
water

Article

Selection of Optimum Pollution Load Reduction and Water
Quality Improvement Approaches Using Scenario Based Water
Quality Modeling in Little Akaki River, Ethiopia

Zelalem Abera Angello 1,* , Beshah M. Behailu 2 and Jens Tränckner 1

����������
�������

Citation: Angello, Z.A.; Behailu,

B.M.; Tränckner, J. Selection of

Optimum Pollution Load Reduction

and Water Quality Improvement

Approaches Using Scenario Based

Water Quality Modeling in Little

Akaki River, Ethiopia. Water 2021, 13,

584. https://doi.org/10.3390/

w13050584

Academic Editor:

Katarzyna Kowalczewska-Madura

Received: 3 February 2021

Accepted: 19 February 2021

Published: 24 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Agriculture and Environmental Sciences, University of Rostock, 18051 Rostock, Germany;
jens.traenckner@uni-rostock.de

2 Water Development Commission, Ministry of Water, Irrigation and Electricity (MoWIE),
P.O. Box 1076/13 Addis Ababa, Ethiopia; beshah.m@wdc.gov.et

* Correspondence: abera.zelalem@uni-rostock.de or zelalemabera30@yahoo.com; Tel.: +251-91-162-0811

Abstract: The collective impacts of rapid urbanization, poor pollution management practices and
insufficient sanitation infrastructure have driven the water quality deterioration in Little Akaki River
(LAR), Ethiopia. Water quality modeling using QUAL2Kw was conducted in the LAR aimed at
selecting the optimal water quality improvement and pollution load reduction approaches based
on the evaluation of five scenarios: modification of point sources (PS) load (S1), modification of
nonpoint sources (NPS) load (S2), simultaneous modification of PS and NPS load (S3), application of
local oxygenators and fish passages using cascaded rock ramps (S4), and an integrated scenario (S5).
Despite the evaluation of S1 resulting in an average load reduction of Biochemical Oxygen Demand
(BOD) (17.72%), PO4-P (37.47%), NO3-N (19.63%), the water quality objective (WQO) in LAR could
not be attained. Similarly, though significant improvement of pollution load was found by S2 and S3
evaluation, it did not secure the permissible BOD and PO4-P pollution load in the LAR. Besides, as
part of an instream measure, a scenario evaluated using the application of rock ramps (S4) resulted
in significant reduction of BOD load. All the individual scenarios were not successful and hence
an integration of scenarios (S5) was evaluated in LAR that gave a relatively higher pollutant load
reduction rate and ultimately was found a better approach to improve pollution loads in the river.
In conclusion, pollution load management and control strategy integrally incorporating the use of
source-based wastewater treatment, control of diffuse pollution sources through the application of
best management practices and the application of instream measures such as the use of cascaded rock
ramps could be a feasible approach for better river water quality management, pollution reduction,
aquatic life protection and secure sustainable development in the LAR catchment.

Keywords: QUAL2Kw; pollution reduction scenario; pollution load; Little Akaki River; WQO

1. Introduction

Urbanization is greatly impacting the river water quality of developing countries
driven by factors such as lack of proper sanitation infrastructure and urban drainage
networks, poor land use management, the knowledge gap in environmental systems, and
managerial incapability [1–3]. Nowadays, the beginnings can be seen, though slowly, of
urban river pollution becoming a core focus area due to the threats it poses for the water
environment through a wide range of physical, chemical, and biological processes [4].
Primarily, the wastewater released from various sources such as industry, household,
agricultural and urban land use has augmented the pollution load in the rivers which
heavily degrades the aquatic environment [5]. Moreover, the release of nutrients from
agricultural land to the surface water resources promotes eutrophication which ultimately
depletes the dissolved oxygen concentration [6,7]. Despite the high impact of pollution
originating from the point and nonpoint sources on urban rivers of developing countries,
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pollution management and control has remained unsuccessful mainly due to the direct
adaptation of management policies from developed worlds without customization to the
local conditions [8].

Owing to a lack of better mitigation and remediation steps as part of the management
strategy, most of the river water quality management and pollution control policies in
developing countries remain unsustainable. Researchers recommend that sustainable
urban river pollution management should incorporate practical remediation approaches.
In line with this, water quality models are gaining the advantage in predicting surface
water quality pollution management and hence are used in the decision-making process
and implementation of the mitigation measures [9]. The conventional way of using these
water quality models in pollution management is to link the upstream pollution source
with the downstream consequences. The water quality management strategies hence
involve a complex set of interdisciplinary decisions based on the changing water quality
characteristics where the determination of the complex relationship between the surface
water pollution sources and associated water qualities can best be represented by water
quality models [10]. The water quality models are also used in wider water quality
management applications such as determination of the impact of point and nonpoint
source loads on surface water quality [11,12], the determination of the fate and transport
of agricultural waste on river water quality [13], and the development of pollutant load
reduction strategies and allocation techniques [14].

To date, several water quality models have been developed to solve complex water
environmental and pollution management problems. Various researchers used different
water quality models and the integration of models to solve such water environmental
problems. Yuceer and Coscun [15] used a continuous stirred tank reactor approach to
model the water quality constituent dynamics where a good agreement was found between
the model predicted and measured values recommending the use of the approach for
further pollution management. An integrated model between water quality, hydrological
and watershed models such as River Water Quality Model No. 1 (RWQM1), SWAT, and
SWMM were evaluated on the Zenne river, Belgium where the modeling output showed
that the integrated models can effectively simulate the water quality constituents very
well [16]. Despite the development of various water quality models that have wider
applications in water environmental management, most of them remain complex, requiring
a large set of data which is the bottle-neck, particularly in developing countries with a high
hydro-meteorological and water quality data scarcity [17]. Hence, the use of a less complex
but relatively accurate water quality model would be a feasible technique for pollution
management in urban rivers. In this regard, the QUAL2Kw model is often used for water
environmental management and is suggested by many water quality modelers not only
due to its simplicity but also its adaptability to various type of catchments, affordable data
demand, and effective simulation of constituent dynamics, fate, and transport [18–21].

