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Abstract: Rivers are complex biophysical systems, constantly adjusting to a suite of changing gov-
erning conditions, including vegetation cover within their basins. This review seeks to: (i) highlight
the crucial role that vegetation’s influence on the efficiency of clastic material fluxes (geomorphic
connectivity) plays in defining mountain fluvial landscape’s behavior; and (ii) identify key chal-
lenges which hinder progress in the understanding of this subject. To this end, a selective literature
review is carried out to illustrate the pervasiveness of the plants’ effects on geomorphic fluxes within
channel networks (longitudinal connectivity), as well as between channels and the broader land-
scape (lateral connectivity). Taken together, the reviewed evidence lends support to the thesis that
vegetation-connectivity linkages play a central role in regulating geomorphic behavior of mountain
fluvial systems. The manuscript is concluded by a brief discussion of the need for the integration of
mechanistic research into the local feedbacks between plants and sediment fluxes with basin-scale
research that considers emergent phenomena.

Keywords: fluvial system; geomorphic connectivity; riparian vegetation; biogeomorphology; moun-
tain rivers

1. Introduction

Rivers are complex and dynamic systems, constantly adjusting to a suite of chang-
ing governing conditions, which include the characteristics of the biophysical landscape
within which they are embedded. From a geomorphic point of view, these adjustments are
achieved through changes in sediment transport rates, which are, in turn, manifested in
evolving channel morphology [1,2]. Because of the role of clastic material flux as the cur-
rency of river and landscape change, sediment yield and sedimentary archives have long
been used as indicators of geomorphic behavior, for example, responses to disturbances
and environmental change [3–5]. A long-standing recognition of the role that sediment
routing plays in modifying such environmental signals [6,7] is reflected in a recent surge of
interest in the concept of geomorphic connectivity (or sediment connectivity) (Figure 1).
A range of definitions have been proposed but, essentially, the concept of connectivity is
concerned with connections, or interdependencies, between parts of the landscape that are
facilitated by sediment transfer (interested readers are referred to several excellent reviews
on this subject: [8–14]). In this review, I refer to geomorphic (sediment) connectivity in
the sense that is perhaps closest to the definition articulated by Heckmann et al. [12]: “we
define ( . . . ) sediment connectivity as the degree to which a system facilitates the transfer
of ( . . . ) sediment through itself, through coupling relationships between its components.
In this view, connectivity becomes an emergent property of the system state, reflecting
the continuity and strength of ( . . . ) sediment pathways at a given point in time. Struc-
tural connectivity represents the spatial configuration of system components; functional
connectivity is inferred from the actual transfer of ( . . . ) sediment.” This definition can,
conveniently, be applied at any spatial scale, including an assemblage of adjacent land-
forms or the entire drainage basin (e.g., in the context of sediment yield). Even though the
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concept can be adopted for geomorphic, hydrological, as well as ecological fluxes [11,15]
the focus in this case will be primarily on sediment.
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(B) number of citations (same search terms as in A); (C) number of publications specifically focusing on 
geomorphology/geosciences (search terms “sediment connectivity” OR “geomorphic connectivity”); (D) number of 
citations (same search terms as in (C)). 

The appeal of the connectivity concept lies partly in this versatility, but also in the 
ease with which it can be related to the sensitivity of geomorphic systems. In the simplest 
terms, geomorphic sensitivity can be understood as a measure of the relative magnitude 
or severity of the system’s response to a given disturbance [16,17], although sometimes it 
is also expressed in terms of probability of an “appreciable change” [18–20]. Because 
connectivity can be thought as representing information flow across the landscape, it also 
facilitates the propagation of disturbances within the geomorphic system, thereby 
contributing to landscape’s sensitivity [21]. The fact that an explicit consideration of the 
spatial configuration and relationships is at the very heart of the connectivity framework 
makes this approach well-suited for identifying those parts of the landscape which may 
play a critical role in the overall sensitivity of the system [22]. Thus, when combined, these 
two concepts provide a useful toolkit for the analysis of geomorphic systems’ behavior 
and its variability [16,20].  

Figure 1. A summary showing an increasing interest in the concept of landscape system connectivity during the last decades
(Web of Science Core Collection search was conducted on the title, abstract and keywords, within the timespan of 1900–2020).
(A) number of publications focusing on connectivity: this search considers landscape connectivity, a term often used in
ecology (search terms “landscape connectivity” OR “sediment connectivity” OR “geomorphic connectivity”); (B) number
of citations (same search terms as in A); (C) number of publications specifically focusing on geomorphology/geosciences
(search terms “sediment connectivity” OR “geomorphic connectivity”); (D) number of citations (same search terms as
in (C)).

