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 Abstract: Accurate forecasting of hourly water demand is essential for effective and sustainable 
operation, and the cost-effective management of water distribution networks. Unlike monthly or 
yearly water demand, hourly water demand has more fluctuations and is easily affected by short-
term abnormal events. An effective preprocessing method is needed to capture the hourly water 
demand patterns and eliminate the interference of abnormal data. In this study, an innovative pre-
processing framework, including a novel local outlier detection and correction method Isolation 
Forest (IF), an adaptive signal decomposition technique Complete Ensemble Empirical Mode De-
composition with Adaptive Noise (CEEMDAN), and basic forecasting models have been developed. 
In order to compare a promising deep learning method Gated Recurrent Unit (GRU) as a basic fore-
casting model with the conventional forecasting models, Support Vector Regression (SVR) and Ar-
tificial Neural Network (ANN) have been used. The results show that the proposed hybrid method 
can utilize the complementary advantages of the preprocessing methods to improve the accuracy 
of the forecasting models. The root-mean-square error of the SVR, ANN, and GRU models has been 
reduced by 57.5%, 27.8%, and 30.0%, respectively. Further, the GRU-based models developed in 
this study are superior to the other models, and the IF-CEEMDAN-GRU model has the highest ac-
curacy. Hence, it is promising that this preprocessing framework can improve the performance of 
the water demand forecasting models. 

Keywords: hourly water demand; outlier detection and correction; mode decomposition; gated re-
current unit 
 

1. Introduction 
Due to phenomena such as climate change, overpopulation, groundwater depletion, 

and energy tension, many water utilities around the world face stresses from societies and 
nature [1-3]. To address these problems, accurate water demand forecasting and effective 
operation of water distribution networks are essential. The water demand forecasting 
horizon depends on the planning level, decision problem, and data periodicity. In terms 
of the forecasting horizon, water demand forecasting can be divided into short-term fore-
casting (hourly to monthly forecasting), medium-term forecasting (annual forecasting for 
1 to less than 10 years), and long-term forecasting (annual forecasting for more than 10 
years) [4]. Medium-term and long-term forecasting contribute to the tactical decision 
making about investment planning and capacity expansion [5]. Short-term forecasting in-
fluences operational decisions for water utilities [6,7]. Especially, hourly water demand 
forecasting is vital for pump schedule, leakage reduction, and energy conservation. With 
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the development of smart water, the high-frequency measuring system of District Meter-
ing Areas (DMAs) is becoming mature [8,9]. That makes it possible to obtain high-fre-
quency data for hourly water demand forecasting. However, hourly water demand of 
small- and medium-sized DMAs is complex with a large number of fluctuations, and it is 
easily affected by short-term abnormal events, such as communication problems and wa-
ter facility damage [10]. Therefore, it is a great challenge to improve the accuracy of hourly 
water demand forecasting. 

Water demand forecasting models can be broadly classified into linear models and 
nonlinear models [11]. Linear models include some univariate time series methods, such 
as Multiple Linear Regression models (MLR) [3,12], Exponential Smoothing [13,14], Au-
toregressive Integrated Moving Averages (ARIMA) [12,15], and Seasonal Autoregressive 
Integrated Moving Averages (SARIMA) [16]. Nonlinear models include Support Vector 
Machine (SVM) [14], Artificial Neural Network (ANN) [17], tree-based models [18], and 
some other soft computing methods [19]. Comparing with regression and time series anal-
yses, ANNs do not require as many hypotheses and can model nonlinear relationships 
between input and output [19]. Bougadis et al. investigated a time series model, a regres-
sion analysis, and an ANN model for short-term peak water demand forecasting of the 
Ottawa region, Canada. They found that the ANN model is more accurate than the re-
gression and time series analyses [20]. Ghiassi et al. compared the water demand forecasts 
of San Jose, California by a Dynamic Artificial Neural Network (DAN2) and ARIMA at 
hourly, daily, weekly, and monthly horizons. The results showed that DAN2 outper-
formed ARIMA at all the time intervals [21]. However, ANN has the problem of overfit-
ting and can easily fall into a local extremum [22]. On the other hand, SVM, another pop-
ular machine learning method, achieves its function by mapping the nonlinear input to 
the linear trend in a higher-dimensional space and shows excellent generalization perfor-
mance [19]. Herrera et al. found SVM as the most accurate model among Multivariate 
Adaptive Regression Splines, ANN, Projection Pursuit Regression, Random Forests, and 
SVM models for the hourly water demand forecasting of an urban area in south-eastern 
Spain [18]. With the development of computational intelligence models, a lot of attention 
has been paid to a promising algorithm of deep learning recently [23]. The deep learning 
method has more processing layers than the conventional methods and can convert fea-
tures into more abstract expressions [24]. However, the performance and potential of deep 
learning in water demand forecasting is still unknown as compared to the conventional 
models. 

