guohua Electric Appliance Co. Ltd., THZ-82, Changzhou, China) at
150 rpm for 24 h. Batch experiments were carried out to examine the effect of contact time
(300–900 min), initial concentration (10–20 mg/L), temperature (15–35 ◦C), and pH (5–9)
on the removal rate of NH4

+. The initial pH was adjusted to the desired value by using
0.1 mol/L HCl or 0.1 mol/L NaOH. After reaching the designed time, an aliquot of the
sample was withdrawn and filtered through 0.45 µm poly tetra fluoroethylene (PTFE) filter
(Anpel Co. Ltd., Shanghai, China) to remove suspended solids. The concentration of NH4

+

were measured by UV-visible Multi-parameter Analyzer (Lianhua Tech Co. Ltd., LH-3BA,
Beijing, China). The removal rate and adsorption amount of NH4

+ were calculated using
the following equations.

R = (C0 − Ct)/C0 × 100% (1)

qt = (C0 − Ct)× V/m (2)
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where R, qt (mg/g) are the removal rate and adsorption amount of NH4
+, respectively.

C0 (mg/L) and Ct (mg/L) are the concentrations at time 0 and t, respectively. V (L) is the
volume of the solution, and m (g) is the mass of adsorbent.

2.3. Isotherm and Kinetics Study

As shown in Table 1, three isothermal models (Langmuir, Freundlich, and Temkin
models) and two adsorption kinetic models (pseudo-first order, pseudo-second order)
were used to evaluate the adsorption of NH4

+ onto the CB-GAC. All of this part of the
experiments were performed under the following conditions: 10 g of CB-GAC was mixed
with 100 mL of ammonium chloride solution (5–30 mg/L), at pH 7.0 and room temperature
(25 ± 1 ◦C).

Table 1. Adsorption isotherm and kinetic models used in this study.

Type Models Equations

Isotherm models
Langmuir Ce

Qe
= Ce

Qmax
+ 1

KLQmax

Freundlich lgQe = 1
n lgCe + lgKF

Temkin Qe = RT
bT

lnKT + RT
bT

lnCe

Kinetic models Pseudo-first-order ln(Qe − Qt) = ln Qe − k1t

Pseudo-second-order t
Qt

= 1
k2×Q2

e
+ t

Qe

Where, Ce (mg/L) = equilibrium concentration; Qe (mg/g) = equilibrium sorption
amount; Qmax (mg/g) = maximum adsorption capacity; KL (L/g) = Langmuir adsorption
constant; n, KF (L/g) = Freundlich adsorption constants; R (8.314 J/mol) = universal gas
constant; T = temperature in terms of Kelvin; bT = Temkin constant; KT = equilibrium bond
constant related to the maximum energy of bond; t = time (min); Qt (mg/g) = adsorption
capacity at time t (min); k1, k2 is the pseudo-first-order rate constant and pseudo-second-
order rate constants, respectively.

2.4. Experimental Design and Mathematical Models
2.4.1. Response Surface Methodology

RSM is the most efficient way to determine the best combination of experimental condi-
tions, which reduces the research workloads, and provides an appropriate model for prepa-
ration technology optimization than the conventional variable control approaches [28,29].
In the present work, the experiment design of Box-Behnben design-response surface
methodology (BBD-RSM) was completed by using Design-Expert 12 software, so as to
investigate the effect of different variables on NH4

+ removal rate and obtain an accurate
model to predict the removal rate. The Box-Behnken design involves 4 variables and
3 levels. There were 29 runs, including 5 zeros, which usually represented repeated exper-
iments, and were used to estimate experimental errors. Specifically, contact time, initial
concentration, temperature, and pH were selected as independent variables, their levels
were coded as: −1, 0, +1, and the NH4

+ removal rate as the dependent variable. The
relationship between the dependent and the independent variables can be represented by
the Equation (3). The variables and the levels for BBD-RSM used in this study are shown
in Table 2.

Y = α0 + α1 A + α2B + α3C + α4D + α12 AB + α13 AC + α14 AD + α23BC + α24BD + α34CD + α11 A2

+α22B2 + α33C2 + α44D2 (3)

where Y represents the removal rate of NH4
+; α0 is a constant offset term; α1, α2, α3, α4,

α12, α13, α14, α23, α24, α34, α11, α22, α33, α44 are the estimated coefficients, respectively;
A, B, C, D are contact time, initial concentration, temperature, and pH, respectively.
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Table 2. Experimental ranges and levels of variables.

