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Abstract: Near real-time rainfall monitoring at local scale is essential for urban flood risk mitigation.
Previous research on precipitation visual effects supports the idea of vision-based rain sensors, but
tends to be device-specific. We aimed to use different available photographing devices to develop a
dense network of low-cost sensors. Using Transfer Learning with a Convolutional Neural Network,
the rainfall detection was performed on single images taken in heterogeneous conditions by static
or moving cameras without adjusted parameters. The chosen images encompass unconstrained
verisimilar settings of the sources: Image2Weather dataset, dash-cams in the Tokyo Metropolitan
area and experiments in the NIED Large-scale Rainfall Simulator. The model reached a test accuracy
of 85.28% and an F1 score of 0.86. The applicability to real-world scenarios was proven with the
experimentation with a pre-existing surveillance camera in Matera (Italy), obtaining an accuracy
of 85.13% and an F1 score of 0.85. This model can be easily integrated into warning systems to
automatically monitor the onset and end of rain-related events, exploiting pre-existing devices with a
parsimonious use of economic and computational resources. The limitation is intrinsic to the outputs
(detection without measurement). Future work concerns the development of a CNN based on the
proposed methodology to quantify the precipitation intensity.

Keywords: rain detection; transfer learning; convolutional neural networks; single image classifica-
tion; rainfall; cameras

1. Introduction

Floods are considered major natural disasters globally [1,2]. Furthermore, the extreme
weather events stemming from climate change may increase their frequency and magni-
tude [3,4]. Urban and suburban landscapes are usually dominated by artificial impervious
surfaces that affect the hydrological cycle [5,6]. In this context, the meteorological forcing
characterization becomes essential: the identification and monitoring of hydrological state
indicators, such as rainfall characteristics, are a prerequisite to determine the critical thresh-
olds for flood triggering. These indicators contribute to shape the event and risk scenarios
within the territorial context and therefore the criticality and alert levels that establish the
indication or warnings to the exposed population [7,8].

For the purpose of representation of the territory for urban pluvial flood studies,
precipitation measurements are required at local, fine scales with low latency to give
near real-time and fine-grained information [9,10]. Urban flood risk management can be
enhanced by a local scale strategic system integrating near real-time methods, innovative
technologies and conventional systems [11].

Traditionally, rainfall has been assessed by employing several kinds of rain gauges [12].
Presently, most data are obtained from ground-based measurements or remote sensing:
rain gauges, disdrometers, weather radars and satellites often provide limited information
in terms of resolution (temporal or spatial) due to the sparseness of the ground monitoring
networks that are used for both direct measurement and indirect measurement calibration.
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Other problems are related to their high costs. Rain gauges are unevenly spread and
frequently placed away from the urban centers. Not all observations are continuous
and available to the public and often have their limitation due to the variability of the
precipitation [13]. To overcome these limitations, it may be useful to employ a form
of aggregation of data obtained from a dense network whose nodes are represented by
numerous low-cost inaccurate sensors. Thus, several studies developed unprecedented
approaches to retrieve precipitation information with low operational costs. Despite their
inaccuracy, novel techniques could furnish valuable additional information in combination
with conventional systems [14].

The first discussions of a camera designed to photograph rainfall emerged with
the Raindrop camera [15], to support radar investigations. The idea of a Camera Based
Rain Gauge was suggested by Nayar and Garg, who conducted systematic studies of
the visual effects of the rain in pictures and video sequences setting the key theoretical
framework [16,17] for all later research. The presence of rain produces local variations in
the pixel intensity values of digital images, depending on the raindrop intrinsic characteris-
tics, camera parameters and environment.

The literature on the perceptual properties of atmospheric precipitation and weather
condition in natural images has highlighted different approaches [18–36]. The most recent
advances in the field of Computer Vision (CV) and Machine Learning (ML), the new
methods of analysis of digital photography and image processing, have facilitated the study
of novel rain detection systems aimed at enhancing the visual aspects to increase the rainfall
detection or to remove the raindrops and rain streaks from images and video frames.

The visual effects generated by the presence of rainfall have been attracting much
research attention within the fields of outdoor vision. Rain-induced artifacts have typically
been addressed as an element that negatively impacts the performance of systems based
on video and image processing. Thus, rain detection and removal are considered as a joint
pre-processing task in many CV applications. A considerable amount of literature has been
published on rain removal techniques [22,28] to enhance the adverse weather degraded
outdoor images or videos for different applications, such as image or video editing [33],
surveillance vision system and vision-based driver assistance systems [18,24,25]. Although
originally developed for visibility enhancement, the methods provide useful insights into
detection techniques. Classical CV techniques were applied for the detection of dynamic
weather phenomena in videos [20], whereas Deep Learning (DL) techniques—in particular
Convolutional Neural Networks (CNNs)—were applied to single images [29,30]. 3D CNN
systems for the stand-alone rainfall detection from video-frame sequences have proven to
be effective for using existing surveillance cameras as a rain detector to decide whether to
apply removal algorithms [36].