As the characteristics of hourly water demand time series are inherently nonlinear 
and nonstationary, it is hard to capture its variation characteristics and the evolution law. 
On the other hand, hybrid approaches combining the advantages of filters show excellent 
performance for chaotic series [11]. The filter methods of Wavelet Decomposition (WD) 
and Empirical Mode Decomposition (EMD) are two effective time frequency resolution 
methods for nonlinear and nonstationary time series. The WD refines a signal into differ-
ent resolutions by telescopic translation. Adamowski et al. combined the discrete Wavelet 
Transforms (WA) and ANN to forecast the daily water demand of Montreal, Canada and 
compared the performances of the WA-ANN with the MLR, Multiple Nonlinear Regres-
sion models, ARIMA, and ANN models [3]. The results showed that the WA-ANN is the 
most accurate among all the models. The EMD is an adaptive method that can decompose 
the nonstationary signal into several Intrinsic Mode Functions (IMFs). Ren et al. [25] com-
bined EMD and a dynamic architecture of ANN for daily water demand forecasting and 
showed that the multi-scale method is superior in processing complex signals. To solve 
the problem of mode-mixing of the EMD, Wu et al. developed the Ensemble Empirical 
Mode Decomposition (EEMD) by adding white noise with finite variance [26]. Xiao et al. 
[27] proved the efficiency of the EEMD-based hybrid models in which the EEMD was 
combined with the Elman Neural Network and Phase Space Reconstruction methods. 
Comparing with the WD methods, the EMD techniques are adaptive and not affected by 
the wavelet base. However, the EEMD cannot estimate the influence of adding white 
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noise. Therefore, in this study, the Complete Ensemble Empirical Mode Decomposition 
with Adaptive Noise (CEEMDAN) method has been selected to decompose complex wa-
ter demand time series into IMFs. The CEEMDAN can reduce the influence of white noise. 

Hourly water demand data are not only nonstationary but can also be easily affected 
by short-term abnormal events. There are two kinds of abnormal events that may cause 
abnormal data. One is the transmission problems that transport missing data or incorrect 
data. The other is caused by abnormal behaviors, such as water facility damage, mainte-
nance, and festivities [10]. These abnormal water demand data greatly affect the accuracy 
of water demand forecasting. Especially, when the data set is small or medium size, such 
as using a data set comprising recent time information for model development, the prob-
lem is more obvious. Hence, a proper outlier detection and correction method is needed, 
and it is essential for hourly water demand forecasting. Outlier detection has been widely 
used in many other fields such as energy consumption [28], archaeological sciences [29], 
geotechnical engineering [30], healthcare [31], and network monitoring [32]. The outlier 
detection methods can be briefly classified into statistical-based methods (e.g., box-plot 
[33], regression model [34]), distance-based methods (e.g., the local distance-based outlier 
factor [35]), density-based methods (e.g., the local outlier factor [36]), and clustering-based 
methods [37]. Each method has its own strengths and limitations. When the probabilistic 
distribution models are given, the statistical-based methods show efficient results, but it 
cannot be applied to the data with unknown distribution. Distance-based and density-
based methods are independent of data distribution, but computationally expensive for 
large data. The cluster-based methods have fewer restrictions on data, but they need too 
many parameters. Given the limitations of the above methods, Isolation Forest (IF) is a 
useful and robust choice with fewer parameters, which does not limit on the distribution 
of data and costs less computer load.  

Although the importance of outlier detection has aroused widespread concern, the 
existing water demand forecasting preprocessing hybrid models still focus only on signal 
decomposition techniques, and neglect outlier correction and detection methods [38]. 
Hence, the eventual forecasting accuracy is limited. In view of this, in this study, a predic-
tion framework including an outlier detection and correction method, adaptive decompo-
sition algorithm and basic forecasting models has been developed. This study has the fol-
lowing innovations: 
1. The earlier models usually neglect the importance of outlier processing. As such, they 

cannot improve the accuracy of the hourly forecasting models. In this study, in order 
to improve the accuracy of water demand forecasting models, a global Isolation For-
est model and a local Isolation Forest model have been compared to detect and cor-
rect outliers.  

2. In this study, an effective signal decomposition technique of CEEMDAN has been 
introduced to decompose a complex original signal into sub-signals, which makes 
water demand forecasting easier.  

3. A promising deep learning method of Gated Recurrent Unit (GRU) has been intro-
duced and compared with the conventional ANN and Support Vector Regression 
(SVR) to explore the potential of the deep learning method for hourly water demand 
forecasting. 

4. To the best of our knowledge, this study is the first to integrate two preprocessing 
methods (i.e., signal decomposition and outlier detection and correction methods) 
for water demand forecasting. 
The rest of this paper is summarized as follows. Section 2 describes the structure of 

Isolation Forest, CEEMDAN, ANN, GRU, SVR, and the framework of the method pro-
posed in this study. Section 3 describes the data of the case study, and the development 
of the proposed method. The results and discussions are shown in Section 4. Section 5 
presents the final conclusions including recommendations for future work. 
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2. Methods 
2.1. Isolation Forest 

Isolation Forest (IF) is an ensemble tree-based method. Essentially, the Isolation For-
est algorithm is based on the facts that the abnormal data usually take a small proportion 
of the whole data sets and tend to alienate the normal data in the feature space [39]. Owing 
to these properties, the mechanism of isolation shows great advantages in detecting ab-
normal data. The Isolation Forest is an efficient algorithm based on the mechanism of iso-
lation and is fundamentally different from all existing statistical-based, distance-based, 
density-based, and clustering-based methods. This method achieves abnormal detection 
function by isolating instances instead of constructing a profile of normal data, which 
greatly improves the computational performance. 

The isolation processes of Isolation Forest are completed by decision trees and these 
trees are integrated into a forest under the ensemble idea. The Isolation Forest can be de-
scribed by the following two steps. First, select a subsample from a set of training data 
and build a decision tree by randomly splitting a value of a random feature between the 
minimum and the maximum of that feature. Repeat the process of subsampling and build-
ing trees until the number of trees reaches the required value. The idea of subsampling 
can reduce the influence of swamping and masking. Then, calculate the anomaly score of 
each point in these isolation trees as follows: 𝑠(𝑥, 𝑛) = 2ିா൫௛(௫)൯௖(௡) , (1)

where h(x) is the number of edges that a point 𝑥 traverses from the root node until the 
traversal is terminated at an external node in the isolation tree, which is also called the 
“path length”; 𝐸൫ℎ(𝑥)൯ is the expected path length of point 𝑥 in all the isolation trees; n 
is the number of instances; and 𝑐(𝑛) is the average path length of n given points. The 
threshold of the abnormal score is determined by the contamination level of anomalies. In 
this study, the contamination level of the water demand data is unknown. Hence, it needs 
to be determined by trial and error. 

