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Abstract: Soil salinity due to irrigation diversion affects regional agriculture, and the development of
soil composition estimation models for the dynamic monitoring of regional salinity is important for
salinity control. In this study, we evaluated the performance of hyperspectral data measured using an
analytical spectral device (ASD) field spec standard-res hand-held spectrometer and satellite sensor
visible shortwave infrared advanced hyperspectral imager (AHSI) in estimating the soil salt content
(SSC). First derivative analysis (FDA) and principal component analysis (PCA) were applied to the
data using the raw spectra (RS) to select the best model input data. We tested the ability of these
three groups of data as input data for partial least squares regression (PLSR), principal component
regression (PCR), and multiple linear regression (MLR). Finally, an estimation model of the SSC, Na+,
Cl−, and SO4

2− contents was established using the best input data and modeling method, and a
spatial distribution map of the soil composition content was drawn. The results show that the soil
spectra obtained from the satellite hyperspectral data (AHSI) and laboratory spectral data (ASD)
were consistent when the SSC was low, and as the SSC increased, the spectral curves of the ASD data
showed little change in the curve characteristics, while the AHSI data showed more pronounced
features, and this change was manifested in the AHSI images as darker pixels with a lower SSC and
brighter pixels with a higher SSC. The AHSI data demonstrated a strong response to the change in SSC;
therefore, the AHSI data had a greater advantage compared with the ASD data in estimating the soil
salt content. In the modeling process, RS performed the best in estimating the SSC and Na+ content,
with the R2 reaching 0.79 and 0.58, respectively, and obtaining low root mean squared error (RMSE)
values. FDA and PCA performed the best in estimating Cl− and SO4

2−, while MLR outperformed
PLSR and PCR in estimating the content of the soil components in the region. In addition, the
hyperspectral camera data used in this study were very cost-effective and can potentially be used
for the evaluation of soil salinization with a wide range and high accuracy, thus reducing the errors
associated with the collection of individual samples using hand-held hyperspectral instruments.

Keywords: soil salinization; remote sensing; numerical modelling; digital soil mapping; arid regions

1. Introduction

Soil salinization is a global problem and a long-term threat to agricultural production,
especially in arid and semi-arid areas. The risk of soil salinization will become more
prominent in the future [1–4]. Agriculture in irrigated areas is of great significance to
regional development, which relieves people’s survival pressure in arid and semi-arid
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areas. With the growing population, people develop more land to meet their development
needs, and this is accompanied by soil compaction, fertility declines, acid–base imbalances,
soil degradation, and other consequences caused by soil salinization [5]. With the increase
in the salt content in soil, plant growth becomes more difficult [6,7]. From the perspective
of soil salinization control, the amount of salt in soil is directly proportional to the difficulty
of soil recovery. Therefore, the dynamic monitoring of soil salt content-related indicators
and a timely quantitative grasp of the soil salt content are of great significance for the
rational development and utilization of land resources and for maintaining the ecological
sustainable development of irrigated areas.

Remote sensing as an effective technology to monitor regional soil salinization has
been recognized in many studies [8,9]. Using a remote sensing method to monitor the
regional soil salinization not only promotes the management of saline land but also helps
to simulate the process of soil salinization, as well as provide data support for revealing the
mechanism of soil salinization. The core of the quantitative evaluation of soil salinization
by remote sensing data is to find the relationship between the content of related indicators
and remote sensing data, and thus the purpose of using remote sensing technology to
study soil salinization is to establish a reliable estimation model.

For the remote sensing data source, hyperspectral data have more spectral bands to
choose from compared with multispectral data. Therefore, to establish a more reliable
soil component content model, hyperspectral data were selected as the data source in
this study. Generally speaking, hyperspectral remote sensing data can be divided into
laboratory-measured spectral data, field-measured spectral data, and hyperspectral data
obtained by an imaging spectrometer [10]. Both laboratory spectral measurements and
field spectral measurements belong to the method of near hyperspectral remote sensing
data acquisition. For example, Xiaoguang Zhang used the spectral data measured in the
laboratory as the basic data to evaluate the ability of PLSR and PCR in estimating the soil
salt content [11]. R.L. Dehaan used the HyMap hyperspectral imaging spectrometer to
evaluate soil salinization in the Murray Darling Basin, Australia. However, in the process
of collecting soil samples, the original soil moisture, soil particle size, and other properties
of the samples change; therefore, the feasibility of using the spectrum data measured in the
laboratory as the basic data for estimating soil salt content must be analyzed.