Whereas the existing literature on techniques for removing the visual effects caused
by rain is fairly extensive (bearing in mind the recentness of major advances in digital
photography), there is a smaller body of literature that is concerned with the field of rain
measurement for hydrological purposes. A first monitoring system through pictures at
the small catchment scale [21] focuses on snow precipitation visual features that differ
significantly from those of the rain in terms of particles size, color and trajectory. Other
opportunistic rainfall sensing methods are based classical image processing algorithms:
Allamano et al. [26] estimated the rain rate values with errors of the order of ±25% from
pictures taken at adjacent time steps; Kolte and Ghonge [31] processed video frames
collected from a high definition camera; Dong et al. [34] proposed a method for real-time
rainfall rate measurement from videos, counting the focused raindrops in a small depth of
field to calculate a raindrop size distribution curve and estimate the corresponding rainfall
rate. Jiang et al. [37] used videos acquired by surveillance cameras under specific settings
and evaluated their method on synthetic numerical experiments (i.e., images processed
in Adobe Photoshop) and field tests, reaching a mean absolute error of 21.8%. These
techniques strongly rely on the image resolution, temporal information, acquisition device
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characteristics and proper setting of its parameters in order to obtain shootings suitable for
the image processing that depicts accurately detectable raindrops and rain streaks.

Adopting a ML approach, researchers have been able to devise robust algorithms for
weather classification from single outdoor images, considering different weather categories:
Sunny, Cloudy, Rainy [19]; Sunny and Cloudy [23,27]; Sunny, Rainy, Snowy and Haze [32];
and Sunny, Cloudy, Snowy, Rainy and Foggy [35].

In comparison with image sequences or video, single images comprise information
about the recorded scene per se as they can stand on their own, with a consequent de-
crease in the amount of data that needs to be processed, stored and transferred reducing
computational resources and time.

Despite the diversity of purposes, methods and epistemological fields, all the studies
on the visual effects of the rain support the hypothesis that photographs can provide useful
information on precipitation and that digital image acquisition devices can function as rain
sensors. However, the literature focused on the use of a single image source: dashboard
camera, i.e., cameras mounted under the windshield of a vehicle [18,19,24]; surveillance
cameras [20,34,36,37]; outdoor scenes [23,27,30,32,33,35]; and devices with adjustable shoot-
ing setting, e.g., exposure time, F-number, depth of field, etc. [21,26,31,34,37]. Proposed
methods often exploit temporal information requiring videos, frames or sequential still
images [18,20,21,24,26,31,34,36,37]. Thus, the literature focuses on use cases with stringent
operational requirements, and it lacks heterogeneity and generalizability and tends to
be device-specific. The final goal of this research is the characterization of rainfall for
creating a dense network of low-cost sensors to support the traditional data acquisition
and collection methods with a relatively expeditious solution, easily embeddable into
smart devices, benefiting from the aforementioned research progress and the advances in
available technology, using DL techniques.

The specific aim of this work is to investigate the use of maximized number of image
sources as rain detectors in order to obtain a sensing network as dense as possible providing
a large informative and reliable database. As opposed to existing works, the focus of
our model is the applicability on all easily accessible image acquisition devices (e.g.,
smartphones, general-purpose surveillance cameras, dashboard cameras, webcams, digital
cameras, etc.), including the pre-existing ones. This encompasses cases where it is not
possible to adjust the camera parameters to emphasize rainfall appearance or obtain shots
in timelines or videos.

The proposed methodology has a number of attractive features: application simplicity;
adherence to the physical-perceptual reality; cost-effective observational and computational
resources. In fact, the classification task was performed on single photographs taken
in extremely heterogeneous conditions by commonly used tools. The input data can be
gained from different acquisition device in different lighting conditions and without special
shooting settings, within the limits of visibility (i.e., human visual perception). Shots in
timelines or videos are not required, so it is possible to use on pre-acquired images taken
for other purposes. In an attempt to adhere physical-perceptual appearance of real rain,
any form of digitally simulated rain was excluded from the input data.

In this study, we examine the case of rainfall detection, namely a supervised binary
classification in single images answering the question: Is it raining or not?

2. Materials and Methods

The main advantage of ML method is that it uses algorithms that iteratively learn from
data and allows computers to solve problems without being explicitly programmed how
to do it [38]. Using this approach, researchers have been able to provide robust algorithms
to solve new and complex problems, including image classification in disparate contexts.