2.2. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise  
2.2.1. Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) is a data-driven method, which decomposes 
a nonlinear and nonstationary signal into several Intrinsic Mode Functions (IMFs) and a 
residue based on the time scale feature of the original signal [40]. These IMFs contain char-
acteristics of local oscillation frequency of the original signal. There are two essential con-
ditions of an IMF: 
1. the number of extreme points and the zero crossings are equal or differ at the most 

by one; and  
2. the mean value of the upper and lower envelopes is zero at any point.  

The EMD algorithm can be described as: 
1. Generate a new sequence 𝑆(t) by calculating the mean value of the upper envelope 

and the lower envelope of the original signal 𝑂(t).  
2. Subtracting 𝑆(t) from 𝑂(t) gives an IMF candidate 𝐶(t), where 𝐶(𝑡) = 𝑂(𝑡) − 𝑆(𝑡). 
3. Set 𝐶(t) as the original signal, repeat the above steps, and obtain the first IMF signal 𝑖𝑚𝑓ଵ when 𝐶(t) satisfies the conditions of an IMF.  
4. Set Oଵ(t) as the original signal, where Oଵ(t) = O(t) − 𝑖𝑚𝑓ଵ. Repeat Steps (1) to (3) 

until the residue 𝑅(𝑡) is a monotonic function or satisfies the predefined stopping 
criterion, where 𝑅(𝑡) = 𝑂(𝑡) − ∑ 𝑖𝑚𝑓௜ூ௜ . Then, end the decomposition process, and all 
the IMFs and the residue of the original signal are obtained.  

2.2.2. Ensemble Empirical Mode Decomposition  
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As EMD has a problem of mode-mixing, an IMF contains signals with very different 
oscillations, or different IMFs have similar oscillations at the corresponding position. En-
semble Empirical Mode Decomposition (EEMD) has been proposed to overcome these 
shortcomings by adding white noise with finite variance to the original signal. The de-
tailed steps are as follows: 
1. Add the Gaussian white noise 𝑤௞(𝑡) (𝑘 = 1,2, … , 𝐾) to the original signal O(t) and 

determine 𝑂௞(t), where 𝑂௞(t) = O(t) + 𝑤௞(𝑡). 
2. Decompose the improved original signal 𝑂௞(t) by an EMD algorithm and determine 

all the  𝑖𝑚𝑓௜௞  (  𝑖𝑚𝑓௜௞  is the 𝑖௧௛  IMF of the EMD decomposition when adding the 
white noise at the 𝑘௧௛ time).  

3. Repeat Steps (1) and (2) for 𝐾 times. It is worth noting that the added Gaussian white 
noise is different each time. 

4. The true 𝚤𝑚𝑓పതതതതതത  is the sequence constructed by the mean value of the  𝑖𝑚𝑓௜௞(𝑘 =1,2, … , 𝐾): 𝚤𝑚𝑓పതതതതതത = 1𝐾 ෍  𝑖𝑚𝑓௜௞௄௞ୀଵ (𝑖 = 1,2, ⋯ 𝐼, 𝑘 = 1,2, ⋯ , 𝐾). (2)

2.2.3. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise  
Although the problem of mode-mixing is solved by EEMD to some extent, the influ-

ence of adding the white noise cannot be estimated, which reduces the precision of the 
decomposition. As such, Torres et al. proposed the Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise (CEEMDAN) to improve the EEMD algorithm [41]. 
CEEMDAN adds a particular noise at each decomposition stage and makes the decompo-
sition process more complete. The detailed steps of CEEMDAN are as follows: 
1. In CEEMDAN, the way to determine the first decomposition mode 𝚤𝑚𝑓ଵതതതതതത is the same 

as the EEMD. Decompose the signal 𝑂௞(t) = 𝑂(t) + 𝜀଴𝑤௞(𝑡) for the 𝑘௧௛ computa-
tion of CEEMDAN, where 𝜀଴ is the signal-to-noise ratio. Calculate the first IMF as 
follows: 𝚤𝑚𝑓ଵതതതതതത = 1𝐾 ෍  𝑖𝑚𝑓ଵ௞.௄௞ୀଵ  (3)

The first residue 𝑟ଵ(𝑡) is: 𝑟ଵ(𝑡) = 𝑂(𝑡) − 𝚤𝑚𝑓ଵതതതതതത. (4)

2. Determine the second decomposition mode 𝚤𝑚𝑓ଶതതതതതത and the residue 𝑟ଶ(𝑡) as follows: 𝚤𝑚𝑓ଶതതതതതത = ଵ௄ ∑ 𝐸ଵ ቀ𝑟ଵ(𝑡) + 𝜀ଵ𝐸ଵ൫𝑤௞(𝑡)൯ቁ௄௞ୀଵ , (5)𝑟ଶ(𝑡) = 𝑟ଵ(𝑡) − 𝚤𝑚𝑓ଶതതതതതത, (6)

where 𝐸௜(𝑥) is the ith decomposition mode of 𝑥 by EMD. 
3. Similarly, for 𝑖 =3,4, ⋯ ,I, the 𝚤𝑚𝑓పതതതതതത and 𝑟௜(𝑡) can be calculated as follows: 𝚤𝑚𝑓పതതതതതത = ଵ௄ ∑ 𝐸ଵ ቀ𝑟௜ିଵ(𝑡) + 𝜀௜ିଵ𝐸௜ିଵ൫𝑤௞(𝑡)൯ቁ௄௞ୀଵ  , (7)𝑟௜(𝑡) = 𝑟௜ିଵ(𝑡) − 𝚤𝑚𝑓పതതതതതത. (8)