The appeal of the connectivity concept lies partly in this versatility, but also in the
ease with which it can be related to the sensitivity of geomorphic systems. In the simplest
terms, geomorphic sensitivity can be understood as a measure of the relative magnitude
or severity of the system’s response to a given disturbance [16,17], although sometimes
it is also expressed in terms of probability of an “appreciable change” [18–20]. Because
connectivity can be thought as representing information flow across the landscape, it
also facilitates the propagation of disturbances within the geomorphic system, thereby
contributing to landscape’s sensitivity [21]. The fact that an explicit consideration of the
spatial configuration and relationships is at the very heart of the connectivity framework
makes this approach well-suited for identifying those parts of the landscape which may
play a critical role in the overall sensitivity of the system [22]. Thus, when combined, these
two concepts provide a useful toolkit for the analysis of geomorphic systems’ behavior and
its variability [16,20].
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Importantly, geomorphic connectivity also provides a convenient framework to con-
sider the role of vegetation, as one of the above-mentioned biophysical controls on fluvial
systems. For example, the stabilizing and destabilizing influences of vegetation on sedi-
ment can be thought as reducing and increasing connectivity, respectively. These effects
of vegetation are highly relevant from the perspective of sensitivity because they can con-
tribute to nonlinear responses of geomorphic systems [23]. It is useful to highlight at the
outset that the influence of vegetation on landscape processes extends beyond the lifetime
of a plant: downed dead wood (often referred to as coarse woody debris or large wood)
may continue to be a strong control on fluxes of water and sediment [24–28]. Accordingly,
in the following discussion, I will use the term “vegetation” in a broad sense that includes
large wood. Generally speaking, the effect of vegetation on erosional processes and the
influence of geomorphic processes on ecosystems, have long been acknowledged in geo-
morphology [29–32]. However, a more nuanced appreciation of the reciprocal interactions
between geomorphic processes and living organisms has begun to rapidly develop in
the last three decades [23,24,33–40]. This increased interest manifested itself in the for-
mation of a new sub-discipline, referred to as biogeomorphology or ecogeomorphology,
although there has been some confusion and debate as to the equivalence of these and
other similar terms [41]. Despite the considerable progress achieved in biogeomorphic
research, significant gaps remain in our understanding of the highly complex, multi-faceted
vegetation-geomorphology feedbacks [23,26,42–45].

This fragmentary understanding of the intricate relationships between vegetation and
geomorphic connectivity substantially hampers our ability to comprehend the functioning
of the biophysical landscape system, including its sensitivity to past and future environ-
mental change [46]. Rivers and landscapes adjust to variations in climate, which may occur
over multiple time scales [5,47,48]. Fluctuation in precipitation and temperature can in
turn have a direct impact on geomorphic processes, for example, by determining runoff;
however, they can also exert indirect influence, by regulating geomorphic activity through
vegetation dynamics, which responds to changing climatic variables [49,50] (Figure 2).
In addition, humans have become an increasingly influential driver of the contemporary
environmental change, profoundly affecting vegetation and, thus, geomorphic processes
through our collective impact on climate system [51] and land use change [52]. On the
other hand, an increasing recognition of the extent, magnitude, as well as ecological and
societal implications of the anthropogenic disturbances and environmental degradation has
sparked growing efforts to reverse this environmental damage through restoration [53–56]
(Figure 2). Depending on the nature of the environmental impacts at hand and defined
goals, such efforts may often involve restoration of the vegetation cover, for example,
riparian forests [54,57].

In this paper, I seek to demonstrate the crucial role of vegetation in defining geomor-
phic connectivity in mountain fluvial systems, and to identify some major challenges for
future research. My primary intention here is to merely highlight an important research
area which, in my view, deserves more interdisciplinary attention, rather than focus on
quantitative estimates of the magnitude of the biotic effects. To this end, I begin with a
selective review of diverse mechanisms through which vegetation influences geomorphic
connectivity. It is impossible to provide an exhaustive discussion of the reciprocal bio-
geomorphic interactions in such a short contribution. Instead, my objective is to briefly
illustrate the ubiquitous nature of biotic controls in mountain fluvial landscapes. This
discussion is meant to complement more detailed, environment-specific reviews that focus
on hillslope or riparian processes [38,58–65]. In the second part of the paper, I move on to
overview some research gaps and challenges with respect to the links between vegetation
and geomorphic connectivity in the context of mountain fluvial system’s behavior. In doing
so, I identify and outline a research approach which seems suitable for addressing these
challenges.
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Figure 2. A simplified conceptual model illustrating the role of vegetation in mediating various
effects of environmental change and land stewardship efforts (e.g., restoration) on geomorphic
connectivity and, ultimately, the overall behavior of the fluvial landscape system. The pathways
mediated by vegetation are represented by bold arrows.