Factors Variables Unit
Level

Low (−1) Middle (0) High (+1)

A Contact time min 300 600 900

B Initial con-
centration mg/L 10 15 20

C Temperature ◦C 15 25 35
D pH / 5 7 9

2.4.2. BP-ANN Modeling and Optimization

In the present study, the three-layer back-propagation ANN was trained by back-
propagation gradient-descendent algorithm. BP-ANN is composed of an input, output
layer, and one or more hidden layers. It has been verified theoretically that a 3-layer BP
neural network can approach arbitrary complex mappings [30]. The simple illustration of
the ANN structure was shown in Figure 1.
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In this study, 29 experimental points were used to feed the neural network structure.
These sites were divided into three training groups. It contains 16, 4, 4, 5 samples for
training, testing, validation and simulation, respectively. Weights and deviations were
updated with training data through Levenberge Marquardt algorithm, and the network
generalization ability after training was evaluated with test data. In addition, the error of
validation data was monitored during training to avoid overfitting [31]. The network used
in this study consists of four input nodes (contact time, initial concentration, temperature,
pH) in the first layer, and one output node in the third layer (NH4

+ removal rate).
Normalization can accelerate the convergence of the training network and reduce the

impact of different orders of magnitude of the input data set. For increasing the training
rate of the network [19], all the input and output variables were normalized to 0–1 by
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the following Equation (4). The normalized data will be used to train and test the neural
network, and then the output data will be unnormalized.

Xi = (X − Xmin)/(Xmax − Xmin) (4)

where Xi stands for normalized values, and X, Xmin, and Xmax are the original, minimum,
and maximum values of variables, respectively.

The number of neurons in the hidden layer due to their substantial impact on the
performance of the network is used as a design parameter of the model. Therefore, to
determine the optimum number of neurons between 1–14 in this layer, various topologies
were examined by the mean square error (MSE), MSE was calculated by Equation (5).
The relationship between the predicted value of the model and the experimental value is
expressed by the root mean square error (RMSE), RMSE was calculated by Equation (6).

MSE = ∑n
i=0

(
yi,cal − yi,exp

)2/n (5)

RMSE =
√

∑n
i=0

(
yi,cal − yi,exp

)2/n (6)

where, yi,cal and yi,exp are predicted and experimental values of the response, respectively,
and n represents the number of data points. Each topology was repeated ten times to
prevent random correlation because of random initialization of the weights and biases [32].

Other details of the parameter in the process of training and testing of the BP-ANN
model were listed in the Table 3.

Table 3. Summary of the parameters used in construction of ANN model.

Type Description

Input layer 4 neurons (contact time, initial concentration,
temperature, pH)

Hidden layer 1 layer; 8 neurons
Output layer 1 neuron (NH4

+ removal rate)
Learning rate 0.01

Epoch 1000
MSE goal 0.001

Algorithms Levenberg-Marquardt (trainlm)

Function Sigmoid (tansig): Between input and hidden layers
Linear: Between hidden and output layers

Sensitivity analysis was conducted by Garson algorithm with the connected weights
obtained by BP-ANN, so as to calculate the relative influence degree of different input
variables on output variables [33]. The equation below is proposed by Garson for this type
of analysis [34].

Qik =
∑L

j=1

(∣∣∣wijvjk

∣∣∣/ ∑N
r=1

∣∣∣wrjvjk

∣∣∣)
∑N

i=1 ∑L
j=1

(∣∣∣wijvjk

∣∣∣/ ∑N
r=1

∣∣∣wrjvjk

∣∣∣) (7)

where, N, L, and M are the number of neurons in the input layer, hidden layer, and output
layer, respectively. w, v are the connection weights between the input layer and the hidden
layer, and hidden layer and the output layer, respectively.

2.4.3. Genetic Algorithms

Using genetic algorithms (GA), as the artificial intelligence-based stochastic non-linear
optimization formalism, the optimum values of variables were found. For this purpose,
the developed ANN models were utilized as a fitness function. In the genetic algorithms,
evolutionary operators including reproduction, crossover, and mutation are used to find
the best answer in a large search space [35]. At first, it randomly provides an initial
population of individuals called chromosome and evaluates it using fitness function. Then
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low fitness chromosomes are eliminated, and by employing evolutionary operators, the
next generation is produced. This process is continued until convergence forms the solution,
and a suitable result is obtained. The flow chart of the combination of genetic algorithm
and neural network was shown in Figure 2.
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3. Results and Discussion
3.1. Characterization of the CB-GAC