4. Repeat Step (3) until the residue 𝑅(𝑡) is a monotonic function or satisfies the prede-
fined stopping criterion. The final residue can be calculated as follows: 𝑅(𝑡) = 𝑂(𝑡) − ∑ 𝚤𝑚𝑓పതതതതതതூ௜ . (9) 

Therefore, the original signal can be described as follows: 𝑂(𝑡) = ∑ 𝚤𝑚𝑓పതതതതതതூ௜ + 𝑅(𝑡). (10)
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2.3. Artificial Neural Network 
Artificial Neural Network (ANN) is an artificial intelligence technique that can ex-

tract trends and patterns from imprecise data and be trained to be an expert to provide 
projections. ANN has powerful attributes of adaptive learning, self-organization, and 
fault tolerance. As the basis of many emerging AI algorithms, ANN is often used as a 
benchmark model to compare the performance of the proposed models [18,42]. ANN is 
basically composed of neurons, synapses, activation functions, weights, and biases. Neu-
rons are basic units of an ANN and can be classified as three groups. Input neurons can 
receive information from the external environment. Hidden neurons can process infor-
mation passing though synapses with different weights. Finally, output neurons produce 
a conclusion. In this study, the conclusion is the forecasting water demand. Neurons are 
organized in layers according to their groups, including an input layer, one or more hid-
den layers, and an output layer. The information will be transformed layer by layer as:  𝑦௜ = 𝑓 ቆ෍ ൫𝑤௜௝𝑥௝൯ + 𝑏௜௃௝ୀଵ ቇ, (11)

where 𝑦௜ is the output of the ith neuron unit, 𝑥௝ is the jth input data from the last layer, 𝑤௜௝ is the weight of the jth input data for the ith neuron unit, 𝑏௜ is the bias, and 𝑓 is the 
activation function to determine the transformed result. 

In this study, a common three-layer feed-forward neural network has been used. A 
back-propagation technique is used to recalibrate the connection between the neural units, 
weights, and bias. The weights are updated proportionally to the errors that they are re-
sponsible for. The learning weights are usually multiplied by an update degree to control 
the update schedule and avoid overshooting the optimum. In this study, we have used an 
Adam optimizer that can effectively perform the updates. The optimization of the two 
hyperparameters of the initial learning rate of Adam, and the units of the hidden layer are 
presented in Section 3.2.  

2.4. Gated Recurrent Unit 
Deep learning methods are large neural networks that can extract features into more 

abstract expressions by learning complex functions and mapping the input to the output 
based on the raw data. Among them, the Gated Recurrent Unit (GRU) is an effective 
chained deep learning model that considers the previous information and is good at se-
quence data analysis [43]. GRU has a reset gate and update gate to avoid vanishing and 
exploding gradient problems, and is able to determine which information should be 
passed to the output. The reset gate determines the degree of ignoring information of the 
previous state. The smaller the value of the reset gate, the more information of the previ-
ous state is ignored. The update gate is used to control how much information of the pre-
vious moment should be brought to the current state. When the value of the update gate 
is close to 1, almost all the information of the previous state is used in the current moment. 
The transition process between the neurons can be expressed as follows: 𝑟௧ = 𝜎(𝑊௥ሾℎ௧ିଵ, 𝑥௧ሿ), (12)𝑧௧ = 𝜎(𝑊௭ሾℎ௧ିଵ, 𝑥௧ሿ), (13)ℎ෨௧ = 𝑡𝑎𝑛ℎ(𝑊ሾ𝑟௧ ⊙ ℎ௧ିଵ, 𝑥௧ሿ), (14)ℎ௧ = (1 − 𝑧௧) ⊙ ℎ௧ିଵ + 𝑧௧ ⊙ ℎ෨௧, (15)

where 𝑟௧  is the reset gate, z௧  is the update gate, 𝑊௥  and 𝑊௭  are the correspondent 
weight matrices, 𝜎 and tanh are the activation functions, and 𝑥௧ is the input of the current 
time step. Furthermore, ℎ௧ିଵ, ℎ௧, and ℎ෨௧ are the output of the last step, output of the cur-
rent step, and the candidate output, respectively. The product of the matrices is expressed 
as ⊙, and the connection of the vectors is represented as in Eqs (12)-(14).. 
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2.5. Support Vector Regression 
Support Vector Regression (SVR) is the application of SVM in a regression field that 

can support both linear and nonlinear regressions. SVR shows excellent capability of gen-
eralization with high accuracy. The basic idea of SVR is to map the nonlinear input data 
into a higher-dimensional feature space and form a linear function as follows [44-48]: 𝑓(𝑥) = ൫𝑤 ∙ 𝜙(𝑥)൯ + 𝑏, (16)

where 𝑤 is the weight vector, 𝜙 is the mapping function, 𝜙(𝑥) is the transformed input 
data, and b is the error value. A kernel function, such as a sigmoid kernel, polynomial 
kernel, Gaussian kernel, and radial basis function, can be used to map the training data 
into a high-dimensional space without increasing computational cost. To determine 𝑤, a 
quadratic programming problem is solved to minimize the sum of the empirical risk and 
the complexity term. Specifically, SVR introduces an insensitive region around the func-
tion to balance the prediction error and the complexity of the model. When the absolute 
values fall within this region, the errors are ignored. On the other hand, the data outside 
this region are penalized. In this study, this method has been used as one of the basic 
models to explore the potential of the proposed preprocessing framework for traditional 
models.  