2. Vegetation and Geomorphic Connectivity

In this section, I aim to highlight the effects of vegetation on geomorphic connectivity.
In order to organize the discussion, I divide it according to two types of connectivity,
longitudinal and lateral, often distinguished in the literature of this subject along with
vertical connectivity [8,11,22] (Figure 3). Definitions used here are those proposed by
Fryirs et al. [66]: longitudinal connectivity refers to sediment transfer within the channel
network, while lateral connectivity refers to sediment exchanges between the channels and
the broader landscape, including valley floor (e.g., floodplain) and the adjacent hillslopes.
In terms of valley floor processes, I further distinguish: (i) bank erosion and retreat, which
leads to gradual lateral migration of the channel; and (ii) avulsions, which are understood
here broadly, as abrupt shifts in the lateral position of a channel, regardless of whether it is
partial (only a portion of flow rerouted) or full, and whether it involves the formation of a
new channel or annexation of a pre-existing one (see [67] for more information on these
distinctions).
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2.1. Lateral Connectivity
2.1.1. Bank Erosion

Vegetation exerts an important influence on lateral geomorphic connectivity by regu-
lating bank stability and erosion rates. The term “bank erosion” is used here in a broad
sense and includes all the processes that may lead to bank retreat, for example, removal of
individual particles by hydraulic action as well as mass bank failure [68–70]. These funda-
mental fluvial processes have been viewed both as a concern (e.g., as a natural hazard) and
as desirable geomorphic phenomena that supply sediment and organic material to channel
networks [71,72]. As a result, the effects of riparian vegetation on bank stability have been
a subject of substantial interest for a long time [69,73–78] and it is, without a doubt, among
the most thoroughly researched links between vegetation and fluvial processes. However,
because of the sheer complexity of these biophysical interactions and the importance of vari-
able, site-specific factors, they remain difficult to model mechanistically [76,77]. The biotic
control on bank erosion is exerted through hydrological and mechanical processes [76,79].
Although, typically, the net outcome of these mechanism is to stabilize banks, under cer-
tain circumstances they may also have a destabilizing effect [76,80,81]. Hydrologically,
an important factor co-defining the likelihood of bank erosion is soil water content, as
positive pore pressure can make the bank material more susceptible to failure [76,82]. For
example, vegetation can reduce the overall soil moisture through water losses related
to interception and evapotranspiration [83]. These water losses tend to have a positive
effect on bank stability, albeit that may vary seasonally [84]. On the other hand, vegetation
can enhance local infiltration rate and, to some extent, increase pore pressure, as water
delivered by precipitation is concentrated by stemflow and routed by preferential flow
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pathways associated with root system [85]. Further complexity is introduced by the fact
that the influence of this mechanisms may depend on root morphology.

From the mechanical processes standpoint, vegetation adds weight, acting to destabi-
lize the bank [76,86], whereas root system reinforces the bank, increasing its stability [87–89].
In addition, roots also promote bank resistance to hydraulic action [84] (Figure 4A). How-
ever, the effect of surcharge (added weight) tends to be relatively small. The magnitude
of the reinforcement effect depends on the tensile strength of the roots and their distri-
bution [81,90,91]. Importantly, it appears that the mechanical protection is unlikely to
be effective in cases in which bank height is much larger than the rooting depth [92,93]
(Figure 4B–D). This observation appears to suggest that the stabilizing influence of vegeta-
tion should be less prominent (or perhaps even negligible) in large rivers. Yet, empirical
evidence reveals that the migration (hence bank retreat) rates are as much as ten-fold
lower in vegetated meanders compared to unvegetated ones, even in relatively large chan-
nels [94]. Clearly, more research is needed to verify the role of vegetation in such reduced
migration rates and to understand in detail the underlying mechanisms. In addition to the
above processes, it has also been noted that presence or absence of riparian vegetation can
influence subaerial processes that condition banks for erosion [70]. Finally, vegetation can
exert control on bank erosion by influencing near-bank hydraulics. For example, research
indicates that vegetation succession on point bar can enhance flow steering towards the op-
posite bank [95]. Similarly, flow characteristics relevant for bank erosion may be influenced
by large wood (Figure 4B). Such downed wood, which commonly accumulates at the bank
toe, can be derived locally, from trees toppled by the wind and recruited through bank
undercutting, or advected from upstream. Recent research suggests that, depending on
the density of these logs and their spatial arrangement with respect to the bank and flow
structure, such features can both increase and decrease local bank erosion rates [96,97].
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2.1.2. Avulsions