The DL techniques, in particular CNN models, are widely used in image-classification
applications so appeared especially suitable for this purpose as they are inspired by the
structural and functional characteristics of the visual cortex of the animal world. A CNN-
based approach was chosen since it is the state-of-art among other image recognition
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methods [39]. One benefit of CNNs is that they avoid the problem of pre-processing input
data since such algorithms recognize visual patterns directly in images represented by
pixels. Traditional CV techniques use manually engineered feature descriptors for object
detection, requiring a cumbersome process to decide which features are more descriptive or
informative for the desired task. CNN models automate the process of feature engineering:
the machine is trained on the given data and discovers the underlying patterns in classes of
images, learning automatically the most descriptive and salient features with respect to the
addressed task [40]. Deep architectures contain multiple levels of abstraction and possess
the ability to learn complex, non-linear and high-dimensional functions. The general CNN
structure consists of a series of layers implementing feature extraction and classification:
the densely connected layers learn global patterns in their input feature space while the
convolution layers learn local patterns.

The task of detecting rainfall can be achieved through the analysis of the perceptual
aspects that determine whether the single photograph in heterogeneous scenes represents a
condition of “presence of rain” or “absence of rain” (for obvious reasons, the two conditions
are mutually exclusive classes). The scenario of interest for the proposed study is a case of
supervised learning of a binary classification type [41]: the objective is to learn a mapping
from known inputs x (pictures) and outputs yi (labels), where i ∈ {1, ..., C′}, with C′ being
the number of classes. In the binary case C′ = 2, thus it is assumed that there are two
classes corresponding to the considered weather conditions: C1 and C2. The model aims to
generate accurate predictions, associating a novel input (picture) to a label (C1 or C2 class).

The non-trivial nature of the task of interest and the small size of the available image
dataset meant that one of the most effective strategies was the transfer learning [42,43]
approach (Figure 1). This ML technique exploits the common visual semantics of the
images [44], employing a pre-trained network for the features extraction as a base for the
new classifier trained on the new dataset. A major advantage of re-purposing a network
that was previously trained on a large-scale image-classification benchmark dataset such
as ImageNet [45] is the portability of the learned features. Thus, the spatial hierarchy of
features can work as a generic model of the visual world for novel perceptual problems [46].

INPUT
single image

CONVOLUTIONAL BASE

(feature extraction)
BINARY CLASSIFIER

(image classification)

OUTPUT 
prediction

(rainfall detection)

Figure 1. Model setup.

2.1. Dataset Creation

The entire dataset used in the different stages of the creation of the CNN model—
training, validation and test—was produced on the basis of the essential requirements
inherent in the required classification task. The task of the detection of liquid precipitation
was modeled as a supervised binary classification in single images. Each input instance
was paired with exactly one output label describing the class. The class for dichotomization
(according to the presence or absence of visible rainfall) were “With Rain” (WR) and “No
Rain” (NR).

In realistic rainfall detection scenarios, the accessible images are weather degraded
and exhibit a large variability of the conditions under which the images have been taken.
The dataset was meant to represent unconstrained and verisimilar image settings for
designing robust model capable of coping with the variations in the given images. Criteria
for building the dataset were as follows: availability, weather conditions representativeness,
the variety of the locations and the diversity of the capture time and lighting conditions.
Each photograph depicted an outdoor scene; in the case of pictures belonging to the WR
group, their visual appearance altered by the rainfall was perceptible by the human eye. The
pictures with digitally synthesized rain were excluded. In particular, raindrops or streaks
were not generated through processing with photo editing software (e.g., Adobe Photoshop,
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GIMP, etc.) or through other computer graphics techniques, such as 3D modeling or
rendering with graphics engines (e.g., Blender, Unity 3D, etc.). To increase the scene
heterogeneity and have a sufficiently large and balanced number of instances, different
datasets with the mentioned characteristics have been combined.

The first part of the dataset was obtained by selecting the images originally labeled
as “sunny” and “rain” in the Image2Weather set [46], which is a large-scale single images
dataset grouped by weather condition and freely available (Figure 2).

Figure 2. Example from Image2Weather dataset [35]: pictures labeled as rainy (left) and sunny (right).

The second source for image collection is a set of pictures taken by dashboard cameras
mounted on vehicles moving around Tokyo metropolitan area from 19 August 2017 for 48
h, with an average of 4 shots captured in a minute (© NIED—National Research Institute
for Earth Science and Disaster Prevention, Tsukuba, Japan). Figure 3 displays a map for
the location of the images collected through the front windshield of the vehicles. The
ground truth was obtained associating the rainfall rates retrieved from the high precision
multi-parameter radar data [47,48] of XRAIN (eXtended RAdar Information Network)
operated by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan,
to the images according to the capture time and GPS location. The minimum rainfall
threshold used for labeling images as belonging to rainy class was 4 mm/h [49] for the
veracity of the association of the radar data with the position on the ground surface and
reduce the effects of smaller raindrops vertical displacement.