2.6. Research Flowchart 
Figure 1 shows the flowchart of the proposed method, and the entire process of this 

paper is as follows: 

 
Figure 1. The flowchart of the proposed method including outlier detection and correction, time series signal decomposi-
tion, and basic forecasting models. 
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1. Through the outlier detection and correction process, the original water demand data 
are cleaned (i.e., Step 1 in Figure 1). In this study, we have compared the proposed 
local outlier detection and correction method, and a global outlier detection and cor-
rection method. In the local outlier detection and correction method, water demand 
data are assumed to follow a specific distribution for each hour. First, the water de-
mand data are classified hourly into 24 clusters. Then, 24 Isolation Forest models are 
built for each cluster to detect the outliers. The outliers are then corrected by the mean 
value of that hour instead of the global mean value. In the global method, an Isolation 
Forest model is built based on all the data of water demand, and the outliers are cor-
rected by the global mean value.  

2. After outlier correction, the nonstationary and nonlinear time series signal is decom-
posed adaptively by CEEMDAN and turned into simpler sub-signals (i.e., Step 2 in 
Figure 1). It is easier for these sub-signals to extract the features. 

3. The GRU, SVR, and ANN models are built based on each sub-series to explore the 
efficiency of the proposed preprocessing framework on different forecasting models 
(i.e., Step 3 in Figure 1). The forecasting result of a water demand time series is the 
sum of the forecasting results of all the sub-signals. 

3. Case Study 
3.1. Data Description  

As the small- or medium-size data are more sensitive to outliers, in this study, a data 
set comprising recent time information has been used to investigate the performance of 
the proposed method. The data set is the hourly water demand data of a DMA in Shang-
hai, China, from 1 September 2016 to 9 November 2016. The average daily water demand 
of this area is 170.11 mଷ/d. A total of 75% (or 1260 data points) of the water demand data 
have been used as the training set. Another 15% (or 252 data points) of the data have been 
used as the validation set to optimize the hyperparameters. The remaining 10% (or 168 
data points) have been used as the testing data to evaluate the performance of the models. 
This study uses the water demand data as the only input, as other meteorological infor-
mation is usually difficult to obtain for water utilities and previous studies have proved 
that a single input of water demand history is sufficient for developing accurate models 
[49,50]. 

3.2. Model Development  
The values of the model hyperparameters determine the performance of the model. 

Therefore, it is necessary to use the validation set to select the optimal hyperparameters 
according to the performance of different hyperparameters. The methods of hyperparam-
eter optimization are varied, including Grid Search [51], Genetic Algorithm [52], Particle 
Swarm Optimization [53], and so on. In this study, we chose Grid Search, which is a com-
monly used hyperparameter optimization method in water demand forecasting, to opti-
mize the hyperparameters. For the Isolation Forest model, we have tried values from 0.03 
to 0.07 with an increment of 0.01 for the hyperparameter of contamination, as shown in 
Figure S1. The value of the sub-sample size has been set as 256, as this size is big enough 
to provide information for outlier detection [54]. An earlier study showed that the length 
of the path converges to an ideal state before 100 trees [39]. Hence, we have set 100 as the 
number of trees in the Isolation Forest model. The ensemble size I and the amplitude of 
white noise 𝜀 in CEEMDAN have been set as I = 100 and 𝜀 = 0.2, respectively, according 
to Colominas et al. and Lei et al. [55,56]. 

The basic forecasting models including the GRU, ANN, and SVR models have been 
developed to predict the IMFs and the residue. All the input data of the basic forecasting 
models are first normalized into a range from 0 to 1. The input water demand series com-
prising 𝑥(𝑡 − 1), 𝑥(𝑡 − 2),…𝑥(𝑡 − 𝑤) has been used to determine the output 𝑥(𝑡), where 
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𝑤 is the window size. We have tried values from 1 to 30 for 𝑤, as shown in Figure S2, and 𝑤 = 15 has been set for the GRU, ANN, and SVR forecasting models.  
As for the GRU model, there are four important hyperparameters that need to be 

optimized: (1) Batch size (ranges from 40 to 80, with an increment of 10); (2) epoch (ranges 
from 100 to 500, with an increment of 100); (3) units in the first GRU layer (i.e., 16, 32, 64, 
128, and 256); (4) units in the second GRU layer (i.e., 16, 32, 64, 128, and 256). As the first 
step, the batch size and epoch have been chosen for the grid search, as shown in Figure 
2a. The deeper the blue color, the larger the root-mean-square error (RMSE). As such, the 
middle right area shows higher accuracy. When the batch size and epoch are set to 70 and 
300, respectively, the model achieves the lowest RMSE. As the second step, the hyperpa-
rameters of the units in the first and second GRU layers are searched, as shown in Figure 
2b. The influence of the units of the GRU layers on the model accuracy is greater than 
those of the batch size and epoch. The results show that the GRU model does not behave 
well when the numbers of units for both first and second GRU layers are set to 256. In-
versely, the lower left area shows higher accuracy. When the number of units in the first 
layer is set to 128 and that in the second layer is set to 16, the RMSE is lowest. 

For the ANN model, the number of hidden nodes and the initial learning rate need 
to be optimized. We have tried 2, 5, 7, 10, 20, 30, 40, 50, 60, 70, and 80 for the number of 
hidden nodes, and 0.0001, 0.001, 0.01, and 0.1 for the initial learning rate. That is, we have 
tried 44 different combinations of the two hyperparameters for the ANN model. 