In Ethiopia, urbanization has largely triggered the expansion of medium and large-
scale industries. In particular, most surface water resources in the capital Addis Ababa are
polluted by waste water released from different sources. Industrial waste, which directly
discharges waste water with little to no treatment, is one of the major pollution sources.
Today, there are over 2000 industries in the city, most of them founded near rivers [22].
Wastewater from households [23] and human excreta and feces wash-outs from open
fields [24] contribute a large quantity of waste load to the Little Akaki River (LAR). Runoff
through urban drainage is discharging a significant quantity of pollutants at different
locations along the length of the river [25,26]. Urban small-scale agricultural activities
within the vicinity of the river banks contribute a significant quantity of pollutants washed
off from agricultural fields to the LAR [27]. Despite the ratification of the wastewater
management plan of Addis Ababa city in 2017 [28] and the development of the charge-per-
pollution (CPP) program in 2018 [29] which serves as an economic instrument that provides
an incentive to reduce discharges of polluting effluents from point sources, the river’s
water quality is deteriorating and hence needs a clear, working and scientifically sound
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management strategy. The objectives of this research, therefore, were to simulate pollutant
transport and dynamics using a modified stream water quality model (QUAL2Kw) in the
LAR, to develop a scenario-based water quality management strategy and ultimately select
the optimal water quality improvement and pollutant load reduction approaches in the
study area.

2. Materials and Methods
2.1. The Study Area

Addis Ababa, located in the central highlands of Ethiopia, is the country’s capital and
largest city. Due to the high rate of urbanization, the city’s solid and liquid waste generation
rate is increasing alarmingly where the rivers are serving as an “open sewer”. The city
has three major rivers: Kebena River, Big Akaki River (BAR), and LAR, all originating at
the foothills of the Entoto mountain and draining down to Aba Samuel Lake. The LAR,
one of the Awash River tributaries, flows from the northwest of the city to southernmost
Addis Ababa before joining the BAR at Aba Samuel Lake. The LAR consists of several
tributaries, heavily polluted mainly by untreated household waste including raw sewage
and industrial waste that increase the pollution load in the river. The location of large-scale
industries within the vicinity of the river that are discharging their wastewater directly to
the river with or without minimum treatment have also augmented the pollution load in
the river. Details of all the monitoring stations are presented in Figure 1.

Figure 1. The LAR water quality monitoring stations and point source locations (AA = Addis Ababa).
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2.2. Sampling and Analysis

A bimonthly water sample collection from April 2018 to March 2019 was conducted at
22 monitoring stations on LAR. All the analytical methods are shown in Table 1 and the
analysis was conducted according to [30].

Table 1. Analytical methods used for the analysis of water quality constituents.

Parameter Analytical Method Apparatus/Equipment

BOD Modified Winkler’s Method BOD Incubator
TDS TDS Probe HQ40d
COD Titrimetric COD Digester, heating block

NO2-N Spectrophotometric HACH DR-2800
PO4-P Spectrophotometric HACH DR-2800
NO3-N Spectrophotometric UV−VIS Spectrophotometer

TKN Kjeldahl Method Kjeldahl Distillation
TP Stannous Chloride Method UV−VIS Spectrophotometer

NH3-N Titrimetric Kjeldahl Distillation

2.3. The QUAL2Kw Model

Water quality models are nowadays becoming efficient in water environmental man-
agement, primarily developed to predict the fate and transport of contaminants in water
bodies [17]. They are used in many water resource applications such as environmental
impact assessment, pollution management and remediation [31], determination of nutrient
load, transport and dynamics [32], nutrient control and eutrophication [33], and waste load
allocations [34]. The QUAL2Kw is one of such models, a one dimensional, steady-state
model for water quality modeling of rivers, estuaries, and well-mixed lakes [35]. The model
simulates constituents in surface water using the advective−dispersive approach through
a mass balance approach. The model can simulate up to 16 water quality constituents in
any combination [36] including DO, BOD (fast and slow), T, pH, EC, suspended solids,
alkalinity, total inorganic carbon, TN, ammonia/ammonium, NO3-N, NO2-N, organic and
inorganic phosphorus, chlorophyll a, coliform bacteria, one nonconservative constituent
(arbitrary), and three conservative constituents [37]. In QUAL2Kw, the dissolved organic
nitrogen increases due to detritus dissolution whereas the ammonium nitrogen is gained
due to dissolved organic nitrogen hydrolysis and plant respiration and lost due to nitri-
fication and plant photosynthesis. Similarly, organic phosphorus increases due to plant
death and is lost via hydrolysis and settling whereas inorganic phosphorus increases due
to organic phosphorus hydrolysis and phytoplankton respiration. The QUAL2Kw uses
two forms of carbonaceous BOD; slowly oxidizing BOD (sBOD) and fast oxidizing BOD
(fBOD) where denitrification is modeled as a first-order reaction when low oxygen concen-
trations are limiting aerobic BOD degradation [38]. The sBOD is gained due to the detritus
dissolution which on the one hand is lost due to oxidation and hydrolysis. On the other
hand, fBOD increases hydrolysis of sBOD and is lost due to oxidation and denitrification.
Nitrification of ammonia causes an increase in nitrate nitrogen that on the other hand is
lost through denitrification and photosynthesis. The detailed water quality state variables
interaction is shown in Figure 2. The model simulates the transport of conventional water
quality constituents assuming the river as a one-dimensional channel having steady and
nonuniform flow. Whereas the flow in QUAL2Kw is assumed as steady, the water quality
constituents are calculated by diel water quality kinetics and heat budget dynamically in
which the impacts of both point and nonpoint source loads are simulated [39]. The model
has the ability to simulate the fate and transport of constituents except the conversion of
algal death to BOD [38]. The model calculation is based on a general mass balance equation
(Equation (1) that governs the simulation process [10].
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where Qi is the flow at reach i, Qab,i is the abstraction from reach i, Vi is the volume of
reach i, Wi is the external load of the constituent to reach i, Si is the source and sink of the
constituent due to reaction and transfer, Ei is bulk dispersion coefficient.

Figure 2. Schematic diagram of interacting water quality state variables in QUAL2Kw (ab: bottom algae, ap: phytoplankton,
mo: detritus, sBOD: slow CBOD, fBOD: fast CBOD, se: sediment exchange, dn: denitrification, Cr: inorganic carbon,
DO: dissolved oxygen, no: organic nitrogen, na: ammonia nitrogen, nn: nitrate nitrogen, po: organic phosphorus and pi:
inorganic phosphorus).