Finally, the third tranche of the data was built through experimental activities in
the Large-scale Rainfall Simulator of the NIED located in Tsukuba (Ibaraki prefecture,
Japan) shown in Figure 4. The benefit of using a large-scale rain simulator is that it allows
experimental tests to be carried out in a relatively short time, reproducing events of different
known intensity, including those with a rather remote occurrence frequency, such as rain
showers and downpours with time high return period under controlled and repeatable
conditions. This facility for hydro-geological processes simulation and measurement is
the largest simulator in the world in terms of rainfall area (approximately 3000 m2) and
sprinkling capacity. It can produce fairly accurate precipitation fields for rainfall intensities
between 15 and 300 mm/h. The nozzles, set up at a height of 16 m above the ground
surface, are capable of reproducing the natural rainfall constant speed and generating
raindrops with a diameter ranging from 0.1 to 6 mm.

During the experiments, the produced intensity was set to a constant value for 15 min
intervals; the nominal values for each interval ranged from 20 to 150 mm/h and were
assumed as ground truth. For the purpose of the heterogeneity of the scenes, the pho-
tographs (Figure 4) were shot with 5 different devices: Canon XC10 (Oita Canon Inc., Oita,
Japan), Sony DSC-RX10M3 (Sony Corporation, Tokyo, Japan), Olympus TG-2 (Olympus
Corporation, Tokyo, Japan), XiaoYI YDXJ 2 (Xiaoyi Technology Co. Ltd., Shangai, China)
and the smartphone XiaoMi MI8 (Xiaomi Communications Co., Ltd., Beijing, China).
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Figure 3. Geolocation of the images taken from the dashboard cameras.

Figure 4. (a) NIED Large-scale Rainfall Simulator located in Tsukuba (Ibaraki prefecture, Japan)
©NIED. (b) Example of the dataset built during the NIED Large-scale Rainfall Simulator experiments:
pictures labeled as With Rain (left) and No Rain (right).

The total dataset consisted of 7968 color images coming from the different devices
saved in the JPEG format (pixel resolution from 333 × 500 to 5472 × 3648 pixels). All
the collected images were labeled and organized into the necessary non-overlapping
categories [50], as shown in Table 1. The number of instances of the two classes was
properly balanced.
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Table 1. Dataset creation: label division and number of labeled images per dataset.

Label Dataset
# of Pictures

(Total) Train Validation Test

WR
(presence of rainfall)

Image2weather 1369 823 273 273
NIED car pictures dataset 1870 1123 374 374
NIED Rainfall Simulator Experiment 744 448 148 148
TIM dataset (Experiment) 1180 - - 1180

NR
(absence of rainfall)

Image2weather 1369 823 273 273
NIED car pictures dataset 1870 1123 374 374
NIED Rainfall Simulator Experiment 744 448 148 148
TIM dataset (Experiment) 1180 - - 1180

To mitigate overfitting caused by the small number of images, data augmentation was
adopted as a strategy to artificially create new training examples from the existing ones [51].
The random geometric transformations were chosen so as to be isometric and guarantee the
physical compatibility with the natural appearance of meteorological phenomena. Other
data augmentation methods (e.g., color space transformations, random erasing, mixing
images, etc.) were avoided since they compromise the visual effects of the rain in pictures.
The new pictures were generated by a mirror-reversal of an original across a vertical axis
(horizontal flip or reflection) and/or a 2 degrees angle rotation.

2.2. Model Architecture

The deep learning model was entirely implemented with open source tools, namely
R programming language with the Integrated Development Environment RStudio using
Keras framework and Tensorflow engine backend [46].

A transfer learning approach was adopted for the features extraction, choosing the
VGG16 network [52] as convolutional base because of its characteristics of generality and
portability of the learned features, excluding the densely connected classifier on its top.
The VGG16 network was trained on 1.4 million labeled images of the ImageNet dataset
and 1000 different classes (mainly animals and everyday objects) achieving a classification
accuracy of 92.7%. Since the convolutional base of VGG16 has 14,714,688 parameters, it
was frozen before the compiling and training of the new network. Freezing was necessary
to prevent the weights from being updated during the training of the new network so as
to preserve the representations that were previously learned and avoid overfitting that
can result from fine-tuning [43]. The model was extended by adding new layers on top
(Table 2), in order to obtain a new classifier capable of generating predictions with the two
desired output classes (predict whether the picture represents rainy conditions, WR, or not,
NR). The dropout layer, which randomly drops some input units and their connections
with probability 1− p, was used as a regularization technique to reduce possible data
overfitting problems in the learning phase so as to preserve the algorithm generalizability.