As for the SVR model, the radial basis function has been chosen as the kernel func-
tion, and there are two important hyperparameters, C and gamma, that need to be opti-
mized. C is the hyperparameter of regularization that can adjust the weight of the predic-
tion error and the complexity of the model, and gamma is the kernel coefficient for the 
radial basis function. We have tried eିଶ,eିଵ, e଴, eଵ, eଶ, eଷ, eସ, and eହ for the hyperparam-
eter C, and eିସ,eିଷ, eିଶ, eିଵ, e଴, and eଵ for the hyperparameter gamma. That is, we have 
tried 40 different combinations of the two hyperparameters for the SVR model. 

 
Figure 2. The parametric heatmap for (a) batch size and epoch, and (b) the numbers of units in the 
first layer and the second layer of the Gated Recurrent Unit (GRU) models. 

3.3. Performance Evaluation Indices 
In this study, we have used two absolute error indices (mean absolute error (MAE) 

and root-mean-square error (RMSE)) and one nondimensional evaluation metric (Nash–
Sutcliffe model efficiency coefficient (NSE)) to assess the performance of the forecasting 
models. Additionally, as forecasting results are supposed to be linear to observed values, 
the Pearson correlation coefficient (r) has also been used in this study. The indices are 
defined as: 𝑀𝐴𝐸 = ଵே ∑ |𝑄௜ − 𝑄௜ᇱ|ே௜ୀଵ , (17)



Water 2021, 13, 582 10 of 19 
 

 

𝑅𝑀𝑆𝐸 = ටଵே ∑ (𝑄௜ − 𝑄௜ᇱ)ଶே௜ୀଵ ,  (18)

𝑁𝑆𝐸 = 1 − ∑ ൫ொ೔ିொ೔ᇲ൯మ೔ಿసభ∑ (ொ೔ିொഢതതത)మ೔ಿసభ ,   (19)

𝑟 = ∑ (ொ೔ିொഢതതത)ቀொ೔ᇲିொഢᇲതതതതቁ೔ಿసభට∑ (ொ೔ିொഢതതത)మ೔ಿసభ ∑ ቀொ೔ᇲିொഢᇲതതതതቁమ೔ಿసభ ,   (20)

where 𝑄௜ is the observed water demand, 𝑄௜ᇱ is the forecasted water demand, 𝑄పഥ  is the 
mean of the observed water demand, and 𝑄పᇱതതത is the mean of the forecasted water demand. 
Both MAE and RMSE reflect the deviations between the forecasted and the observed wa-
ter demands, while the RMSE pays more attention to the large errors. NSE compares the 
forecasted water demands with the mean of the observed water demand. The Pearson 
correlation coefficient reflects the strength of the linear relationship between the fore-
casted and the observed water demands. For the forecasting models with an NSE and 
Pearson correlation coefficient closer to 1, the forecasts are more accurate.  

4. Results and Discussion 
This section shows the results and discussion in three aspects. Sections 4.1 and 4.2 

focus on the effect of the proposed preprocessing method. In Section 4.1, the effect of the 
local outlier detection and correction model is demonstrated. In Section 4.2, the features 
of the sub-signals after decomposition have been studied. Finally, Section 4.3 explores 
whether the proposed preprocessing method can improve the accuracy of water demand 
forecasting.  

4.1. Outlier Detection and Correction  
Figure 3 shows the original water demand, and the corrected water demand by the 

global and local outlier detection and correction models. The global abnormal data (Figure 
3a) are effectively detected by both methods. Further, the global method has detected few 
hourly abnormal data (Figure 3b). This is attributed to the subsample function of the Iso-
lation Forest model, which have fewer normal points interfering with the isolation process 
of abnormal data [57]. However, it is not enough for practical preprocessing engineering 
of water demand forecasting. The local outlier correction method (Figure 3c) shows great 
advantages in processing the hourly abnormal data including: (1) Abnormal single points 
that are overlapped with normal clusters of other hours; (2) abnormal clusters near zero 
during the peak hours (i.e., 9, 10, 13, and 17 h). Moreover, the local outlier correction 
method reduces misidentification of the normal samples. For example, the normal points 
above 28.7 mଷ/h have been misidentified as abnormal data in the global outlier detection 
and correction method (Figure 3b), while the local detection and correction method has 
retained these points as normal data according to the distribution of the hourly water de-
mand (Figure 3c). Hence, using the local detection and correction method, more useful 
information of the raw data will be used for water demand forecasting. 
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Figure 3. Scatter and density contour map of (a) the observed water demand; (b) the results of global outlier detection and 
correction; (c) the results of local outlier detection and correction. Blue scatters represent the hourly water demand data 
in different hours. The right color bar shows the density contour map for water demand data. Red lines near the y-axis are 
the projections of water demand data. 

4.2. Time Series Signal Decomposition 
Figure 4 shows the results of CEEMDAN including the original signals, the IMFs and 

the residues of the initial time series (Figure 4a), and the time series processed by the Iso-
lation Forest model (Figure 4b). From Figure 4, it can be seen that the nonstationary and 
nonlinear original signals have been decomposed by CEEMDAN into several sub-signals, 
which vary from high frequency to low frequency. The outliers of the initial time series 
(Figure 4a) have a negative effect on the decomposition process. There are obvious irreg-
ular peaks from IMF 1 to IMF 7 caused by the outliers. On the other hand, the IMFs of the 
time series after outlier correction are smoother and have less signal saltation. 