2.4. LAR Segmentation, Labeling, and Discretization in QUAL2Kw

The QUAL2Kw is suitable for both straight and dendritic rivers where it considers
a river without tributaries as a series of reaches [40]. The reaches are hence grouped
according to their hydraulic and hydro-geometric properties which should hold the same
characteristics [41]. In QUAL2Kw, the river reaches play an important role that in turn
are classified into several computational elements (CEs) [37]. The reach numbering in
QUAL2Kw starts with a 1 beginning from the headwater reach until it reaches the junction
with a tributary where another numbering starting with 1 from the tributary headwater.
Accordingly, the LAR was divided into 16 reaches (5 in segment 1 and 11 in segment
2) which then were divided into 48 computational elements (15 in segment 1 and 33 in
segment 2) based on their hydro-geometric similarity. The nonpoint source was assumed
to be uniformly distributed across the river stretch (Figure 3) [42].

2.5. Calibration, Validation, Sensitivity Analysis, and Performance Evaluation of QUAL2Kw

The QUAL2Kw model in LAR was run until the system parameters were properly
adjusted and a reasonable agreement between model predicted and actual measurements
was achieved. For the constituent simulation in LAR, the calculation time step was chosen
5.625 min so that the model could be simulated with the assumption that the steady-
state was maintained and instability was controlled [43]. The integral solution used in
QUAL2Kw calibration for LAR was based on Euler’s method. In LAR, the QUAL2Kw
was calibrated by adjusting and minimizing the error between the observed and model-
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predicted value [44] using a monitored water quality constituent and flow by adjusting the
parameters that controlled the pollutants and nutrient dynamics. The detritus, inorganic
suspended solids, phytoplankton, and pathogens were not simulated due to data limita-
tions and a default value of 100 mg/L was used as alkalinity as calcium carbonate. The
reaction rates, heat constants, and hydraulic parameters were used for calibration where
the rate and constants were estimated from the literature [45]. In order to assess the ability
of the calibrated model to predict water quality constituents, the model was rerun using dif-
ferent data without changing the calibrated parameters. Manual and autocalibration were
performed to closely observe the changes in the model parameters through the embedded
autocalibration genetic algorithm (GA) by setting the goodness of fit formula Equation (2).
Accordingly, the weighted mean inverse Root Mean Square Error (RMSE) method was
chosen as a method of fitness criteria. The individual parameters in the modeling were
given weight according to the impact of the parameter on the LAR. The GA control for
autocalibration recommended by the QUAL2Kw, PIKAIA, was used by adjusting to the
local condition. The autocalibration uses GA to find the best fit between a set of paired
parameters by comparing the model predicted and measured water quality constituents.

Figure 3. Segmentation (a) and labeling (b) of LAR for QUAL2Kw modeling (WWTPE = wastewater treatment plant
effluent).
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where: Oi,j = observed value, Pi,j = predicted value, m = number of pairs of predicted and
observed values, Wi = weighting factor, q = the number of variables used in the reciprocal
of weighted normalized RMSE

The sensitivity analysis was performed in the LAR by applying a ±50% variation on
calibrated parameters and analyzing the disturbance and ultimately selecting the most
influential parameters. The most influential parameters hence were used as a means to
develop a pollution reduction scenario. During the calibration of water quality models,
although there are many statistical measures to evaluate the model performance, the perfor-
mance indicators such as percentage bias or error (PBIAS), coefficient of determination (R2),
and Nash−Sutcliff (NSE) are often used. According to Bui et al. (2019), if |PBAIS| < 25%
the model simulation is considered “very good”, “good” if 25% ≤ |PBAIS| < 40%, “satis-
factory” if 40% ≤ |PBAIS| < 70%, and “unsatisfactory” if |PBAIS| ≥ 70%. Different water
quality modelers use different performance evaluation approaches but the recommended
methods are |PBIAS| < 25% [46], R2 > 0.5 [11], and NSE > 0.5 [47]. However, it is often
challenging to find all three criteria satisfying at the same time. Bui et al. [48] recommended
the use of PBIAS over any other evaluation methods in water quality modeling. In the LAR,
however, PBAIS (Equation (3) and R2 (Equation (4) were used interchangeably to evaluate
the QUAL2Kw model performance and the acceptable ranges are shown in Table 2.

PBIAS =
∑n

i=1 Oi − Pi

∑n
i=1 Oi

∗100 (3)

R2 =

 ∑n
i=1
(
Oi − O

)(
Pi − P

)√
∑n

i=1
(
Oi − O

)2
√

∑n
i=1
(
Pi − P

)2

2

(4)

where O and P are observed and predicted values, respectively.

Table 2. General performance ratings of the recommended statistics for a monthly time step.

Measure
Output

Response
Performance Rating

Very Good Good Satisfactory Unsatisfactory Reference

R2 Nutrient >0.70 0.60 < R2 ≤ 0.70 0.30 < R2 ≤ 0.60 ≤0.30
[46]

Flow >0.80 0.70 ≤ R2 ≤ 0.80 0.50 < R2 < 0.70 ≤0.50

PBIAS
Nutrient ≤±15 ±15 < PBIAS < ±20 ±20 ≤ PBIAS < ±30 ≥±30

[47]Flow ≤±5 ±5 < PBIAS < ±10 ±10 ≤ PBIAS ≤ ±15 >±15

2.6. Input Data and Parameter Estimation for QUAL2Kw in LAR

Data play a key role in the accurate determination of pollutant fate and transport
in surface water quality simulation [36]. In the LAR, however, certain parameters were
not available and hence the determination depends on the estimation of the values from
the literature and other secondary data sources. Accordingly, meteorological data were
derived from five weather stations located near the study area and analyzed as per the
requirement of the QUAL2Kw model. Hourly wind speed and air temperature data from
Bole Observatory station were used for modeling since finer data for other stations nearby
were missing. The dew temperature for the study area was calculated using the tool
dew01 that uses daily maximum and minimum temperatures and daily average humidity
and was calculated by a monthly time step whereas other parameters such as shade and
cloud cover were assumed based on the local conditions. In the absence of available
data, the sediment oxygen demand (SOD) was estimated from the literature. Previous
studies in the study area by Natnael T. Hamda [49] showed that the SOD in the LAR
ranged from 5–10 g/m2/d, varying with the depth of the river, and hence in the LAR,
SOD was assumed to range from 2–10 g/m2/d during calibration. The sediment thermal
conductivity and diffusivity were assumed as 1.82 W/m/◦C and 0.048 cm2/s, respectively.
All other parameters were defaults taken from Chapra and Pelletier [50] and rates and
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constants were adopted from USEPA [45]. Due to the scarcity of monitored data, the value
of Manning’s roughness coefficient was based on the SWAT calibration result which also
agreed with the previous literature in the study area ranging from 0.02−0.045 that varied
from upstream to downstream. The oxygen reaeration model selected was internal where
the result highly depended on the hydraulic parameters. All other rate parameters and
constants such as the reaction rate, decay rate, reaeration rate, death rate, settling velocity,
nitrification and denitrification rate, oxidation rate, hydrolysis rate, and temperature
correction were all calibrated based on the literature and user manual [37].