The surface electron microscopy (SEM) images (1000× and 5000×) of the CB-GAC
used in this study were shown in Figure 3a,b. It can be seen that the surface of the activated
carbon is very rough, with many small particles on the surface and many pores of different
sizes. In addition, the surface of CB-GAC can be observed with both micropores and
slit mesoporous pores under the magnification of 5000×. X-ray diffraction studies help
in determining the degree of crystalline or amorphous nature of activated carbon. The
X-ray diffraction patterns of CB-GAC was shown in Figure 3c. An increase in sharpness of
the ~26◦ peak is seen with the rise, indicating that the CB-GAC consists of graphite-like
microcrystallites [36]. The peak width is relatively narrow, indicating that its laminar crystal
structure is good. Nitrogen adsorption-desorption isotherms were illustrated in Figure 3d.
The physisorption isotherms of CB-GAC are classified as Type IV isotherm with H3 shaped
hysteresis loops according to the International Union of Pure and Applied Chemistry
(IUPAC) classification. Type IV isotherms are characteristic of mesoporous materials.
When gas is adsorbed on the mesoporous adsorbent below the critical temperature, the
monomolecular adsorption layer is formed first, and the multi-molecule adsorption layer
begins to occur when the adsorption reaches saturation. The isotherm of CB-GAC reached
saturation shortly after the adsorption began (p/p◦ = 0.1). With the increase of relative
pressure (p/p◦ = 0.4~1.0), the adsorption capacity increased rapidly, which was due to
capillary condensation, and also indicated that the mesoporous size was relatively uniform.
This may be related to dopants in the preparation process of columnar activated carbon,
such as metals and their compounds. On the one hand, metals occupy a certain space
when they are mixed with raw materials. After pickling, metals are removed to form a
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hole space. On the other hand, when metal compounds are added to the raw material,
it can catalyze the reaction of water vapor or carbon dioxide with carbon, thus forming
or enlarging pores [18]. Yahya et al. also obtained this type of curve in Ni-Co modified
activated carbon [27]. The information of the specific surface area, pore volume, and
pore diameter was shown in Table 4. It can be seen that micropore and mesoporous pore
volumes account for 40% and 60%, respectively, and the average pore diameter is 7.9 nm,
indicating that the CB-GAC is a mesoporous material.
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Table 4. Characteristics determined by Brunauer-Emmett-Teller (BET) method for composite samples.

Parameters BET Surface
Area (m2/g)

Langmuir
Surface Area

(m2/g)

t-Plot
Micropore

Area (m2/g)

t-Plot
External

Surface Area
(m2/g)

Total Pore
Volume of

Pores
(cm3/g)

t-Plot
Micropore

Volume
(cm3/g)

Average
Pore

Diameter
(nm)

CB-GAC 32.2108 59.304 12.9979 19.2129 0.063856 0.006107 7.92976

3.2. Isotherm and Kinetics Studies
3.2.1. Adsorption Isotherm

As shown in Figure 4, Langmuir, Freundlich, and Temkin models were used to fit the
adsorption equilibrium data. The fitting parameter values and errors of the adsorption
isotherm model were shown in Table 5. It was observed that the R2 value of Langmuir
isotherm model (0.9951) was higher than that of the Freundlich (0.9843) and Temkin models
(0.9925), indicating that the adsorption behavior of CB-GAC for NH4

+ was more consistent
with the Langmuir model. The Langmuir isotherm model assumes the number of active
sites distributed homogeneously on the surface of the adsorbent followed by monolayer
adsorption (physical adsorption) having high adsorptive power [37]. This suggested that
the adsorption of NH4

+ takes place on the surface of the CB-GAC until a monolayer
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coverage was formed, after which the driving force of the sorption process decreases
drastically [38]. The Qmax calculated from the Langmuir model was 0.2821 mg/g.
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Figure 4. Langmuir, Freundlich, and Temkin isotherms for the adsorption of NH4
+ onto CB-GAC.

(Experimental conditions: Initial pH: 7; CB-GAC dose: 10 g/100 mL; temperature: 25 ◦C; contact
time: 24 h).

Table 5. Parameters of isotherm models for the adsorption of NH4
+ onto CB-GAC.