 
Figure 4. Original signals, their corresponding Intrinsic Mode Functions (IMFs), and residue results of Complete Ensemble 
Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for (a) initial time series, and (b) time series processed 
by Isolation Forest. 

The power spectral densities of the original signal and IMF 1–8 at different levels of 
frequencies for the time series with and without outlier corrections are shown in Figure 5. 
The original signals for the original water demand (Figure 5a) and the corrected water 
demand (Figure 5b) have multiple discrete peaks, resulting in a difficulty in distinguish-
ing the main peak. That is to say, there are strong noise background and different fre-
quency modes in the original signals. On the other hand, each sub-signal of CEEMDAN 
has an obvious main power spectral density peak. In other words, these sub-signals are 
more periodic, which makes it easier to capture the signal characteristics for prediction. 
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With the progress of decomposition, the peak moves toward the lower frequency direc-
tion and becomes more concentrated. There are several sub-peaks in IMF 1–3, while it is 
still able to distinguish the main peak. Comparing with IMF 1–3 without Isolation Forest 
treatment (Figure 5c), the attenuation velocities of the corrected IMFs (Figure 5d) on both 
sides of the main peak are faster and the kurtosis is more likely to be leptokurtic. IMF 4–8 
(Figure 5d,e) can be approximately regarded as unimodal, and the power is concentrated 
in the peak frequency. The corrected IMFs have less overlap, that is, the characteristic of 
the signal is well dispersed in the sub-signals. 

It can be qualitatively concluded that it is easier to extract the features of the sub-
signals processed by CEEMDAN, and the outlier correction method makes a contribution 
to the efficiency of the decomposition process. 

 
Figure 5. Spectra of (a) original signal, (c) IMF 1–3, and (e) IMF 4–8 of initial time series and spectra of (b) original signal, 
(d) IMF 1–3, and (f) IMF 4–8 of time series processed by Isolation Forest. 
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4.3. Overall Performance 
With the aim of evaluating the performance of the proposed preprocessing method, 

and assessing the forecasting performance of different forecasting models, twelve water 
demand forecasting models have been developed, i.e., SVR, IF-SVR, ANN, IF-ANN, GRU, 
IF-GRU, CEEMDAN-SVR, IF-CEEMDAN-SVR, CEEMDAN-ANN, IF-CEEMDAN-ANN, 
CEEMDAN-GRU, and IF-CEEMDAN-GRU. The performance results of these models are 
shown in Table 1. 

Firstly, to verify the importance of the proposed hybrid preprocessing method, the 
first groups of comparisons are SVR vs. IF-CEEMDAN-SVR, ANN vs. IF-CEEMDAN-
ANN, and GRU vs. IF-CEEMDAN-GRU. According to Table 1, the basic forecasting mod-
els combined with IF-CEEMDAN can achieve higher accuracy of prediction. For example, 
the RMSEs of IF-CEEMDAN-SVR, IF-CEEMDAN-ANN, and IF-CEEMDAN-GRU have 
reduced by 57.5%, 27.8%, and 30.0% as compared to those of SVR, ANN, and GRU, re-
spectively. Therefore, according to Sections 4.1 and 4.2, the sub-signals whose features are 
easier to extract contribute to improving the performance of the forecasting. 

Secondly, besides CEEMDAN-ANN, all the other single preprocessing technique-
based models, i.e., IF-SVR, IF-ANN, IF-GRU, CEEMDAN-SVR, and CEEMDAN-GRU, 
have improved the accuracy of the basic forecasting models, as shown in Table 1. For in-
stance, the MAE of CEEMDAN-SVR and IF-SVR have reduced from 4.61 to 2.61 mଷ/h 
and from 4.61 to 2.23 mଷ/h, respectively. The exception of CEEMDAN-ANN may be due 
to the overfitting problem of ANN. The overfitting problem makes ANN susceptible to 
outliers. According to Section 4.2, the outliers cause irregular peaks in the IMFs. Hence, 
the prediction accuracy can be influenced by the overfitting problem of ANN and the error 
has been accumulated in the decomposition and integration process of CEEMDAN, which 
makes the performance of CEEMDAN-ANN inferior to the ANN model. 

Thirdly, from Table 1, it can be seen that the GRU-based models are superior to the 
other models due to its excellent feature extraction ability. The IF-CEEMDAN-GRU ob-
tains a minimum RMSE of 2.32 mଷ/h among the twelve water demand forecasting mod-
els. Even the GRU without the preprocessing technique can achieve similar or even better 
performance than the ANN and SVR models with a single preprocessing technique. The 
GRU method shows great potential in water demand forecasting. Additionally, it is worth 
noting that although the SVR model has a disappointing result, the IF-CEEMDAN-SVR 
can achieve an accuracy close to that of IF-CEEMDAN-GRU. 

Table 1. Performance results of different models for testing data. 

Model MAE RMSE 𝑹𝟐 r 
SVR 4.60996 5.58961 0.50343 0.75491 

IF-SVR 2.23167 2.95628 0.861099 0.928563 
CEEMDAN-SVR 2.60908 3.56389 0.798133 0.904639 

IF-CEEMDAN-SVR 1.79512 2.37339 0.910473 0.955239 
ANN 2.59636 3.60472 0.793481 0.89321 

IF-ANN 2.07612 3.17677 0.839606 0.917693 
CEEMDAN-ANN 2.99397 3.99805 0.745954 0.878257 

IF-CEEMDAN-ANN 1.9694 2.6012 0.892461 0.945378 
GRU 2.27949 3.32249 0.824554 0.910801 

IF-GRU 1.98076 3.26109 0.830978 0.916113 
CEEMDAN-GRU 1.67429 2.35978 0.911497 0.957639 

IF-CEEMDAN-GRU 1.52313 2.32435 0.914134 0.956688 

To investigate how the outlier correction and signal decomposition methods improve 
the accuracy of water demand prediction intuitively, the profiles of the predicted and ob-
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served water demand time series are shown in Figure 6. According to Figure 6d, the pre-
dictions by the IF-CEEMDAN-based models are closer to the observed water demand 
curve. The IF-based models can improve the accuracy of the water demand predictions 
during the nonpeak period, as shown in Figure 6b. On the other hand, the CEEMDAN-
based models (Figure 6c) show better performance at peak hours, especially for the peaks 
between 80 and 120 h. It can be inferred that Isolation Forest and CEEMDAN supplement 
each other throughout the whole water demand time series. 