Vegetation also plays an important role for overbank flows and lateral reworking
of the valley floor through avulsions [25,98]. These biogeomorphic interactions are less
well understood than in the case of bank erosion, partly because the understanding of
hydro-geomorphic processes on forested floodplains is generally limited [99], especially so
in mountain basins. Most of research on floodplain dynamics has been conducted in low
gradient channels but it seems reasonable to assume that this knowledge is largely trans-
ferrable, at least to major mountain rivers in principal valleys. Moreover, some relevant
work, especially in relation to the role of large wood, has been carried out in the forested
rivers of the Pacific Northwest [98,100–102]. Taken together, this body of research provides
important insight into the biotic controls on the dynamics of multi-thread channels. For
example, flow resistance and backwater conditions induced by large wood accumulations
(hereinafter also referred to as logjams) promote out-of-bank flows which, ultimately, can
result in floodplain erosion and, potentially, avulsions [98,103,104] (Figure 5). This effect is
enhanced under the conditions of rapid bed aggradation [105], which may be also induced
by in-stream wood, especially channel-spanning jams [106–108]. Similarly, it has been
shown that the deflection of flow by logjams can regulate the reactivation and reworking
of floodplain channels [109] (Figure 5). Generally speaking, vegetation increases floodplain
roughness, which in turn results in reduced overbank flow velocities and increased inun-
dation depth and extent; the reduced velocities also translate into diminished boundary
forces [110–112]. During large floods, the anchoring effect of vegetation (biostabilization)
may regulate erosion and deposition that occurs on floodplain surfaces, although extreme
events that exceed certain threshold force can also remove the plants [113–116].

This simple model of the interplay between vegetation (including downed wood), flow
and sediment fluxes, can be further extended to consider more nuanced effects that plants
may have on lateral geomorphic connectivity. For example, floodplain hydraulic patterns
are highly complex, with a mix of channelized and diffusive flow [117–120]. Experimental
research has shown that vegetation plays an important role in focusing shallow flows into
well-defined channels [121–123]. Similarly, modeling results indicate that dense vegetation
stands also deflect the floodplain flow, influencing overbank flow patterns [112,116]. In
addition to living vegetation, downed wood on the floodplain has been found to route
the flow across the floodplain surface, thereby contributing to the formation of microchan-
nels [124–127]. Because of the relatively shallow nature of floodplain flows, and because of
strongly 3-dimensional flow patterns with areas of high shear, both vegetation and downed
wood can exert considerable influence on hydraulic forces thus affecting the magnitude
and spatial pattern of erosion and deposition [99]. As a result, it appears that vegetation
may be an important factor contributing to the development and organization of flood-
plain topography [128]. A number of characteristics of the vegetation cover—including
individual plant canopy structure or stand-scale biomass—seem to be relevant for such ge-
omorphic effects [116,129]. Thus, vegetation acts in concert and interacts with topography
to create the complex hydraulic patterns observed in floodplain flows, with large variation
in water surface elevation and flow direction changing substantially with stage [130]. There
are further ways in which the biogeomorphic interactions may have important effect on
channel avulsions. For instance, it has been shown that presence of riparian vegetation
leads to increased sedimentation closer to the bank; this pattern ultimately results in higher
and steeper levees [131,132]. The alluvial ridge height in turn influences the likelihood of
avulsions [123,133] as well as path selection through the floodplain during an avulsion
event [134].
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2.1.3. Hillslope Inputs

Vegetation has equally important effects on hillslope processes; although the focus of
this review is on the fluvial system, in mountain streams, the processes operating on the
adjacent hillslopes may have important and direct influence on channel behavior and char-
acteristics [135–139]. Typically, in mountain landscapes, the primary phenomena delivering
clastic material from slopes to the stream network are episodic mass movements [140–143].
Mass movements are understood here broadly and include diverse types of landslides,
debris flows, and so forth. With the exception of deep-seated landslides, in which failure
plane is located well below rooting zone, vegetation can influence slope stability through
both hydrological and biomechanical effects [58,144] (Figure 6). The key impacts, including
the regulation of soil pore pressure and the apparent cohesion associated with root sys-
tem, mirror closely those discussed above for bank failures [63,145,146]. Hence, to avoid
redundancy, a detailed discussion of these mechanisms is not given here; instead, reader is
referred to the above-cited reviews. However, it is worth to mention briefly at this point
other, more continuous slope processes, such as soil creep and surface erosion, which
can also be regulated by vegetation [61,147]. For example, soil creep can be influenced
by biotic processes, such as root growth and decay or tree swaying and uprooting; such
bioturbation phenomena tend to increase the rate of material fluxes [148–152]. However,
on the other hand, trees can also promote accumulation of the material moving downslope
and provide bioprotection to soil surface [61]. Moreover, forest canopy can alter not only
slope hydrology but also microclimate, which in turn may define the relative importance of
the mechanisms that drive soil creep (e.g. freeze-thaw vs. bioturbation) and slow down its
overall rates [153,154]. The degree to which plants may influence the processes described
above will depend on a range of their traits, such as root architecture [147]. Taken together,
just like in case of the valley floor processes, biogeomorphic interactions on hillslopes
involve multiple complex phenomena which, in some cases, may can act in opposite
directions.
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2.2. Longitudinal Connectivity