Mapping the distribution of regional salinization is the primary work of saliniza-
tion control, which is of great significance for the rational development and utilization of
land resources and the maintenance of ecological sustainable development in irrigation
areas [12]. Scholars have done a great deal of research on this hot spot [13–15]. Compared
with the spatial interpolation method [16] and the method of using a portable spectrom-
eter to measure the spectral data, using the data measured by a satellite-borne imaging
spectrometer to estimate soil salinization-related indicators [17] has the advantages of a
small workload, strong timeliness, and a large spatial range. At present, most soil salin-
ization mapping studies have been based on multispectral satellite image data [8,18,19],
drone remote sensing data, and proximal hyperspectral remote sensing data [9,14,15]. The
multispectral satellite data have fewer wavebands, which presents certain limitations in
reflecting soil information. A hyperspectral imaging spectrometer has many bands, which
can be used to reflect the fine characteristics of soil, and this has the characteristics of
spectral integration. It is common to use a hyperspectral imaging spectrometer to study
soil salinization using drones [20] or satellites [13] as the platform of the sensors. However,
to use a drone as a platform, it is often difficult to carry out large-scale soil monitoring
due to the limitations of the image width. A satellite hyperspectral imaging spectrometer
typically has a large width and a certain revisit period, which provides a possibility for
the dynamic evaluation of soil salinization across a large range. However, there are few
cases using satellite hyperspectral imaging spectrometer data [21] because the available
hyperspectral satellite data sources are scarce.

It is a common method to use the soil salt content (SSC) measured in the laboratory
as an index to evaluate the degree of soil salinization [14]. Since most salts, especially
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sodium chloride, strongly reflect solar energy, and this information will be recorded by
satellites [15], the reflectance data of satellite images are related to the soil composition.
Studies have also investigated the relationship between the ionic content of saline soils and
spectral data [22]. The saline soil ion content is important for the study of the formation
and evolution of salinity and the management of salinization. As soil ions are a more
microcosmic concept compared with soil salinity, it is difficult to estimate the soil ion
content in the study of soil salinization. At present, it is challenging to use spectral data to
estimate the ion content of saline soil.

In view of the above problems, the research question of this paper is to determine
whether the satellite hyperspectral data have more advantages in estimating the content of
soil components than the spectral data obtained in the laboratory. What is the performance
of common spectral data transformations and modeling methods for soil component
content estimation in the study area? In this context, the objectives of this paper are to
(1) compare and analyze the difference between the spectral data measured in the laboratory
using an analytical spectral device (ASD) and the spectral data obtained by the satellite
sensor advanced hyperspectral imager (AHSI) and to discuss the feasibility of the two in
estimating the composition of the surface soil; (2) develop an estimation model suitable for
this study area using the spectral data most suitable for estimating soil composition and
to evaluate the performance of PLSR, PCR, and MLR.; (3) use the best modeling method
and the best spectral transformation method to estimate the soil salt content and soil ion
content and to use the satellite hyperspectral data to draw the spatial distribution map of
the soil composition content; and (4) explore the ability of hyperspectral data to estimate
the soil ion content.

2. Materials and Methods
2.1. Study Area

The Baidunzi basin of the Jingdian Irrigation Area was selected as the study area,
and this basin has a prominent soil salinization problem. The irrigation area has a windy
spring, a hot summer, a long frost-free period throughout the year, and sandy wind, which
is typical of a continental climate. In the arid climate of the irrigation district, strong
evaporation easily conducts the salts of the subsurface to the soil surface, resulting in
the formation of surface salt, which is the phenomenon of salinization. The seasonal
distribution of the irrigation area is clear.

The sunshine duration is long in the summer, short in the winter, and moderate in the
autumn. The annual average temperature in the irrigation area is 8.3 ◦C, and the average
precipitation is 185.7 mm, which is concentrated from May to September. The average
annual evaporation is 2516 mm, the maximum annual evaporation is 3566 mm, and the
minimum annual evaporation is 2227 mm [23]. The rise of the groundwater level caused
by irrigation is the main factor leading to soil salinization in the Jingdian Irrigation Area.
Due to the restriction of topography, the irrigated water carries salt into the Baidunzi basin
(Figure 1), forming a tail-end lake [23].
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Figure 1. Location of the study area in China and in the Jingdian Irrigation Area, and the locations of collected samples.

2.2. Data Acquisition and Processing
2.2.1. Collection of Soil Data

Considering the transit time of the satellite, the field investigation was carried out
on 5 December 2019. At this time, the study area was in winter, and there was almost no
vegetation, which reduced the error of the salt content estimation caused by vegetation. A
total of 119 soil samples were collected from the surface (0–10 cm). We took the samples
back to the laboratory for analysis. The samples were first ground and sieved to eliminate
the effect of the soil particle size, then the pH value of each sample was determined,
and the SSC was determined using the water bath-evaporation method. Finally, ion
chromatography and an inductively coupled plasma optical emission spectrometer were
used to determine the cation and anion contents in the soil samples.

The soil spectra were measured in the laboratory in this study. A portable spectro-
radiometer (ASD) was used, and the spectral range was from 350 to 2500 nm, with a
resolution of 3 nm in the visible near-infrared and 10 nm in the short-wave infrared. The
spectroscopic measurements were performed in a dark room, where the prepared samples
were placed in a 20-cm-diameter plastic Petri dish, and the surface of each sample was
kept flat.