Model Parameters Values

Langmuir

Qmax (mg/g) 0.2821
KL (L/mg) 0.0481

R2 0.9951
RSS (×10−4) 2.9047

Freundlich

1/n 0.7165
KF (L/mg) 0.0171

R2 0.9843
RSS (×10−4) 9.2406

Temkin

bT 48,263.81
KT 0.6299
R2 0.9925

RSS (×10−4) 4.3932

3.2.2. Adsorption Kinetics

The adsorption kinetic models and the trend of NH4
+ removal rate with time were

illustrated in Figure 5. At the started phase, the adsorption efficiency was very high, and
the amount of adsorbed ammonia nitrogen increased rapidly. After the started phase, the
adsorption efficiency gradually slowed down and reached equilibrium at around 16 h.
The fitting parameter values and errors of the adsorption kinetic models were shown in
Table 6. It can be seen from the R2 value that, compared with the pseudo-first-order kinetic
model (0.9535), the adsorption kinetics behavior of NH4

+-CB-GAC is more consistent
with the pseudo-second-order kinetic model (0.9868), which suggested that the adsorption
might depend on the availability of the adsorption sites. This is similar to the kinetic
adsorption characteristics of many carbon materials [21,39–41]. The calculated value Qe
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from pseudo-second-order kinetic was 0.0956 mg/g, which is close to the experimental
value of 0.0927 mg/g.
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Figure 5. Pseudo-first-order, pseudo-second-order kinetics and removal rate for the adsorption
of NH4

+ onto CB-GAC. (Experimental conditions: Initial pH: 7; CB-GAC dose: 10 g/100 mL;
temperature: 25 ◦C; initial concentration: 15 mg/L).

Table 6. Parameters of kinetic models for the adsorption of NH4
+ onto CB-GAC.

Model Parameters Values

Pseudo-first-order

k1 0.5682
Qe (mg/g) 0.0893

R2 0.9535
RSS (×10−4) 5.2933

Pseudo-second-order

k2 9.1682
Qe (mg/g) 0.0956

R2 0.9868
RSS (×10−4) 1.5052

3.3. Modeling and Optimization by BBD-RSM
3.3.1. Modeling

The experimental results obtained according to the design of BBD-RSM were shown in
Table 7, and the experimental values of the 5 repeated groups are relatively close, indicating
that the data has good reproducibility. The predicted value and the experimental value
have a good coincidence, and the relative error is less than 0.2, indicating that the model has
a good predictive ability. The experiment was fitted according to the second-order model
of polynomial regression analysis. A quadratic regression model was established by taking
contact time (A), initial concentration (B), temperature (C), and pH (D) as independent
variables, and NH4

+ removal rate Y as response value.
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Table 7. RSM (response surface methodology) and ANN (artificial neural network) predicted results and errors, along with
experimental values of the response.

Run
Variables NH4

+ Removal Rate

A/min B/mg·L−1 C/◦C D Experiment RSM Error ANN Error

1 (Tra.) 600 15 35 9 54.37 53.92 0.0083 54.3700 0.0000
2 (Tra.) 300 20 25 7 52.65 52.6 0.0009 52.6500 0.0000
3 (Tra.) 600 15 25 7 59.85 59.7 0.0025 59.6175 0.0039
4 (Tra.) 600 10 15 7 61.27 60.49 0.0127 61.2700 0.0000
5 (Tra.) 900 10 25 7 61.44 61.97 0.0086 61.4400 0.0000
6 (Tra.) 600 10 25 9 56.36 56.45 0.0016 56.3600 0.0000
7 (Tra.) 600 15 25 7 59.47 59.7 0.0039 59.6175 0.0025
8 (Tra.) 600 15 25 7 60.27 59.7 0.0095 59.6175 0.0108
9 (Tra.) 600 20 25 9 56.16 55.95 0.0037 56.1600 0.0000

10 (Tra.) 600 15 25 7 58.88 59.7 0.0139 59.6175 0.0125
11 (Tra.) 300 15 15 7 54.67 55.02 0.0064 54.6700 0.0000
12 (Tra.) 600 10 25 5 53.38 54.16 0.0146 53.3800 0.0000
13 (Tra.) 600 20 35 7 55.97 55.7 0.0048 55.9700 0.0000
14 (Tra.) 900 15 25 5 57.47 56.69 0.0136 57.4700 0.0000
15 (Tra.) 600 15 35 5 51.34 50.86 0.0093 51.3400 0.0000
16 (Tra.) 300 15 25 5 49.26 48.33 0.0189 49.2600 0.0000
17 (Val.) 300 15 25 9 50.27 56.18 0.1176 51.0862 0.0162
18 (Val.) 900 15 25 9 59.62 59.61 0.0002 58.9691 0.0109
19 (Val.) 600 15 25 7 60.03 49.37 0.1776 59.6175 0.0069
20 (Val.) 900 15 15 7 63.32 60.08 0.0512 62.2006 0.0177
21 (Tes.) 600 10 35 7 56.44 50 0.1141 56.4456 0.0000
22 (Tes.) 900 15 35 7 59.39 59.5 0.0019 59.9995 0.0103
23 (Tes.) 300 15 35 7 48.12 59.7 0.2406 49.0211 0.0187
24 (Tes.) 600 20 15 7 60.88 62.64 0.0289 60.2450 0.0104
25 (Pre.) 600 20 25 5 53.29 53.77 0.0090 53.2720 0.0003
26 (Pre.) 300 10 25 7 53.19 52.84 0.0066 52.9502 0.0045
27 (Pre.) 600 15 15 9 56.47 57.44 0.0172 56.3900 0.0014
28 (Pre.) 900 20 25 7 60.48 61.32 0.0139 61.5586 0.0178
29 (Pre.) 600 15 15 5 55.08 56.02 0.0171 55.1653 0.0015