Table 2. Model architecture.

Layer (Type) Output Shape Param. #

vgg16 (Model) (None, 6, 6, 512) 14,714,688
flatten (Flatten) (None, 18,432) 0
dense (Dense) (None, 256) 4,718,848
dropout (Dropout) (None, 256) 0
dense_1 (Dense) (None, 1) 257

Total params: 19,433,793 (14,714,688 frozen)
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3. Results
3.1. Training and Validation

The labeled pictures of the training set (Table 1) constituted known examples of
ordered pairs of input (image) and output (WR or NR class) to feed the network so that the
final model can make predictions starting from inputs.

The CNN was initialized with random values of the trainable parameters. Then, the
optimizer updated automatically—for each elaborated instance—the values of the weights
implementing the error backpropagation algorithm. The optimization procedure modified
the training parameters of the model in order to maximize the prediction accuracy and
minimize the cost function. The dropout rate was set to 25, meaning one in four inputs
was randomly excluded from each update cycle during the training phase. The loss of
binary cross entropy between the training data and the model’s predictions was used as the
cost function [44]. A disjoint validation set provided an unbiased evaluation of the model
fit on the training dataset while tuning the model’s hyperparameters, thus preserving its
generalization ability.

The training configuration setup can be summarized as follows:

• Data Augmentation: horizontal flip, 2◦ rotation
• Loss: binary cross-entropy as cost function for monitoring and improving the model

skills
• Optimizer: RMSprop Optimizer that implements the RootMean Square Propagation

(RMSprop) algorithm [53] to update the neural network
• Metric: accuracy. The amount of correctly classified instances
• Learning rate: lr = 1× 10−5

Figure 5 illustrates the predictive effectiveness of the network plotting the trends of
the accuracy (acc) and loss (loss) values over the subsequent iterations (epoch) calculated on
the known data, i.e.training, and unknown ones, i.e. validation. During the first 15 epochs,
accuracy increased while the loss decreased, constantly improving without abrupt changes
the training stability. After 17 epochs, the accuracy reached a stable value of ≈87% for
the training set and ≈84% for the hold-out validation set. The loss stalled at ≈0.30 for the
training set and ≈0.33 for the validation set. For the subsequent epochs, the plots indicate
that the training and validation curves stopped improving significantly. The small gap
between the curves relative to the two subsets indicates that the network has converged
reaching a point of stability without over-learning of the training data.

The training was stopped after 30 epochs, to avoid the degradation of the performance
of the model [44] due to possible overfitting which is graphically identifiable as a divergence
between the curves of training and validation for each metric.

During the 30 epochs—complete presentations of the entire training and validation
datasets—the learning rate was set to a fairly low value (1× 10−5) to maintain stability [44].
The trained model reached an accuracy of 88.95% on the training set and 85.47% on the
validation set and a loss (Murphy 2012) of 0.27 and 0.33, respectively.

The Loss (Binary Cross Entropy, i.e. CE) was calculated as follows:

CE = −
C′=2

∑
i=1

tilog( f (si)) = −t1log( f (s1))− (1− t1)log(1− f (s1)) (1)

where ti and si are, respectively, the ground-truth and the raw score for each class i in C
and

f (si) =
1

1 + e−si
(2)

is the logistic sigmoid activation function which is necessary for the output to be interpreted
as a probability.

The case of interest is a binary classification problem, where C′ = 2. It is assumed that
there are two classes, C1 and C2; thus, t1 ∈ [0, 1] and f (s1) ∈ [0, 1] are the ground truth and
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the probability value for C1, and t2 = 1− t1 and f (s2) = 1− f (s1) are the ground truth
and the output score for C2, as the classes are mutually exclusive.

The values are significantly far from a random prediction in a balanced binary problem:
modeling the random predictor as a “fair coin” [41,54], where the tossing is a discrete-
time stochastic process giving a binary output, the non-informative values correspond to
accuracy of 50% and loss of 0.69.

Figure 5. Training and validation: overall accuracy and loss.

3.2. Test

To evaluate the performance of the proposed algorithm, the trained model was applied
to the test dataset to give an unbiased estimate of model skill. The test set is independent
of the training and validation datasets, but follows the same probability distribution. To
assess the quality of the predictions on new pictures, the confusion matrix (Table 3) was
constructed over the entire test set, opposing instances in a predicted class (model response)
against instances in an actual class.

Given the WR label (presence of rain) as the positive class and NR (absence of rain) as
the negative class, the numbers of True Positives (TP), False Positives (FP), True Negatives
(TN) and False Negatives (FN) were counted to calculate useful metrics.