2.7. Development and Evaluation of Pollution Reduction Scenarios in QUAL2Kw

Different studies reveal that the use of pollution reduction scenarios integrated with
water quality models could help in the development of better water quality manage-
ment programs and assist the decision-making process [21,40,43,51]. The conventional
approach of using this mathematical model in pollution management is usually based on
the principle of linking the upstream pollution sources with the downstream responses
(consequences). However, most water pollution management programs in developing
countries fail due to lack of clear policy and strategy where widespread evidence of water
environment destruction associated with the uncontrolled human and industrial waste
discharge prevails [52]. In this regard, it is often imperative that reduction of pollution
load emitted from the point and diffuse sources to the rivers are prioritized during water
quality management. However, despite the availability of environmental laws, waste
release control, mainly from industry and urban land use is increasing in many developing
countries hindering the implementation of sustainable river water quality management
and pollution control. Strong environmental law that limits the discharge of industrial
wastewater, such as through the use of advanced wastewater treatment plants could greatly
reduce the pollution load released to the rivers. Equally important but neglected is the
role of the diffuse source load where a significant pollution load is contributed by var-
ious land uses and remains the major pollution source in developing countries [53,54].
Reduction of the pollution load from diffuse sources by implementing best management
practices and catchment protection such as the creation of a riverside buffer zone would
be a better option for ecological restoration [55]. In-stream measures such as the use of
cascaded rock ramps or, if integrated with a weir, often named ramped weirs [56], can
support the self-cleaning efficiency and improve the ambient water quality by creating
water head that initiates the supply of oxygen. Besides, the structures can also restore
natural ecology and create a safe environment for aquatic organisms such as fish by al-
lowing free passage between upstream and downstream even during critical times [57].
The instream measures would not be sufficient, however, without reducing the incoming
loads from pollution sources and sustainable water quality management and pollution
control could not be maintained. Ecological restoration of a polluted water environment
therefore needs integrated management of all the pollution sources and instream measures.
A successful river water ecological restoration program hence is based on the mitigation
and remediation approaches incorporating all the source-based pollution management
options and instream measures. However, most water quality management programs
in developing countries are not successful due to inappropriate, poorly articulated, and
narrowly focused mitigation measures. The water quality remediation techniques need to
be incorporated as part of the pollution management programs which involve assessing
the relative significance of available point and nonpoint sources, determining the specific
remediation objectives, and assessing various management options in cost-benefit terms
for pollution source reduction [58].

In the LAR, five hypothetical scenarios were evaluated for the development of pol-
lution control and management strategy and to ultimately select the optimal pollution
reduction scenario or a combination of scenarios. The scenarios were evaluated on selected
and most common pollutants identified by the respective government office of Ethiopia,
based on factors such as the pollutant’s toxicity, the threats they pose to water bodies and
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most importantly the cost of measuring the concentrations and volumes accurately [29].
Hence, the scenarios were evaluated based on the modification of organic pollutant (BOD),
and nutrient (NO3-N and PO4-P) load from the point and nonpoint sources. Besides,
instream measures, such as a cascaded rock ramp making a head difference of 2 m were
evaluated as part of the pollution reduction and ecological restoration approach. Once all
the scenarios were evaluated individually and integrally, an optimum scenario that best
satisfied the water quality objective (WQO) for the parameters was selected and the best
combination of the individual constituent reduction rates was determined based on an
iterative and trial and error calibration on QUAL2Kw. Since it is difficult to fully meet the
standard limits for the constituents in developing countries like Ethiopia, a value close
to the permissible limits was used as a WQO. Accordingly, the WQOs for the parameters
BOD (10 mg/L), PO4-P (1 mg/L), and NO3-N (50 mg/L) were determined in QUAL2Kw
until the simulated constituents load fell under the standard guideline (WQO).

2.7.1. Scenario 1: Modification of Point Sources Load

The first scenario (S1) was developed in consideration that nearly all of the point
sources in the study area have no treatment plants [26,59]. Accordingly, the scenario
evaluation was based on the average removal rate of pollutants in a wastewater treatment
plant that put the LAR water quality within the WQO. Hence, the scenario applied for
the three selected parameters (BOD, PO4-P, NO3-N) was based on the average wastewater
treatment plant removal efficiency. Different kinds of literature found different pollutant
removal efficiencies in wastewater treatment plants. For example, a horizontal surface
flow constructed wetland efficiency tested in a brewery factory in Addis Ababa, Ethiopia,
has resulted in more than 87% BOD removal rate [60]. Similarly, BOD removal using an
activated sludge plant in South Africa was found to have an efficiency of 90–95% [61]
whereas the BOD removal rate using activated carbon on palm waste was found to have
more than 92%. On the other hand, the study performed on the dairy industry in Ethiopia
using horizontal subsurface flow constructed wetland had a BOD removal efficiency of
65.2 to 84.2% [62] whereas a slaughterhouse BOD removal showed 91.6% efficiency [63].
Similarly, the removal efficiency of treatment plants for NO3-N using chemical treatment
may range from 10% to 98% based on the type of chemical used [64], whereas the integrated
biological-chemical treatment of PO4-P was found to have an efficiency of 60–70% [65].
Studies in Ethiopia showed that the nutrient removal rate was lower than the organic
pollutant removal rate [63]. In general, the studies revealed the BOD removal rate ranged
from 65% to 95% and the nutrient removal rate ranged from 10% to 98%. Hence scenario 1
was evaluated using an assumed average removal rate of BOD (70%), NO3-N (50%), and
PO4-P (50%) and was assigned as S1 (0.7BOD + 0.5NO3-N + 0.5PO4-P) to represent their
respective removal rates in a treatment plant.