Empirical models are generated from coding factors (standardized equation) and
actual factors (non-standardized equation). The coded equation (Equation (8)) is useful
for identifying the relative impact of the variables by comparing the variables coefficients,
while the actual equation (Equation (9)) can be used to make predictions about the response
for given levels of each factor. The model demonstrates quadratic coefficient of contact time
(A) had the main obverse effect on NH4

+ removal rate for its highest positive coefficient
value, which is consistent with the conclusion of kinetic model that the NH4

+ removal rate
increases with time. The second important variable is temperature with negative sign. This
suggested that the adsorption capacity of the adsorbent decreased with the increase of
temperature. Similar results were obtained by Ren et al. in the experiment of the adsorption
of ammonia nitrogen by iron-loaded activated carbon [42].

Y = 59.7 + 4.46A − 0.2208B − 2.17C + 1.12D − 0.105AB + 0.655AC + 0.285AD − 0.02BC − 0.0275BD
+0.41CD − 1.99A2 − 0.5317B2 − 1.06C2 − 4.09D2 (8)

y = −8.64802 + 0.033617a + 0.665083b + 0.042042c + 14.10667d − 0.00007ab + 0.000218ac + 0.000475ad
−0.0004bc − 0.00275bd + 0.0205cd − 0.000022a2 − 0.021267b2 − 0.010554c2 − 1.02167d2 (9)

3.3.2. Analyzing

ANOVA method was used to assess the adequacy and validity of the generated
regression models. This is to determine the significant effect of process variables to response
variable as well as to fit the second-order polynomial models to the experimental data.
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The analysis of variance (ANOVA) and the fit statistics were shown in Tables 8 and 9,
respectively. Montgomery points out that the following conditions should be met when
testing the model: F value > 0.1, R2 > 0.95, Rpred

2 > 0.7, Radj
2-Rpred

2 < 0.2, C.V. < 10%, Adeq
Precision > 4 [20]. F-value and p-value was used to determine the statistical significance of
the model. It can be seen that the F value of this model is 40.94 > 0.1, p < 0.0001, showing
that the model is reliable and fits well in the whole regression area. Radj

2 − Rpred
2 = 0.0785

< 0.2, C.V. = 1.54% < 10%, indicating high reliability and accuracy of the experiment. Adeq
Precision is the ratio of effective signal to noise. The experimental model Adeq Precision
= 22.8713 > 4, indicating that the model is reliable and has enough signals to respond
to the design. As shown in Figure 6, the high determination coefficient (R2 = 0.9762)
indicated a strong correlation between the predicted and actual values. Hence, the obtained
model provided a good estimation of the predicted response within the studied range. The
parameters were considered significant if p-value (Prob > F) is lower than 0.05. From the
ANOVA (Table 8), the coded parameters A, C, D, A2, C2, D2 are significant parameters, i.e.,
(p > F) < 0.05.

Table 8. Analysis of variance (ANOVA) of the second-order polynomial equation.

Source Sum of
Squares

Degree of
Freedom Mean Square F-Value p-Value

Model 433.70 14 30.98 40.94 <0.0001 significant
A-Contact time 239.06 1 239.06 315.92 <0.0001

B-Initial
concentration 0.5852 1 0.5852 0.7734 0.3940

C-Temperature 56.59 1 56.59 74.79 <0.0001
D-pH 15.03 1 15.03 19.86 0.0005

AB 0.0441 1 0.0441 0.0583 0.8127
AC 1.72 1 1.72 2.27 0.1543
AD 0.3249 1 0.3249 0.4294 0.5229
BC 0.0016 1 0.0016 0.0021 0.9640
BD 0.0030 1 0.0030 0.0040 0.9505
CD 0.6724 1 0.6724 0.8886 0.3618
A2 25.57 1 25.57 33.79 <0.0001
B2 1.83 1 1.83 2.42 0.1419
C2 7.23 1 7.23 9.55 0.0080
D2 108.33 1 108.33 143.16 <0.0001

Residual 10.59 14 0.7567
Lack of Fit 9.41 10 0.9412 3.19 0.1377 not significant
Pure Error 1.18 4 0.2954
Cor Total 444.30 28

Table 9. Fit statistics of ANOVA.