Additionally, the computation time has been used to quantify the forecasting speed, 
as shown in Table 2. The computer environment is AMD Ryzen5 3600 CPU at 3.60 GHz 
and NVIDIA GeForce RTX 2060 SUPER GPU at 1695 MHz equipped with Python 3.6.9. 
As shown in Table 2, the CPU Times used by the GRU-based models are much longer 
than those by the ANN and SVR models. This indicates that the structure of the GRU-
based models is more complex and hence leads to a higher computational load. Although 
the GRU-based models need more computational time, they can achieve superior predic-
tion performance. Besides the GRU-based model, IF-CEEMDAN-SVR is a noteworthy 
model that can achieve an accuracy close to that of IF-CEEMDAN-GRU and requires less 
CPU time. 
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Figure 6. Water demand forecasting results of: (a) GRU, Artificial Neural Network (ANN), and Support Vector Regression 
(SVR); (b) Isolation Forest (IF)-GRU, IF-ANN, and IF-SVR; (c) CEEMDAN-GRU, CEEMDAN-ANN, and CEEMDAN-SVR; 
and (d) IF-CEEMDAN-GRU, IF-CEEMDAN-ANN, and IF-CEEMDAN-SVR. 

Table 2. Comparison of CPU time for different models. 

Model CPU Time (s) Model CPU Time (s) 
SVR 0.008 CEEMDAN-SVR 13.579 

IF-SVR 3.584 IF-CEEMDAN-SVR 17.134 
ANN 0.075 CEEMDAN-ANN 14.641 

IF-ANN 3.668 IF-CEEMDAN-ANN 18.529 
GRU 192.128 CEEMDAN-GRU 1934.022 

IF-GRU 194.508 IF-CEEMDAN-GRU 1996.464 

5. Conclusions 
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In this study, the potential of the preprocessing process in hourly water demand fore-
casting has been investigated. For the first time, the outlier detection and correction model 
Isolation Forest, and the adaptive signal decomposition technique CEEMDAN have been 
introduced to water demand forecasting. Moreover, a promising deep learning method of 
GRU, which has an excellent feature extraction ability for time series, has been used as a 
basic forecasting model. The results have been compared with those of ANN and SVR to 
investigate the efficiency of the proposed preprocessing framework on different models. 
Combining the advantages of the two preprocessing methods, the hybrid IF-CEEMDAN-
based models have been developed for hourly water demand forecasting, which can pro-
duce high accuracy in predictions. The conclusions of this study are as follows: 
1. The proposed preprocessing method can greatly improve the accuracy of hourly wa-

ter demand forecasting models. The RMSE of the SVR, ANN, and GRU models has 
reduced by 57.5%, 27.8%, and 30.0%, respectively. 

2. The local outlier detection and correction method not only effectively identifies 
global outlier and outlier clusters that are overlapped with other normal data, but 
also reduce misidentification of normal samples. 

3. The CEEMDAN model is able to decompose nonstationary and nonlinear water de-
mand time series into sub-signals with an obvious main power spectral density peak, 
which makes it easier to capture the signal characteristics for prediction. 

4. Despite the higher computational load, the GRU-based models always perform bet-
ter than the ANN and SVR-based models. The IF-CEEMDAN-GRU model is the most 
accurate model among the twelve models examined in this study. The prediction by 
the SVR model without preprocessing is poor, but the IF-CEEMDAN-SVR model can 
achieve an accuracy close to that of the IF-CEEMDAN-GRU model with lower com-
putational load. That is, the proposed method can also exert great potential on some 
of the conventional models. 
In the practical engineering of hourly water demand forecasting, the proposed hy-

brid preprocessing method has great superiority in predicting complex nonstationary 
hourly water demand time series, which is vital for pump schedule, energy conservation, 
and leakage reduction. Hence, the proposed method has great potential to help to achieve 
sustainable operation and cost-effective management of water distribution networks. 

Future work should test other preprocessing techniques to further improve the per-
formance of hourly water demand forecasting models, and test the water demand of dif-
ferent cities to explore the stability of the framework. Moreover, due to the lack of infor-
mation about abnormal events that cause the outliers, this paper can only identify the 
outliers rather than distinguishing the abnormal events. Future studies can focus on iden-
tifying the abnormal events of outliers after collecting more information, and achieve ad-
ditional functions such as leakage detection. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-
4441/13/5/582/s1, Figure S1: Scatter and density contour map of (a) the observed water demand; the 
results of local outlier correction for (b) contamination = 0.03; (c) contamination = 0.04; (d) contami-
nation = 0.05; (e) contamination = 0.06; (f) contamination = 0.07. Blue scatters represent the hourly 
water demand data in different hours. Right color bar shows the degree of the density contour map 
for water demand data. Red lines near the y-label are the projection of water demand data, Figure 
S2: Learning curve of different window sizes for GRU model. 
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