2.7.2. Scenario 2: Modification of Nonpoint Source Load

The nonpoint source loads are the dominant loads in the LAR catchment that con-
tribute the highest pollution load to the river [66] and the proportion is seen even more
than 69% in Korea [67]. For effective management of water quality and pollution con-
trol in the river, the determination of nonpoint source load is necessary [68]. Hence, the
second scenario (S2) evaluation was based on the modification of nonpoint source load.
Many studies suggest varying removal efficiencies for BOD, PO4-P, and NO3-N using best
management practices. Wang et. al. [55] studied the nitrogen and phosphorus removal
efficiency of buffer strips and found a reduction rate of 12.12% to 70.54% and 14.38% to
73.3%, respectively. Similarly, the integration of constructed wetlands, retention ponds,
grassed waterways, and buffer strips applied on Wuliangsuhai watershed, China, for the
same parameters showed the reduction rates of nitrogen and phosphorus were found to be
40–80% and 50–90%, respectively [69]. On the other hand, the use of an infiltration trench
was found to have a removal efficiency of BOD (91.1%), nitrogen (87.1%), and phosphorus
(91.2%) [67]. Hence in consideration of the best management practices’ adaptability to the
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local conditions, the S2 was evaluated using an assumed average nonpoint sources load
reduction of BOD (80%), NO3-N (60%), and PO4-P (60%). The scenario was designated as
S2 (0.8BOD + 0.6NO3-N + 0.6PO4-P).

2.7.3. Scenario 3: Simultaneous Modification of Point Source and Nonpoint Sources Load
(S1 + S2)

In a country where both point and nonpoint sources, individually and collectively,
significantly affect the water environment, a sufficient change in the water quality and
the development of a better management system due to the modification of one of the
pollution sources is highly unlikely. For that reason, S3 combines the measures of S1 and
S2 simultaneously.

2.7.4. Scenario 4: Application of Local Oxygenators—Instream Measures

For effective water quality management and ecological restoration, source-based
pollution control should be supported by instream measures providing ecological niches,
improved physical aeration, ecological passability, etc. For example, the application of
local oxygenation techniques through the use of structures such as cascaded rock ramps
at critical pollution locations could significantly reduce the pollution load in a river and
allow free movement of aquatic organisms such as fish [70]. In principle, the flow of
polluted water over such structures creates head and initiates oxygenation and hence
reduces the pollutant load in a river and the amount of oxygen to be added to the river
depends on the height and type of the structure to be applied [50]. Even though priority
should better be given to the reduction of emissions from the point and nonpoint sources,
instream measures, such as the application of cascaded rock ramps create not only a smooth
transition of aquatic life between upstream and downstream but also bring substantial
benefits to the ecology of the catchment [71]. It is also one of the widely used approaches
for ecological restoration nowadays. Scenario 4 (S4) was hence based on the application
of cascaded rock ramps creating a total head difference of 2 m and width varying with
the width of the LAR with a gentle slope for the free passage of fish and other aquatic
organisms at selected critical pollution locations which could also enhance oxygenation
in the river. In contrast to S5 (see below) S4 is applied solely, i.e., without source-based
pollution control.

2.7.5. Scenario 5: Integrated Scenario

Scenario 5 (S5) is the combination of all scenarios (integrated scenarios). All hypothet-
ical scenarios were individually and integrally evaluated and the optimum combination
was selected for the LAR. The S5 was hence based on the simultaneous evaluation of
the source-based modifications and the instream measures. Finally, the selection of the
optimum pollution reduction approach and the reduction rate was based on the iterative
simulation in the QUAL2Kw.

3. Results and Discussion
3.1. Point and Nonpoint Source Loads in LAR

The point and nonpoint source pollutant load is one of the major inputs of the
QUAL2Kw. In the LAR, eleven point sources were used including highly polluted tribu-
taries. The Kality wastewater treatment plant effluent is one that contributes a significant
quantity of pollution load into the LAR. Similarly, highly polluted tributaries of the river
also carry a large quantity of pollutant load to the LAR, most of them carrying high do-
mestic and industrial wastewater. On the other hand, the nonpoint source load used in
QUAL2Kw was estimated by integrating chemical mass balance (CMB) and watershed
model, PLOAD, based on the export coefficient of pollutants, and the detailed approach
was summarized in the previous work of the authors [66]. The summary of point and
nonpoint source load in the study area is shown in Table 3.
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Table 3. Summary of annual point and nonpoint source load for selected constituents in LAR *.

Point n and Nonpoint Source Load for Selected Constituents in LAR, t/yr

P † R ‡ TDS BOD COD PO4-P TN NO3-N

T2 M1
80.76

(26.52)
27.82
(8.32)

189.96
(37.73) 0.72 (0.31) 1.77 (2.48)

0.102
(0.02)

T3 M2
6.56

(89.75)
132.09
(59.89)

62.43
(185.74) 0.15 (1.39)

5.39
(14.74)

0.57
(0.013)

A M3
162.2

(33.76)
269.68
(6.39)

482.88
(13.69) 0.43 (0.45)

10.22
(0.58)

1.35
(0.122)

T4 M4
54.05

(178.36)
644.27
(98.28)

14.31
(189.45) 0.24 (1.18)

11.23
(10.18)

4.06
(0.056)

K M5
36.8

(306.68)
51.9

(105.96)
585.63
(821.2) 1.99 (3.34) 15.91 (5.3)

0.083
(0.74)

T6 M9
581.9

(3185.59)
1540.12

(1005.59)
5319.12
(2867.5)

12.43
(26.2)

157.24
(342.6)

67.17
(1.39)

T5 M10
910.12

(358.87)
792.22
(98.13)

1119.37
(341.95) 13.92 (4)

674.79
(22.07)

33.3
(0.115)

W M11
558.85
(49.42)

581.5
(3.48)

1367.92
(60.74) 7.46 (0.62)

97.02
(7.076)

34.82
(0.74)

B M12
730.78

(103.46)
1504.8
(14.53)

2170.24
(27.32)

23.63
(1.77)

30.46
(7.617)

6.53
(1.912)

M M13
1916.16
(440.96)

1511.68
(217.12)

308.91
(622.17)

23.63
(8.14)

35.45
(147.26)

6.79
(1.005)

M8 M14
389.71

(5874.3)
2664.75

(1052.19)
2551.43

(11,661.7) 7.72 (15.5)
76.82

(223.04)
13.45

(16.33)
T1 (42.69) (19.99) (82.62) (0.58) (5.27) (0.023)

† Point source monitoring stations where A represents (AWF), K represents (AA_Kerawoch), W represents
(W_TAN), B is for (B_TAN) and M is for (AA_WWTPE) on Figure 1; ‡ Catchment outlet which represents the river
segment (reach) between two nearby monitoring stations for nonpoint source load estimation; n Point source
loads (values in the bracket, italics); * Summarized from previous work of the authors, Angello et al. [66].