Vegetation regulates longitudinal geomorphic connectivity primarily through the
effects of large in-stream wood, but in larger channels pioneer plants on bar or island
surfaces may also play a role (Figure 7). One of the key mechanisms through which these
biotic factors affect downstream sediment fluxes is their effect on channel hydraulics.
For example, large wood obstructs the flow and increases flow resistance [155–157]; this
mechanism tends to be especially effective in smaller channels because of potentially
high blockage ratio [158]. While such macroroughness elements have the overall effect of
reducing reach-average forces available for sediment transport [159], local flow patterns and
turbulence induced by the flow obstruction [160–162] can, on the other hand, cause local
scour [106,162,163]. Therefore, the net effect of large wood on longitudinal connectivity,
as mediated by flow hydraulics, may vary depending on the architecture and orientation
of the wood accumulation [164–166]. Another mechanism through which large wood
controls sediment transfer along the channel network is by physically trapping sediment
in bar deposits or depositional wedges formed upstream of large wood [106,107,167,168]
(Figure 7C).

Both mechanisms are much more efficient when multiple pieces of large wood form
complex logjams [28,159,169]. These accumulations of large wood can develop as a result
of two distinct groups of processes—in situ deposition (e.g., by mass movement or bank
erosion) and fluvial transport—but similar structures can be formed by beaver [26]. Mass
movement processes, such as landslides and debris flows, appear to be the dominant
mechanism of logjam formation in smaller headwater channels [170–175], where fluvial
transport of wood is restricted by the dimensions of the channel [176]. In larger streams
and rivers, mass movement can still introduce large wood but redistribution of logs
recruited by a range of processes (bank erosion, tree throw, etc.), typically during high
flows, may be the primary mechanisms of logjam formation [108,177–179]. Thus, there
is typically a downstream transition in the formative processes and styles of large wood
accumulations [24,26,108]. Finally, as noted above, beavers can build dams that, to some
extent, functionally resemble log jams; these features can be found on both small and
large rivers, in the latter case often along side channels [180–183]. Sediment storage
behind all types of jams (and dams) can be substantial, in some cases exceeding the annual
flux tenfold [168,184–187], and they have been observed to cause hysteresis in sediment
transport downstream [188]. These features may regulate downstream passage of major
sediment pulses, since wood is often introduced during major disturbances that also recruit
clastic material [141,189–191]. Logjams are typically structurally stable, as their members
are less mobile than individual pieces [192], although their stability decreases with channel
dimensions [24]. In smaller channels they were found to last for decades, as decay will
lead to gradual release sediment and, finally, a breakup [107,193]. However, jams can also
breach more rapidly in response to large flood events [190,194,195]. Following logjam
disintegration, some of the sediment may remain stored in terraces [186] or risers in the
floodplain [104].
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Figure 7. Large wood and longitudinal connectivity in forested fluvial systems: (A) wood and riparian vegetation influence
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heads (flow from the bottom to the top). (A–C) Note patches of colonizing vegetation associated with logjams. Image source
in (C): Planet Team [196].

As noted above, in larger channels, living vegetation interacts with large wood to reg-
ulate downstream connectivity. For example, once large wood accumulates into logjams,
which provide a “hard points” for bar formation [108,197], these depositional features
trap fine material and propagules of riparian plants [198]. This process in turn facilitates
the establishment of vegetation on bars [108,199,200] (Figure 7B,C). The growth of the
pioneer plants in such protected zones, along with regrowth from living wood floated
downstream, create a positive feedback, further encouraging deposition and wood en-
trapment [128,201,202]. While complex flow around these features also induces local
scour [200], the net effect is typically depositional. Unless interrupted by a major erosional
event, this process leads to the development of stable islands [203,204], which, ultimately,
may be incorporated into the floodplain [98,102,205]. The residence time of sediment
making up these stable islands, which seem to be further maintained by the presence of
large wood [93], is typically much longer than that in more transient storage elements, such
as unvegetated bar forms. However, it is worth noting that both bars and stable islands also
steer the flow towards the banks, which, depending on bank resistance, could potentially
contribute to sediment recruitment through bank erosion [128].

2.3. Vegetation and Geomorphic Connectivity: A Summary

The preceding discussion clearly highlights the ubiquitous effects on geomorphic
connectivity in mountainous fluvial landscapes. These diverse biotic influences on ge-
omorphic processes can be briefly classified, in a perhaps somewhat reductive manner,
across the slope and channel processes: (i) the stabilization of sediment (biostabiliza-
tion/bioprotection) as well as the opposite effect (bioturbation/biogenic transport); (ii)
physical entrapment of mobile sediment, leading to soil and landform development or
alteration (bioaccumulation/bioconstruction); (iii) the regulation of soil/sediment moisture
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regime through physiological processes (e.g., transpiration) and the creation of preferential
flow pathways, for example, through root system growth; (iv) surface flow routing, for
example, through the formation of physical obstructions that deflect the flow or microto-
pography development as a result of bioconstruction.