Table 3. Confusion matrix for the test.

Reference

Positive = WR Negative = NR

Prediction Positive = WR 719 of TP 158 of FP
Negative = NR 76 of FN 637 of TN

The accuracy, with a significant p-value (equal to 2× 10−16), and the loss of entropy
calculated on the test set are, respectively, 85.28% and 0.34. The accuracy and loss are
significantly different from a random prediction and consistent with the metrics obtained
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in the training and evaluation phase. To measure the rain detection performance, several
metrics are used and compared to reference values [41,55,56], as reported in Table 4.

From the results, it is evident that the model exhibits good overall predictive reliability.
The sensitivity, >90%, is higher than the specificity, >80%. That means the test is responsive
to rainy condition detection but prone to the risk of reporting false positives. In the
application field of interest, i.e., urban flood risk management, high sensitivity is desirable:
missing cases of rainfall presence could lead to delays in early warning systems. The
detection will easily mark rainy pictures, ensuring that dangerous pluviometric forcing
is recognized. On the other hand, the classification was performed on balanced class,
although in reality a condition of absence of rain is more likely to occur. Hence, specificity
is important to avoid unnecessary alerts.

The false positive occurrence may be explained by the presence of lens flare caused
by sun-rays and artificial lighting which produces artifacts that may resemble raindrops
accumulated on the lens. Closer examination of the results reveals some ambiguity in the
visual appearance of the misclassified pictures and hence a limitation of our system: it does
not suit scenes that are also misleading for human vision.

Table 4. Model evaluation metrics.

Metric Value Test Set Reference Values

Overall accuracy (TP + TN)

(TP + FP + FN + TN)
85.28% worst = 0% best = 100%

Cross Entropy Loss −
C′=2

∑
i=1

tilog( f (si))
0.3400635 perfect ≈ 0 good < 069

bad ≥ 0.69

Sensitivity–Recall TP
TP + FN

90.44% worst = 0% best = 100%

Specificity TN
FP + TN

80.13% worst = 0% best = 100%

Precision TP
TP + FP

81.98% worst = 0% best = 100%

F1

(1 + β2)× precision× recall
(β2 × precision) + recall

=
2× precision× recall

precision + recall

0.8600 worst = 0 best = 1

Matthews correlation
coefficient MCC

TP× TN − FP× FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

0.7094 worst = −1 best = +1
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3.3. Model Deployment

To estimate the skills of the proposed model in a real-world operational setting, a
completely new set of input images was built. The first test set was obtained from the same
sources of the training and validation sets (Table 1), whereas, for the model deployment,
the source of the picture was a Reolink surveillance camera installed by TIM s.p.a. within
the “Bari—Matera 5G project” (http://www.barimatera5g.it/, accessed on 1 January 2021)
without any special setting aimed to enhance the precipitation visibility. In fact, the
webcam was formerly set for the Public Safety case using 5G network connectivity testing.
The camera frames piazza Vittorio Veneto—the main square of Matera (Italy)—and its
hypogeum (Figure 6).

Figure 6. Geolocation of the TIM surveillance camera in Matera, Italy.

The experiment test set is strongly independent of the training and validation datasets.
It contains 2360 unseen examples, 1180 instances for the WR class and 1180 for the NR class.
The resolution of the color picture was 2560 X 1920pixels (Table 1). The ground truth was
created by manually labeling the pictures that displayed precipitation streaks or raindrops
and selecting the same number of frames that displayed a clean background, with as many
lighting conditions as possible (i.e., with diverse capture time). The presence of rain was
verified with precipitation data collected both from the JAXA Global Rainfall Watch—
GSMaP Project (https://sharaku.eorc.jaxa.jp/GSMaP, accessed on 1 January 2021) and
the Centro Funzionale Decentrato Basilicata (http://www.centrofunzionalebasilicata.it/,
accessed on 1 January 2021).

The learned model was used to generate predictions on the test TIM dataset. Figure 7
shows the Receiver Operating Characteristic (ROC) curve and Youden index [57,58] cal-
culated on the output scores. The dashed grey line represents the non-informative values
(chance line) of a random classifier. The ROC curve (blue line) plotted the dependency
of true positive rate (Sensitivity) on false positive rate (it equal 1—Specificity) obtained
at various thresholds. The area under the ROC curve is 0.911 with confidence interval
95% = (0.899, 0.923), suggesting that the model predicts rainfall presence very well. Using
the Youden index point, the optimal cutoff value was set to 0.6.

Both TIM image set and binary test set share a significant outcome.
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Figure 7. The ROC curve for prediction model in the TIM surveillance camera sample.
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The confusion matrix is given in Table 5.

Table 5. Confusion matrix for the TIM dataset.