3.2. Calibration and Validation of QUAL2Kw in LAR

The QUAL2Kw model performance during simulation of water quality in LAR varies
with constituents. The spatial assessment of DO in the LAR has revealed deterioration from
upstream to downstream as reported by Angello et.al. [23] and was better simulated by
QUAL2Kw (Figure 4c). The calibration result in the river showed that the water quality did
not meet the minimum requirement of DO concentration of 4 mg/L in the river. During
calibration, the DO dropped sharply after monitoring station M2 (after 4.98 km) due to the
release of highly polluted tributary waste near Mesalemya that collects domestic waste,
including raw sewage from Mercato area, the largest market place and densely populated
urban center in the country with no wastewater collection and treatment facility. Besides,
the middle segment of the river has shown high DO deterioration during calibration mainly
attributed to a high presence of point and nonpoint source loads predominantly from urban
land uses. The DO sag was noticeable in this segment of the LAR and had concentrations
<1 mg/L due to the release of industrial waste from an abattoir, soft drinks, wine, and
tannery factories. The DO started to recover near 25.5 km, though insignificantly, due to the
reduced impact of point sources and less human interference due to dispersed settlement.
Moreover, the consumption of easily degradable organic waste contributed to less con-
sumption of oxygen and hence leads to the DO recovery. The coefficient of determination
(R2) between model-simulated and measured DO in LAR of 0.99 and |PBAIS| of 0.57%
during calibration and 0.98 and 11.8% during validation has revealed that the model is
good enough to interpret the DO dynamics in the river.
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Figure 4. Simulation of QUAL2kw for selected water-quality constituents in LAR (calibration): (a) pH, (b) Electrical
Conductivity (EC) (µs/cm), (c) Dissolved Oxygen (DO) (mg/l), (d) Carbonaceous Biochemical Oxygen Demand (CBOD)
(mg/L), (e) Phosphate (PO4-P), (f) Temperature (◦C).
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The QUAL2Kw simulation for BOD during calibration (Figure 4d) showed that the
model could not sufficiently simulate the constituent dynamics near monitoring station
M3 (7.35 km) where the station was characterized by frequent constituent chemical vari-
abilities observed during field monitoring and analysis. This deviation was partly due to
the noninclusion of a small but highly polluted tributary upstream of the station. More-
over, underestimation of the pollution load of the Mesalemya stream that contributes high
pollution load to the LAR could also be a contributing factor for the deviation of the BOD
at the monitoring station. This deviation of BOD simulation was more pronounced at the
upstream part of the middle segment of the LAR (near Lideta) and can be explained by the
presence of multisource pollutants, including an unrecognized pollution source in the area
which is dominated by informal settlements with no sanitation infrastructure. BOD often
undergoes a complex chemical process in the river and attaining a good simulation result
can be challenging. The |PBAIS| of BOD during the model calibration was 13.2% and
9.4% during validation which is acceptable for developing countries with high hydromete-
orological and water quality data limitations [34]. Beyond the M3 monitoring station, the
model simulation for BOD was quite good due to the correct inclusion and assignment of
the available pollution sources. Mainly due to the improved self-purification efficiency of
the LAR, the BOD showed significant reduction far downstream, which was associated
with oxygen recovery. Despite many limitations, the model gave quite a good result to
interpret the water quality for further decision making in the study area.

Other parameters such as water temperature, EC and pH were all well simulated
by QUAL2Kw in LAR both during calibration and validation with a |PBIAS| (R2) of
3.2% (0.51), 5.1% (0.90) and 0.33% (0.62) during calibration and 1.3% (0.63), 10.31% (0.54)
and 0.32% (0.56) during validation, respectively. Monitoring station M2 to M3 has shown
an observable deviation between the measured and simulated for some water quality
constituents indicating the presence of unrecognized or missed pollution sources in the
area. The QUAL2Kw did not sufficiently simulate the water temperature near station M2
(1.33 km), upstream of which the tributary carrying wastewater from the Ethio-marble
factory joins the river and the segment between 18.3 km (M10) and 24.1 km (M11). These
middle segment areas are characterized by the presence of large-scale industry, such
as a tannery factory, from which the release of wastewater at the unrecognized place
could be contributing. The model simulated the water temperature quite well on most
of the monitoring stations with an overall |PBAIS| of 3.2% and 1.3% during calibration
and validation, respectively. Similarly, the model simulation for EC showed deviation
near monitoring stations M3 and M5 where the QUAL2Kw underestimated EC at both
stations. The pH at monitoring station M3 had deviated from the measured value upstream
which was the release point of wastewater treatment plant effluent from a Coca Cola soft
drinks factory and the highly polluted Mesalemya tributary joins the river upstream of the
monitoring station. The spatial PO4-P variation in the study area showed some irregularity
across the monitoring stations and was relatively better represented by the model. Far
upstream and downstream of the river segment showed high PO4-P deviation where the
areas were characterized by small scale urban agriculture. In general, the QUAL2Kw model
simulated the water quality constituents with an R2 ranging from 0.51 to 0.99 (Figure 4a–f)
which could be enough to interpret the model output for the development of water quality
management programs and pollution control in LAR.

In spite of the marked difference between the measured and model-predicted data at
some monitoring stations, the model calibration (Figure 4) and validation (Figure 5) results
are acceptable for developing countries with high hydrometeorological and water quality
data limitations. The model result can be further interpreted for preliminary water quality
management and pollution control program development.
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Figure 5. Simulation of QUAL2kw for selected water quality constituents in LAR (validation): (a) pH, (b) Electrical
Conductivity (EC) (µs/cm), (c) Dissolved Oxygen (DO) (mg/L), (d) Carbonaceous Biochemical Oxygen Demand (CBOD)
(mg/L), (e) Phosphate (PO4-P), (f) Temperature (◦C).

3.3. Sensitivity Analysis

The sensitivity analysis conducted on QUAL2Kw in LAR (Table 4) was performed
varying the parameters by ±50%. The sensitivity analysis result revealed that five parame-
ters were identified as highly influential. Among the selected parameters and rates, the
point source flow and Manning’s roughness coefficient highly influence the DO and BOD
concentration. A 50% reduction in point source flow has resulted in nearly 47% disturbance
in DO concentration whereas augmentation of the same amount in the flow of the point
source has improved the DO concentration by 18.9% (Table 4). The high sensitivity of point
source flow on the DO concentration was also reported by Raj et.al. [10] on Bagmati River,
Nepal. Similarly, the Manning’s roughness coefficient has a vital contribution that plays
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a significant role which can disturb nearly 50% of the DO concentration in LAR, where
a similar finding was reported by Oliveira et.al. [9] on Cértima River, Portugal. On the
other hand, slow BOD hydrolysis rate, sediment denitrification transfer coefficient, and
inorganic phosphorus settling velocity also play critical roles that impact the BOD, nitrate,
and phosphate concentration in the LAR, respectively.