Std. Dev. Mean C.V. % R2 Adjusted R2 Predicted R2 Adeq
Precision

0.8699 56.53 1.54 0.9762 0.9523 0.8738 22.87

The interaction effect of contact time and pH on NH4
+ removal rate was displayed in

Figure 7. The results showed that with the increase of pH, the removal of NH4
+ increased

first and then decreased, reaching the maximum value around 7.2. For the contact time,
as the contact time increases, the NH4

+ removal rate also increased, and the trend slowed
down after reaching a certain value, indicating that the contribution of the contact time to
the NH4

+ removal rate gradually tends to be saturated. This is consistent with the kinetic
results. The research showed that in response surface analysis, if the contour shape is
elliptic, it means that the interaction between factors is significant, while the circle means
that the interaction between factors is not significant [43]. As can be seen intuitively from
the contour plot, the interaction between contact time and pH is relatively significant. When
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pH is close to the optimal value, the removal rate of NH4
+ gradually reaches the limit value

with the increase of contact time, and the value is closer to the optimal removal rate. This
can be explained by the morphology transform of NH4

+: in the acidic environment, high
amount of H+ caused a strong competition with NH4

+, while in the alkaline environment,
NH4

+ was converted into the NH3·H2O molecular form [42]. Both the conditions can
result in a reduction in NH4

+ removal rate. The interaction between contact time and pH
indicated that there is an optimal NH4

+ removal area, that is, the area with a contact time
of 700~900 min and pH of 7.2, with NH4

+ removal rate of over 62%.
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The interaction effect of contact time and temperature on NH4
+ removal rate was

displayed in Figure 8. The results showed that with the increase of contact time and
decrease of temperature, NH4

+ removal rate increased, then the trend was gradually
slowed. In the contour plot, the contour was thinning, which suggested that contact time
and temperature on the contribution of NH4

+ removal rate were both gradually tending
to saturation. It can be intuitively seen from the contour plot that the interaction between
contact time and temperature is relatively significant, which is reflected in that when the
temperature approaches the optimal value, with the increase of contact time, the removal
rate of NH4

+ gradually reaches the limit value, and the value is closer to the optimal
removal rate. The interaction between contact time and temperature indicated that there is
an optimal NH4

+ removal area, that is, the area with a contact time of 700~900 min and
temperature of 25~35 ◦C, and the NH4

+ removal rate is above 62%. It can also be seen from
the figure that contact time has a greater influence on NH4

+ removal rate than temperature.
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3.3.3. Determination of Optimal Conditions for RSM

The actual regression equation can be written as follows:

Y = a + XTb + XTcX (10)

where, X = [A, B, C, D]T.
According to,

∂Y
∂X

=

[
∂Y
∂A

,
∂Y
∂B

,
∂Y
∂C

,
∂Y
∂D

]
= 0 (11)

Take the first partial derivative of the equation:
4.4 × 10−5 7 × 10−5 −2.8 × 10−4 −4.75 × 10−4

7 × 10−5 4.2534 × 10−2 4 × 10−4 2.75 × 10−3

−2.18 × 10−4 4 × 10−4 2.1108 × 10−2 −2.05 × 10−2

−4.75 × 10−4 2.75 × 10−3 −2.05 × 10−2 2.04334

·


A
B
C
D

 =


3.3617 × 10−2

0.665083
4.2042 × 10−2

14.10667

 (12)

Solution of equation: A = 911.42min, B = 13.49 mg/L, C = 18.22 ◦C, D = 7.28. The
optimal process conditions for NH4

+ removal by CB-GAC: Contact time = 911.42 min, initial
concentration = 13.49 mg/L, temperature = 18.22 ◦C, pH = 7.28, removal rate = 62.83%.
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3.4. BP-ANN
3.4.1. Determination of the Number of Hidden Neurons

Error minimization within the networks is comprised of the appropriate selection of
the number of neurons in the hidden layer. The calculated network error is compared with
the output continuously until the network reaches the minimum error by adjusting weights
and biases. In order to obtain the minimum MSE of the training network, a trial-and-error
method was used to produce the optimum neurons with lowest MSE value. The MSE
plot for different number of neurons (1–14) in the hidden layer for the response of NH4

+

removal rate was depicted in Figure 9. It is observed that the lowest MSE is obtained with
8 neurons for the NH4

+ removal rate. Therefore, the best network structure of 4-8-1 is used
for process optimization, which represents 4 inputs in the first layer, followed by 8 neurons
in the hidden layer and one output in the last layer.
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+ removal rate.