Reference

Positive = WR Negative = NR

Prediction Positive = WR 981 of TP 199 of FP
Negative = NR 152 of FN 1028 of TN

The overall accuracy, with a p-value equal to 4 × 10−14, and the loss of entropy
computed on the TIM image set are 85.13% and 0.396. The metrics values were similar
(Table 6), exhibiting a rather high predictive effectiveness [41,55,56].

Table 6. Model evaluation metrics: test and deployment.

Metric Value Test Set Value TIM Set

Overall accuracy 85.28% 85.13%
Cross Entropy Loss 0.3400635 0.3960878
Sensitivity—Recall 90.44% 83.14%
Specificity 80.13 % 87.12%
Precision 81.98% 86.58%
F1 0.8600 0.8482
Matthews correlation coefficient MCC 0.7094 0.7031

Compared to the test results, the model deployed on the TIM camera pictures discloses
lower sensitivity, ≈83%, but higher specificity, ≈87%, and precision, ≈86%. That means
that the pictures marked as relevant instances (WR) were actually relevant, so the alerts are
likely to be true. On the other hand, the higher false negative rate may underestimate the
pluviometric forcing.

Considering an optimal balance of recall and precision, F1 score is close to the ideal
value of 1 in both the test evaluation and the experiment evaluation. The model withstood
the drastic change in the datasets, as the images were completely new.

Figure 8 shows a frame taken by TIM surveillance camera in rainy condition and
a visual explanation of the CNN classification, the Gradient-weighted Class Activation
Mapping (Grad-CAM) [59]. The heatmap highlights the specific discriminative regions
within the input image that are relevant for the classifier predictions. It is interesting to
note that the parts of the image judged more rain-like (strongly activated in the Grad-CAM)
by our CNN are the portions of the scene obstructed by the raindrops accumulated on the
lens of the surveillance camera.

Figure 8. Example of a frame in rainy condition (left) and its grad-CAM (right).

4. Discussion

The results of the model test and the deployment on the real use case are encouraging
for the binary classification problem that detects the presence or the absence of precipitation.
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To assess the classification effectiveness of our study, we compare our method with
other state-of-the-art methods for rain detection from a single image [19,32,35]. Because
there is no publicly available implementation of these algorithms, the comparison was
made in terms of the performance metrics reported in the literature. The model and features
used, image source, labels for classification, overall accuracy and rain class sensitivity are
given in Table 7.

Table 7. Comparison between results of the current study and results from other studies.

Method Model and Features Used Image Source Classes Overall Accuracy Sensitivity (Rain)

Yan et al. [19]

Real AdaBoost with
histogram of gradient
amplitude, HSV color
histogram, road
information

In-vehicle vision system Sunny, Cloudy, Rainy 91.92% 90.41%

Crawled outdoor
scenes, as reported in
[32]

18.89% -

Zhang et al. [32]

Multiple kernel learning
with engineered features
(sky, shadow, rain streak,
snowflake, dark channel,
contrast, saturation)

Crawled outdoor
scenes

Sunny, Rainy,
Snowy, Haze 71.39% 67%

Chu et al. [35]

Random Forest with time,
RGB color histogram,
Gabor wavelet, intensity
histogram, local binary
pattern, cloud, haze, and
contrast features

Crawled outdoor
scenes

Sunny, Cloudy, Snowy,
Rainy, Foggy. 76.8% 68%

Proposed method CNN with pre-learned
filters

Dash-cams,
consumer cameras,
outdoor scenes from
[35], smartphone

With Rain, No Rain. 85.28% 90.44%

Surveillance camera 85.13% 83.14%

Table 7 shows that the AdaBoost-based model [19] achieves the best accuracy over all
other methods. By comparing sensitivity obtained by our model on the test set with that
in [19], we see similar values. On the other hand, the model in [19] uses engineered features
based on in-vehicle vision system (i.e., road information) for classification. As a consequence,
the model may experience abrupt degradation of accuracy for unconstrained scenarios, as
shown in the results of generic outdoor scenes classification reported in [32]. The results
on less restrictive settings reveal our new methods offers performance advantages in both
test and deployment real-word scenarios; the values of accuracy and sensitivity obtained
by our model in both cases are higher than the values obtained with the approaches by
Yan et al. [19], Zhang et al. [32], Chu et al. [35]. This result may be explained by the two
main differences between ours and the aforementioned studies. First, our method uses
pre-learned filters for feature extraction (frozen VGG16 parameters, Table 2), so it does not
require manually made feature descriptors for object detection, which are susceptible to
recall bias. Secondly, the trainable part of our network (Table 2) learns from a dataset that
exhibits large variability and includes both static and in-vehicle cameras, whereas all the
studies tend to be device-specific.