3. Vegetation-Geomorphic Connectivity Linkages: Some Challenges to Understanding
Fluvial Behavior in Mountain Landscape Systems

There is a wide agreement among the scientific community regarding an urgent need to
better understood geomorphic consequences of the ongoing environmental change [206–212]
and develop process-based restoration approaches [54–56,213,214]. Mountain landscapes,
including fluvial systems, deserve a particular attention. For example, from the ecological
point of view, they often provide a physical template for highly diverse and produc-
tive ecosystems [215,216] and may serve as important refugia [217,218]. From the social-
environmental systems perspective, they are associated with high exposure to geomorphic
hazards [219–222], an effect exacerbated by the often high degree of social vulnerability
among mountain communities [220]. At the same time, mountain landscapes and ecosys-
tems are particularly sensitive to disturbances and environmental pressures [48,206,223],
which is also manifested in the intensification of geomorphic hazards [219–222]. Locally
high geomorphic connectivity contributes to this sensitivity, as disturbances readily propa-
gate across the landscape [220,224,225]; on the other hand, local dis-connectivity [226,227]
may cause any geomorphic responses to vary dramatically across space. Such spatial
heterogeneity is of fundamental importance from both ecological and land management
perspective [228–230]. The complexity in fluvial landscape system’s behavior arising from
these properties is further compounded by the vegetation-connectivity linkages outlined in
Section 2. The ability of plants to alter geomorphic thresholds, introduce positive feedback
loops, and trigger local autogenic disturbances independent of exogenous forcing can
greatly contribute to nonlinear system behavior [23]. As a result, the biophysical linkages
are likely to be of fundamental importance for geomorphic responses to environmental
change and the effectiveness of restoration actions. At the same time, these complex
interactions make the dynamics of the landscape system highly difficult to predict or
explain [20,231,232].

Research to date provides abundant empirical evidence for dramatic responses of
geomorphic connectivity in mountain landscapes to vegetation disturbances associated
with changing climate and past land management practices. For example, timber harvest,
especially clearcutting, has been reported to promote extensive bank erosion [141,233,234]
and increase the frequency of slope failures up to an order of magnitude in excess of
the background rates [235–238] (Figure 8A,B). Similarly, greatly increased geomorphic
activity, including bank erosion and slope instability, can result from wildfires [239–241],
the effects of which have been, and are expected to continue to be, exacerbated by the
warming climate and shifting precipitation patterns [242]. In addition to local effects,
these events can affect areas located downstream. Copious amounts of sediment supplied
by such disturbances to channel networks have been observed to result in the forma-
tion of sediment pulses, also referred to as sediment waves or slugs [141,174,243–245]
(Figure 8C,D). In other words, the amplified recruitment of sediment from lateral sources
(lateral connectivity) led to increased longitudinal connectivity within the fluvial system.
As those pulses propagate downstream, their passage is reflected in cycles of aggradation
and degradation, as well as textural evolution of the bed surface [167,244,246]. These
effects can persist for decades after the initial disturbance, especially when large quantities
of coarse material are supplied [247,248] (Figure 8D). Such changes, in turn, alter distur-
bance regimes in riverine ecosystems [234,249–252], which are tightly linked to sediment
dynamics [253–255]. Therefore, a better understanding of these cascading effects is critical
also from the point of view of ecosystem conservation and restoration [256,257]. The
aggradation and degradation associated with the passage of sediment pulses have also
clear management implications in terms of flood protection and erosion control.
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Figure 8. Forest cover disturbance and geomorphic response. (A,B): a large number of landslide
scars (open slope failures and debris flows) in logged terrain. (C) stream-side slope failures generate
a sediment pulse—note channel aggradation downstream of the sediment entry points. Flow from
the bottom to the top. (D) long-term channel recovery from a sediment pulse—note extensive bars
indicating abundant sediment storage well over two decades after a large, episodic supply. Flow
from the bottom to the top. Image source in (A–C): Planet Team [196].

However, while past research provides some important insights into the roles that
vegetation-connectivity linkages may play in regulating geomorphic responses to environ-
mental change, further work is warranted. For instance, in contrast to the well-researched
effects of land use [258–260], geomorphic responses to more nuanced and gradual changes
in vegetation characteristics, such as those induced by climate variability [261], are much
more challenging to identify. In other words, using terminology borrowed from the field of
disturbance ecology, the recent focus in biogeomorphology appears to have been primarily
on pulse (short-lived) and less on press or ramp (persistent) disturbances [262,263]. To the
best of the author’s knowledge, few mountain fluvial systems have been studied holistically,
at a broad spatial scale and over long time scales, with an explicit accounting for hillslope
and riparian vegetation dynamics and response to both changing land use and climate.
In rare cases, such a comprehensive understanding has been achieved for a part of the
landscape system, for example channel-floodplain sub-system [264–269]. Even outside of
mountainous areas, a recent review on European river systems noted that less than 50% of
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studies of multidecadal channel change accounted for land cover changes [270]. This seems
to be an important area in need for more research. For example, recent findings suggest that
vegetation and soil changes can either enhance or moderate hydro-climatological effects of
changing climate [271]. However, analogous research with respect to geomorphology of
fluvial mountain systems appears to be lacking. Taken together, the preceding discussion
strongly implies that, to advance our understanding of biogeomorphic interactions and
gain insight into their implications for environmental change and watershed restoration,
a nested research framework is needed. In such a framework, multiple spatial scales
and/or levels of system organization are considered. Investigations at a lower level of
hierarchy provide mechanistic explanations of individual phenomena, while the analysis
at a higher level of hierarchy accounts for the cumulative system’s response, including
emergent phenomena, and provides information about the constraints for key processes of
interest [272,273]. Below, I discuss both components of the suggested framework in more
detail and provide examples of specific knowledge gaps they could address.