3.4.2. Evaluation of Model

The R2 values for training, validation, and test and all data, which evaluate the
relationship between experimental and predicted values, have been shown in Figure 10.
It is seen that approximately the whole values have located around the 45◦ line with R2

values of 0.99738, 0.99965, 0.99584, and 0.9951 for training, validation, test, and all data.
This indicated excellent compatibility between the experimental and predicted results by
the ANN model. As shown in Figure 11, after the first iteration, the MSE of the system
reaches the preset value, and the system stops training. The trained neural network was
tested by the experimental data, and the R2 between the predicted and actual data was
0.99589 (Figure 12), which indicated that the BP-ANN model has good predictive ability.
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3.4.3. Sensitivity Analysis

A sensitivity analysis was performed to analyze the “cause-and-effect” relationship
between the input variables and the modeling outputs. The values of weights and biases in
input-hidden layer (wi and bi) and hidden-output layer (wj and bj) were listed in Table 10.
In order to investigate the contributions of the independent variables on the performance
of the system, their relative importance was calculated using Garson algorithm. It can be
seen from the calculated results (Table 11) that the contact time appears to be the most
influential variables, followed by pH and temperature, initial concentration has the least
influence on the removal rate of NH4

+. This result is not completely consistent with the
RSM result. They agreed that contact time was the most important factor of the four
variables, and initial concentration was the least important. The difference is that the
quadratic equation in RSM considers that the influence of temperature is greater than the
influence of pH. In addition, the results of sensitivity analysis can concretize the proportion
of relative influence degree, but the quadratic equation can reflect the positive and negative
correlation of factors. Combining these two results, increasing the contact time, lowering
the temperature, and keeping the pH near 7 can effectively improve the adsorption removal
rate of NH4

+.

Table 10. The weights and biases of BP-ANN in input-hidden layer (wi and bi) and hidden-output layer (wj and bj).

Number of
Neurons

wi

bi wj bjContact
Time

Initial Con-
centration Temperature pH

1 0.2513 0.7242 2.6647 0.6973 2.6315 0.3643

−0.7167

2 0.5408 0.1291 0.5256 2.2940 −1.5721 0.0955
3 −0.9756 −2.1045 0.5286 −1.0694 0.1463 0.1405
4 1.3235 −0.5437 0.8937 −0.3642 0.7363 0.7143
5 1.2157 1.4659 −0.4634 −1.3170 −0.2739 −0.0235
6 −1.9242 0.6120 −1.8276 1.3909 −1.2270 0.0557
7 0.7446 1.5502 −1.9754 −0.6814 1.8150 0.2089
8 −1.1734 0.5911 2.5940 −0.6891 −1.7490 −0.3516
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Table 11. Relative significance of input variables.

Input Variables Relative Significance (%) Ranking

Contact time 31.23 1
Initial concentration 21.16 4

Temperature 22.93 3
pH 24.68 2

3.5. Genetic Algorithm (GA)

GA method was employed to optimize the input space of the optimal network with the
intention of maximizing the NH4

+ adsorbed in the adsorption procedure. The optimization
objective was determined via searching for the optimum points of the process variables
between lower and upper bounds. Variables ranges was set as follows: Contact time
300–900 min, initial concentration 10–20 mg/L, temperature 15–35 ◦C, pH 5–9. The number
of iterations of the genetic algorithm is set to 500. As shown in Figure 13, the system has
shown a good convergence effect after about 70 iterations, while after 327 iterations, the
system does not change, indicating the optimal results has been found. The results showed
that the maximum removal rate was 63.74% under the optimal conditions of contact time =
899.41 min, initial concentration = 17.35 mg/L, temperature = 15 ◦C, pH = 6.98. The higher
prediction accuracy of the ANN-GA model is attributed to the general ability of ANN-GA
to estimate the nonlinear behavior of the system, while the response surface model is
limited by second-order polynomial regression [44]. Therefore, these results confirm the
advantages of ANN-GA model as an alternative to RSM model in prediction.
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3.6. Comparison between ANN-GA and RSM