Table 4. Sensitivity analysis results for selected parameters in LAR.

Parameter Variation (%)
Disturbance on the Parameter (%) ‡

DO BOD PO4-P NO3-N

Point source flow † +50 18.87 6.31 10.00 5.86
−50 46.93 14.84 11.80 3.84

Headwater Flow † +50 3.85 3.78 0.37 1.34
−50 3.56 5.22 0.01 1.92

Manning’s Roughness Coefficient † +50 41.59 19.50 1.25 4.33
−50 49.96 19.08 2.72 11.14

Slow BOD hydrolysis † +50 1.12 20.01 0.09 0.037
−50 0.90 35.26 0.14 0.32

Slow BOD oxidation rate
+50 0.68 1.12 0.36 0.27
−50 5.90 1.20 0.42 0.28

Organic nitrogen hydrolysis rate +50 1.17 0.02 0.16 6.74
−50 4.82 0.05 0.00 5.95

Organic nitrogen settling velocity +50 1.09 0.01 0.05 6.41
−50 6.79 0.06 0.06 5.71

Ammonium nitrification rate
+50 2.15 0.01 0.12 0.19
−50 1.12 0.01 0.07 0.41

Sediment denitrification transfer coefficient † +50 0.32 0.01 0.17 19.73
−50 1.45 0.01 0.11 35.95

Organic phosphorus hydrolysis +50 0.01 0.00 0.03 0.019
−50 0.00 0.00 0.04 0.008

Inorganic phosphorus settling velocity † +50 1.26 0.01 11.78 0.22
−50 0.26 0.00 17.36 0.37

† Most influential parameters; ‡ percentage disturbance is in the absolute value of the number.

3.4. Scenario Evaluation and Selection of Optimum Pollution load Reduction Approach

In the first scenario (S1), despite the reduction of point source loads of BOD, phosphate,
and nitrate, by a factor of 0.7, 0.5, and 0.5, respectively, it did not meet the required BOD
and PO4-P concentration, but the NO3-N concentration was in the recommended range in
LAR set by Ethiopian environmental standards for aquatic life [72]. Although the reduction
of BOD load was observed in the downstream segment of the LAR, no noticeable change
was seen between monitoring stations M1 to M3 (downstream distance 0.00 km to 4.06 km)
and an overall average improvement of 17.7% was found in the river (Figure 6a). Although
the modification of the point source constituent load (S1) has brought an average reduction
of 17.7% in the overall BOD load in LAR, the minimum requirement of WQO was not met
at all monitoring stations. On the other hand, the PO4-P load showed an average reduction
of 37.5% where the change was pronounced in the middle and downstream segments (after
5 km) relative to the upstream segments of the river. The modification of the point source
load has significantly changed the PO4-P load in the river but slightly deviated from the
maximum permissible value in the river. In general, despite a visible change in the overall
reduction of the pollution load in the LAR, the scenario could not satisfy the permissible
WQO in the river.
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Figure 6. Evaluation of S1, S2 and S3 for BOD (a–c) and NO3-N (d) relative to the base scenario (S0).

Though it is difficult to achieve the WQO due to the heavy pollution in the LAR,
the S2 was evaluated based on the modification of BOD, PO4-P, and NO3-N loads from
diffuse sources. Accordingly, the response of the LAR for the S2 revealed that though
the BOD load was significantly reduced, the minimum requirement in the river was not
satisfied (Figure 6b). Relative to the S1, the S2 was found effective in reducing the BOD,
PO4-P, and NO3-N load in the LAR. This is strong indication that the nonpoint source in
the study area is the dominant pollution source for the LAR water quality deterioration.
It also signals intensive land use management and best management practices should
be prioritized for effective water quality management by controlling the diffuse source
loads [73]. The average reduction rate of each constituent due to the modification of the
nonpoint source load was found to be 58.7%, 51.06%, and 30.9%, for BOD, NO3-N, and
PO4-P, respectively. From the reduction rate of constituents, it can easily be seen that the
role of nonpoint sources for water quality management and pollution control is significant.
Despite a significant reduction of the pollution load, the S2 evaluation showed a reduction
rate of the nonpoint sources BOD, PO4-P, and NO3-N load by factors of 0.8, 0.6, and 0.6, it
was not enough to meet the WQO in LAR.

The simultaneous modifications of point and nonpoint source load (S3) have highly
reduced the organic waste load (BOD) by 76.4% where significant change was seen across
the whole stretch of the LAR (Figure 6c). Though the minimum requirement of BOD
load in the river was not met, the reduction was significantly high. Moreover, the NO3-
N and PO4-P (Figure 7a) pollution load were more highly improved than the previous
individual scenarios (S1 and S2), which ultimately dropped the PO4-P slightly near to the
WQO. Significant PO4-P (49.3%) and NO3-N (54.1%) loads were reduced at the middle and
downstream segments of the river where the area is characterized by urban land use and
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small-scale urban agricultural setup. Moreover, a high nonpoint source load was observed
in the area and hence modification on the diffuse source load could be contributing to the
high change in the pollutant load. The S3 evaluation results also reveal that source-based
pollution management is vital for better water quality management and pollution control
in the river.

Figure 7. Evaluation of S3, S4, and S5 for BOD (a–c) and PO4-P (d) relative to the base scenario (S0).

Hydraulic structures such as cascaded rock ramps and weirs are used as local oxygen
suppliers and used to manage the pollution load in a stream when placed at critical
pollution locations [74]. However, weirs do not allow the free passage of aquatic organisms
like fish. In the LAR, a cascaded rock ramp which can create a total head of 2 m and
gentle slope was evaluated at five critical pollution locations (6.78, 11.43, 13.57, 17.05,
22.59 km). The BOD reduction due to the rock ramp application showed that there was
a high improvement with an average 51.51% reduction relative to the baseload, despite
some deviation from the standard values. From Figure 7b, it can be seen that the BOD load
upstream of the structures had a surge, though reduced relative to the base value, due to
the head created upstream of the structures that increased the water depth and reduced
aeration, hence raising BOD. The implementation of rock ramps on the LAR has revealed
that there are still other critical pollution locations that need further improvement. Such
instream measures are often applied for initiating the self-cleansing efficiency of the river
thereby allowing the supply of atmospheric oxygen.