Hence, the results achieved surpass the earlier work in this area in terms of input
heterogeneity, as the model can handle images captured with both static or moving cameras
without significant accuracy loss. Our algorithm is simple, flexible, robust and leaves no
requirement for any other step.

The proposed approach allows using heterogeneous and easily producible input data:
the images can be acquired from disparate sources in different lighting conditions, without
particular requirements in terms of the shooting settings (although some parameters may
favor the visibility of the precipitation), and, since each image is classified independently,
the detection does not require any sequence or continuous shooting or videos. Once the
training phase is over, computational times are extremely reduced.
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This approach is especially useful in urban areas where video and image capture de-
vices are ubiquitous and measurement methods such as rain gauges encounter installation
difficulties or operational limitations or in contexts where there is no availability of remote
sensing data.

The result is a fairly rapid, simple and expeditious solution. As demonstrated in the
experiment on a real-world use case, it is immediately applicable at an operational level and
easily embeddable in intelligent devices. The experimental activity within the “Bari Matera
5G” project provides a promising perspective on the Smart Environmental Monitoring
using 5G connectivity. The system can be managed locally, remotely or via cloud by
programming electronic devices (such as smart cameras or IoT devices) for recording and
transmitting the rain data. The model can retrieve rainfall information by processing data
collected from different sources located in a fixed place (surveillance cameras) or moving
(smartphones, dash-cams and action-cams), contributing to the traditional monitoring
networks and forecast systems.

These finding corroborate the idea in [27] that CNN-based classification outper-
forms engineered learning representation for weather-related vision tasks due to the CNN
model’s ability to finding the nonlinear mapping and taking into account extensive factors
including low-level abstraction using pre-trained convolutional base (transfer learning).

The major limitation of the proposed approach is intrinsic to the output results: in
fact, the detection of the presence of precipitation (without a quantification) is a necessary
condition but not sufficient for the creation of a rain gauge network based on cameras.
An additional uncontrolled factor, common to all vision based methods, is the possibility
to have ambiguity in the pictures: artifacts due to dirty lenses and flare can lead to false
positives or the visual effects of precipitation may also often be inconspicuous for human
observers. Misclassification error can be compensated for by many observations. The
straightforwardness of our approach will make it easy and virtually cost-free to embed the
proposed CNN in existing outdoor vision systems to increase the spatial density of rain
observations. The rainfall detection is performed on single images the can be collected in a
very short time; therefore, very high temporal resolution is possible in principle.

The proposed transfer learning technique can also be combined with incremental
learning algorithms [60,61]. Incremental learning extends the existing model’s knowledge
without access to the original data, by continuously learning from new input data while
preserving the previously acquired knowledge. Due to this, the network has the potential
to enhance the robustness to rainfall intensity (e.g., light rainfall rates), background and
other environmental effects, as well as accommodate different use case scenarios (e.g.,
setting site-specific rainfall thresholds, detecting snow precipitation).

5. Conclusions

In this study, a DL method for detecting rainfall from single photographs taken in very
generalizable conditions with no need for parameter adjustment, photometric constraint
or image pre-processing was proposed. It can be applied to any outdoor scene within the
limits of the human visibility.

Taken together, the results suggest that using a DL method is an efficient strategy
for the CV task of gathering rainfall information using generic cameras as low-cost sen-
sors. This finding, while preliminary, can help define novel strategies for meteorological-
hydrological studies on a local scale in urban areas. Despite its exploratory nature, the
proposed approach offers a first near real-time tool based on artificial vision techniques
which can contribute to creating a support sensors network for the characterization of rain-
fall by monitoring the onset and end of rain-related events, with a parsimonious approach
in terms of economic and computational resources.

The limited operational requirements allowed the proposed model to be immediately
applicable in experiments on real use cases. Our CNN can easily exploit pre-existing de-
vices and is practical for systems that need to be implemented quickly. The experimentation
raises the possibility that the use of real rain images captured by already installed surveil-
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lance cameras can help in setting up a monitoring and warning system of the pluviometric
forcing triggering rain-related events.

This information can be used to develop targeted interventions aimed at building-up
an information infrastructure integrating low-cost sensor and crowdsourced data that suits
the future needs in terms of spatial and temporal resolution, scalability, heterogeneity,
complexity and dynamicity.

Future work concerns the development and experimentation of another CNN network
based on the proposed methodology to allow the quantitative characterization of the
precipitation. The rainfall intensity will be classified into ranges; the dataset will be
expanded by the number of instances and improved according to criteria of non-ambiguity
and availability of known rainfall intensity values; and the model will be properly re-
adapted, evaluated, calibrated and fine-tuned to meet the needs of hydro-meteorological
monitoring.
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