The coefficient of determination is usually considered as the most common statistical
metric to determine the goodness of prediction and measured by fitting a straight line.
This approach focuses on linear relationships between the experimental results and model
predictions in direction and strength, but does not provide any information for error
distribution and nonlinear relationship. It can be seen from Table 12 that the R2 values
between the experimental and predicted values are calculated as 0.9762 and 0.9959 for
the RSM and ANN models, respectively, indicating that the predictions resulted by the
ANN model are closer to experimental values. The RMSE were found lower values for
predictions given by ANN rather than the RSM model, confirming that the less error
deviation resulted from the ANN predictions. In comparison, the prediction and statistical
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metrics for the ANN model were relatively better than the RSM model, and the difference
was obvious.

Table 12. Comparison of experimental validation results and predicted results of BBD-RSM and BP-ANN-GA.

Variables
BBD-RSM BP-ANN-GA

Predicted Parameters Experimental
Parameters Predicted Parameters Experimental

Parameters

Contact time (min) 911.42 910 899.41 900
Initial concentration

(mg/L) 13.49 13.5 17.35 17.5

Temperature (◦C) 18.22 18 15 15
pH 7.28 7.3 6.98 7.0

Removal rate (%) 62.83 61.32 63.74 63.19
Relative error (%) 2.46 0.87

R2 0.9762 0.9959
RMSE 3.4509 0.4690

To confirm the predicted-response reliability by the obtained fitted model, three tests
at optimum level of the independent variables were examined. The experimental removal
rate and absolute error were presented in Table 12. The experimental and predicted removal
efficiencies revealed that both models have a promising ability to predict the values remark-
ably close to experimental values; however, it seemed that the ANN model compared to
RSM model is more robust to provide the predictions closer to the experimental efficiency.
It can be observed that both models predicted a similar value for the optimum contact
time and pH. The predicted percentage error of NH4

+ removal rate is 0.87% and 2.46%
for ANN-GA and RSM models, respectively. These results suggested greater accuracy
and higher reliability of ANN-GA in modelling and optimizing the parameter interaction
related to the NH4

+ removal rate.
In conclusion, both models have their advantages. The RSM showed the influence of

the interaction among various factors on the removal rate of NH4
+, and provided graphs

to intuitively explain the relationship between independent variables and response values.
Additionally, this method only needs a few experiments to produce more information,
reducing time and cost. However, the disadvantage is that it can only provide a first or
second order polynomial model. Artificial neural network can simulate any form of non-
linearity, because it is considered as a black box model, which does not need experimental
design to achieve a clear relationship. Therefore, it overcomes the difficulty of experimental
design and is a more unlimited method. Finally, according to the excellent results obtained
from both modeling processes, the modeling approaches in real-scale stormwater treatment
systems can be developed to benefit from their application in modeling, optimizing, and
recognizing the relationship among variables.

4. Conclusions

In the present work, the statistical modeling and optimization of process parameters
(contact time, initial concentration, temperature, pH) for NH4

+ removal from stormwater
by CB-GAC was carried out using BBD-RSM and GA-ANN. In terms of prediction, neural
network had better prediction accuracy than response surface method, with R2 of 0.9959
and 0.9762, respectively. The ANOVA and response surface plots in RSM confirmed
that contact time was the most significant parameter of NH4

+ removal, and the relative
influence order of the factors according to the coefficients of the code equation is as follows:
Contact time > temperature > pH > initial concentration. The best network structure of
4-8-1 was utilized in BP-ANN modeling. The results of sensitivity analysis showed that the
factors of NH4

+ removal rate were in the order of: Contact time (31.23%) > pH (24.68%)
> temperature (22.93%) > initial concentration (21.16%). The process input factors were
optimized by GA-ANN and BBD-RSM for the optimum NH4

+ removal rate. The predicted
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results were verified by experiments. According to the results, the predicted values of
GA-ANN were in better agreement with the experimental values. The optimum level of
contact time, initial concentration, temperature, pH is 899.41 min, 17.35 mg/L, 15 ◦C, 6.98,
respectively, under which condition, the maximum NH4

+ removal rate is achieved 63.74%.
The proposed method is effective for optimizing the process parameters of NH4

+ removal
from stormwater by CB-GAC, and is helpful to reduce the time and cost of experiments. In
the future research, this method can be applied to the parameter optimization and efficiency
prediction of the actual stormwater treatment process.
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