From the previous scenario evaluations on LAR, it is evident that none of the individ-
ual scenarios have fully met the required environmental quality standards (with respect
to organic and nutrient pollutants) though they were quite effective in overall pollution
load reduction. To satisfy the basic aquatic life water quality requirements, there was a
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need for the integration of scenarios and hence the scenarios integrally made up relatively
good pollution reduction approaches in LAR with an overall reduction rate of BOD (87.8%),
NO3-N (55.6%), and PO4-P (53.7%). However, even the integrated scenarios applied to
the LAR could not satisfy the minimum requirements of the WQOs with the specified
reduction rates from the point and nonpoint sources (Figure 7d). The S5 evaluation also
showed that the scenario was relatively more effective in improving the organic waste
pollution load (such as BOD) than the nutrient (such as PO4-P and NO3-N) load. Relative
to other evaluated scenarios, the integrated approach was found very effective in reducing
the organic pollutant and nutrient loads in the river. Table 5 summarizes all scenarios and
the average improvement rate in percent.

Table 5. Average percentage constituent improvement for various hypothetical pollution reduction
scenarios in LAR.

Scenario Description
Average Percentage Improvement

BOD PO4-P NO3-N

S1 Modification of point source load 17.72 37.47 19.63
S2 Modification of diffuse source load 58.69 30.96 51.07

S3 Simultaneous modification of point and
diffuse load 76.41 49.28 54.15

S4 Application of local oxygenation
techniques (cascaded rock ramp) 51.51 5.80 10.90

S5 Integrated scenarios (S1 + S2 + S3 + S4) 87.78 53.72 55.6

3.5. Optimum Pollution Load Reduction Approach and Rate

River pollution load is highly affected by the emission rate from the point and nonpoint
sources and hence the determination of the optimum load (water environmental capacity)
in the river was based relative to the standard guidelines. Based on the evaluation of the
individual scenarios, the source-based (point and nonpoint) scenarios could not bring
all the constituents to the intended guideline standards in the LAR. However, it is often
difficult to meet these guidelines specifically in developing countries due to the financial
constraints, poor pollution management system, and lack of sanitation infrastructure. The
optimum pollution reduction rate in the LAR was evaluated iteratively with trial and error
using QUAL2Kw until the load in the river came under the WQO. Accordingly, none of the
iterations conducted based on the modification of point source load (up to 100%) was found
to be effective in meeting the intended WQO in LAR for BOD and PO4-P on the entire
river section. On the other hand, the NO3-N load was within the WQO with minimum
modification of the point source pollution load. Similarly, the iterative modification on
the nonpoint source load on QUAL2Kw revealed that a reduction rate of nonpoint source
load of BOD (0.8), PO4-P (0.6), and NO3-N (0.6) brought the NO3-N load to the WQO
but could not guarantee the PO4-P and BOD load in LAR. From the evaluation of the
scenarios, we can see that the point and the nonpoint sources could not individually satisfy
the permissible pollution load in the LAR for BOD and PO4-P and it requires an integrated
point and nonpoint sources pollution modification along with the application of cascaded
rock ramps which ultimately have an economic implication. Accordingly, to meet the WQO
in the LAR, at least an average removal rate of 85%, 80%, and 76% from each considered
point source and 92%, 83%, and 83% from all contributing nonpoint source loads for BOD,
PO4-P, and NO3-N, respectively, and cascaded rock ramps creating head differences of 2 m
with a gentle slope at critical pollution zones are necessary.

4. Conclusions

Urban river water quality management in countries like Ethiopia with a high scarcity
of monitored water quality and hydrologic data is very challenging and needs an integrated
and coordinated approach. In this study, a modified water quality model, QUAL2Kw, was
evaluated in LAR to select the optimum pollution load reduction approach and rate using
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five hypothetical scenarios. The simulation of the QUAL2Kw for flow and constituents has
shown that the model is sufficient for the interpretation of water quality in the river. The
QUAL2Kw simulated the water quality constituents with relatively good accuracy having
an R2 ranging from 0.51 to 0.99 and |PBAIS| from 0.33% to 13.2%. Hence, the model
is applicable to assess the effect of various pollution controls and supporting instream
measures on key water quality parameters. The hypothetical scenarios were evaluated
relative to the base scenario (S0). None of the individual source-based scenarios and
instream measures fully satisfied the minimum requirement for the pollution load-carrying
capacity of the LAR, though a significant reduction of pollution load was found in the river.
We generally believe that this study has laid the foundations for the future development
of a water quality management strategy and initiation of best management practices in
the study area. Besides, addressing the water quality problems in LAR is deemed crucial
to safeguard the existence of aquatic life and protection of the ecosystem of the basin.
However, achieving well-defined pollution control and water quality management requires
collecting multispatial and temporal data at a higher resolution. The following conclusions
are drawn from the finding.

• The water quality model, QUAL2Kw, is a quite effective tool for pollution management
of urban rivers of specifically developing countries with high hydro-meteorological
and water quality data scarcity. The output can be effectively interpreted for pre-
liminary water quality management and pollution control programs. Moreover, the
model is capable of providing decision-making support to design, execute and manage
projects for river improvement in the study area.

• The QUAL2Kw model-based scenario evaluation revealed that the impact of nonpoint
sources pollution load on the LAR was much higher than the point source pollution
load. An integrated approach on point and nonpoint source pollution control is highly
recommended for sustainable water quality management in the study area.

• Despite the rather ambitious source-based pollution load reduction scenarios applied
in this study, the intended goal of reducing the pollutants load in the LAR was still
not achieved. Hence additional pollution control mechanisms are required for better
water quality and pollution management in the catchment.

• Combining pollution reduction with instream measures to improve reaeration can
have clear synergistic effects. Since a fast dramatic pollution reduction is hardly
achievable in developing and emerging countries, those integrative approaches are
cost-efficient mitigation options.

In conclusion, the scenarios evaluated on LAR were hypothetical and can be applied
for the development of a river pollution management program and decision-making
process. For a targeted improvement of the ambient water quality, the model can be used
to iteratively develop and allocate a set of cost-efficient measures.
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