As is clear from the foregoing discussion, an improved mechanistic understanding of
the biophysical feedbacks between vegetation and geomorphic connectivity is needed to
better understand the behavior of mountain fluvial system that underpins its responses
to environmental change or land management and stewardship (e.g., restoration). For
example, such mechanistic knowledge is needed to disentangle multiple controls and
attribute causality in past dynamics [270] and would certainly facilitate projections into
the future. Yet, despite substantial advances in the field of biogeomorphology during the
last two decades [38,42,58–60,63,274], important knowledge gaps regarding the relevant
biophysical interactions remain [39,45,62,275]. For instance, the magnitude and relative
importance of often competing biotic effects, as well as their variability (e.g., related to plant
age or species), are still relatively poorly explored [76,276–278]. Equally importantly, the
dynamic co-adjustments between vegetation, flow, and sediment cannot be well understood
and quantified without a better insight into the physiological tolerance and responses of
plants to hydraulic and geomorphic stress and disturbances [279]; these questions have
mostly been explored in detail in a few common, well-studied species [115,280,281]. Along
the same vein, it is important to consider phenotypic plasticity of various species to gauge
the extent to which short-time plastic responses may modulate plant performance under
both climatic and geomorphic stresses [282,283]. Finally, at the scale of plant aggregations
that occupy given landforms, a more nuanced view of the role that ecological processes play
in the biogeomorphic interactions is also needed. For example, recent research revealed
that competition (e.g., self-thinning) and facilitation (e.g., entrapment of organic matter,
contributions to mycorrhizal networks and root grafting) may have important geomorphic
implications [275].

Crucially, the ability and effectiveness of plants in terms of influencing earth surface
processes, as well as their tolerance to physical stress, are closely related to their functional
traits, including physiological (e.g., photosynthetic and transpiration rates), biomechanical
(e.g., tensile strength), morphological (e.g., root architecture and tensile strength) or life
history traits. As a result, a promising approach to advance our understanding of the above
issues is to focus on such functional traits, rather than taxonomic classification [45,129]. As
a part of such an effort, an interdisciplinary research that integrates plant ecophysiology
and biomechanics into biogeomorphology is of crucial importance. Although research into
this subject seems to predominantly focus on aquatic macrophytes [284,285], ecological
literature may offer a rich source of information for riparian plants as well [286,287]. An
extension of trait-based approach to a higher level of biological organization and spatial
scale is the framework of guilds/functional groups [288–290]. Such guilds can, for example,
help identify species that respond in a similar way to a certain geomorphic factor. Future
research into this subject should strive to consider explicitly the inherently close links
between riparian vegetation and large wood. Although large wood is, arguably, among the
best-understood biotic controls on geomorphic connectivity, some areas certainly require
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further study; examples include the mechanics of wood transport [26,179,200,291] or links
between forest ecology and wood recruitment [292,293].

Arguably, an even greater challenge lies in the understanding of how biogeomorphic
interactions mediate the effects of environmental change at the basin scale. Because of
potentially nonlinear dynamics of these complex fluvial systems, no unique relationship
may exist between the disturbances and system responses [20,232,294] and mechanistic
approaches, such as those based on the concept of equilibrium, may have limited explana-
tory and predictive power [232,294–296]. In some cases, empirical data lend support to
such expectations; for example, complex geomorphic adjustment following a disturbance
in a mountain fluvial system, with multiple trajectories, has been demonstrated by Major
et al. [297]. Similarly, multiple trajectories can occur in successional responses of vegetation
to geomorphic disturbances [298,299]. Given the possibility of nonlinear system behavior,
reach-scale biogeomorphic knowledge cannot be readily scaled up without accounting for
emergent dynamics that can arise at a broader spatial scale due to, for example, hillslope-
channel connectivity or storage within the sediment routing system [206,300]. As noted
above, these geomorphic sources of complexity in the overall, basin-scale behavior of
the mountain fluvial systems can be further complicated by biogeomorphic interactions.
Yet, to the best knowledge of the author, empirical, basin-scale research on geomorphic
connectivity in mountain environments, carried out at an adequately long time-scale, has
generally been rare. Instead, as noted in Section 1, much of our understanding of medium-
to-large basins’ response to climate and land use change are derived from sediment yield
studies [301–304]. In such cases, even the attribution of causality in past system behavior
may prove challenging, given that disproportionate response can arise entirely due to
internal system dynamics rather than external forcing [305].

A better insight into the role of various feedback loops, which can lead to emergent
phenomena and disproportionate responses, remains to be a crucial research need in
the context of understanding mountain fluvial system behavior. Consider, for example,
sediment pulses associated with hillslope material delivery following a vegetation cover
disturbance, such as timber harvest or wildfire. Experimental and modeling work has
sought to understand the fundamental physical mechanisms and has greatly advanced our
understanding of fluvial responses to these episodic inputs [306–310]. Based on this body
of work, an attenuation of the pulse is expected as it moves downstream because sediment
dispersion typically dominates over translation [306,308,311–313]. Field observations,
however, add important nuance to this conceptual model and, more broadly, illustrate that
comprehensive source-to-sink research is needed to understand basin-scale geomorphic
response. For example, on the one hand, such findings suggest that the propensity for
downstream attenuation may be further promoted by lateral connectivity that is associated
with overbank sediment storage in unconfined valley sections [314]. On the other hand,
several mechanisms could also act to locally augment the pulse. For instance, increased
sediment supply has been linked with more rapid bend migration [315] and more frequent
avulsions [67,316]. Increased lateral activity was observed on the Chehalis river in response
to a major sediment pulse associated with multiple landslides [317], while another empirical
study found that in-channel storage and avulsions can regulate downstream evolution of
sediment pulses [318]. Depending on the spatial configuration of the channel on the valley
floor (structural connectivity), the increased lateral channel activity could in turn induce
basal erosion at the slope toe, thus triggering failures and enhancing higher hillslope-
channel connectivity [136,319–323] (see Figure 9). Such mass movement activity would
also induce vegetation disturbance on the hillslopes and introduce large wood into the
fluvial system. The supply of sediment and wood during such an event adds further
complexity in terms of downstream connectivity (for large wood, these effects have been
described in Section 2.2 [188,194,324]). While the frequency and relative importance of such
effects at the basin scale is unclear, in theory, they could result in a self-reinforcing (positive)
feedback between hillslope and channel activity, akin to that observed in association with
lateral activity on a braidplain and bank undercutting [123,325]. Recent observation of a
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non-attenuating basin-scale sediment “wave” [326] suggests that the connectivity between
the channel and lateral sources indeed need to be considered in studies of sediment pulses.
When the whole channel network is considered, the degree to which sediment pulses in
different tributaries are synchronized may also greatly complicate the nature of downstream
transfer [327,328] and, thus, observed sediment yield.
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4. Summary and Conclusions

Rivers are complex systems, constantly adjusting to a suite of changing governing
conditions, which include climate and the characteristics of the biophysical landscape
within which they are embedded. Geomorphic connectivity provides a useful framework
to consider how vegetation cover regulates clastic material fluxes and how this biotic
control may influence fluvial landscape’s behavior, including response to past and future
environmental change, or to restoration efforts. In this manuscript I focused specifically on
vegetation-connectivity linkages in mountain fluvial environments. Through a selective
review, I highlighted the pervasiveness of the plants’ effects on sediment mobility and
fluxes and the resulting geomorphic connections within the channel network and between
river channels and the broader landscape. These diverse biotic influences on geomorphic
processes include biostabilization/bioprotection, bioturbation/biogenic transport, bioac-
cumulation/bioconstruction, the regulation of soil/sediment moisture regime and the
creation of preferential flow pathways, as well as surface flow routing. I supplemented
this discussion by outlining specific areas of research that, in my view, are key to better
understand biogeomorphic interactions influence the overall behavior of the riverine land-
scape. Namely, a multi-scale approach was suggested as a promising way forward. On the
one hand, the dynamic feedbacks between local hydrogeomorphic processes and plants
need to be explored in more detail. For example, such a biogeomorphic perspective would
benefit from a stronger integration of plant physiology, biomechanics and morphology into
the geomorphic process studies. On the other hand, at the basin scale, a landscape system
approach is needed, in which fluvial biogeomorphic interactions are considered jointly
with biogeomorphic interactions on the adjacent hillslopes. Because of complex, nonlinear
internal dynamics of fluvial systems, and the resultant emergent phenomena, mechanistic
understanding of local processes alone may be insufficient to interpret the record of past
behavior or forecast future responses to environmental change at such a scale [232,305].
A refined insight, which may result from the hierarchical framework, is also necessary to
guide improved management of natural resources, including environmental conservation
and restoration [213].
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