A tungsten–quartz–halogen filament lamp was used as the light source, and the angle
of illumination was adjusted so that the brightest light was located in the center of the
sample; the field of view of the sensor probe was 5◦, and the distance to the soil surface was
15 cm, so that the area where the probe received the soil spectrum was much smaller than
the Petri dish area to ensure that the probe received the reflected spectrum of the sample.
Five spectral curves were collected for each soil sample, and the arithmetic mean value
was taken as the actual reflectance of the soil sample.

2.2.2. Satellite Data Processing

We used the hyperspectral remote sensing images obtained by the visible-shortwave
infrared advanced hyperspectral imager (AHSI) on board China’s Gaofen-5 satellite, which
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has a 60-km-wide image width and a 30 m spatial resolution and can simultaneously
acquire spectral and spatial information of 330 consecutive spectral bands in the range
of 400–2500 nm, with a spectral resolution of 5 nm in the visible near-infrared band and
10 nm in the short-wave infrared. The relative radiometric calibration accuracy is less than
3%, and the absolute radiometric calibration accuracy is less than 5%. Compared with the
instrument on Hyperion, the signal-to-noise ratio of the hyperspectral camera is three to
four times higher [24].

The images can be obtained from the website of the China Resource Satellite Ap-
plication Center (http://www.cresda.com/CN/ (accessed on 20 September 2020)). The
images obtained were imaged on 27 November 2019. The AHSI images were geometrically
corrected using the previously corrected images with a correction accuracy of 0.5 pixels.
Atmospheric correction of the remote sensing images was then performed using the Fast
line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) atmospheric correction
model. The images were smoothed using a Savitzky–Golay Filter (SG) filter to reduce their
system noise. The image water vapor absorption bands (1359–1409 and 1822–1923 nm)
were marked as bad bands, and the bands with more noise due to being at the edge of the
sensor (390–415 and 2285–2513 nm) were removed, resulting in 270 bands.

2.3. Method

To investigate the applicability of the laboratory-measured soil spectral data and AHSI
data in estimating the soil content, the laboratory-measured spectra were first resampled
into 270 bands of AHSI data. The responses for the different soil salinity levels in the
two datasets were analyzed comparatively. The applicability of the two datasets was
determined from the trend between the SSC and the reflectance of the two spectral datasets,
and then the model was built based on the more applicable data. Spectral data come in
many forms, such as raw spectral data and spectral transformed data, with different spectral
transformations expressing soil salinity information differently from the suppression of
other information [9].

The first derivative has been used extensively by researchers because this can amplify
subtle information regarding the soil composition in spectral curves, thereby increasing
the sensitive bands of the subject in the spectral data and obtaining good results [9,25]. In
this paper, we performed a first-derivative analysis to expand the modeling data. Previous
studies have shown that the first principal component of spectral data increases with
increasing salt content [26,27]. Principal component analysis allows the hyperspectral
data to be downscaled to obtain the main features of the data and reduces the correlation
between the components, which is beneficial for modeling; thus, in this study, the data
were subjected to principal component analysis, and the top ten principal components
were selected.

The raw spectra of the hyperspectral data, the first derivative data of the spectra,
and the spectral principal component data were selected as the raw datasets from which
to select the modeling data. This stage entails the selection of feature data from the raw
dataset that is sensitive to the salt data, which is key to modeling. When using spectral
data, there are two options available: one is to use all spectral bands as modeling data,
which uses a large amount of data, has significant co-lining problems, and builds models
with little generalizability.

The second approach is the use of feature bands, which are commonly used; this ap-
proach entails the selection of bands that are closely associated with the soil composition for
modeling by correlation analysis [28,29]. In this study, we considered both the correlation
between features and salinity data and the autocorrelation between features. We used the

http://www.cresda.com/CN/
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correlation coefficient as an indicator for evaluating sensitive features (Equation (1)), and
these features were selected at different visible near infrared and shortwave infrared bands.

ri =
Cov(R, S)√
D(R)·D(S)

=
∑n

i=1(R ij − Rj)(S i−S
)

√
∑n

i=1 (R ij − Rj

)2
∑n

i=1 (S i − S
)2

(1)

where ri is the correlation coefficient between the spectral reflectance and the soil compo-
nents, R is the spectral reflectance, S is the soil component content, n is the total number of
soil samples, j is the number of remote sensing data bands, i is the number of soil samples,
Rij is the spectral reflectance of the band, Rj is the average value of soil reflectance in all
bands of spectral data, Si is the content of the soil component in each sample, and S is the
average value of the soil component content of each sample.

To increase the usefulness of the model, the three features that are optimal for modeling
were selected as the modeling data. We used 70% of the total number of samples for model
development and 30% as the model validation dataset. Based on the hyperspectral data,
which had rich wavelengths, the number of variables based on these data is usually greater
than the number of soil samples, and thus the ordinary least-squares model is no longer
sufficient to build the model. Partial least squares regression (PLSR) is one of the most
widely used methods to estimate the soil composition content.

Many scholars have established a good evaluation model based on this method [30,31].
In certain studies, its performance was even better than that of artificial neural net-
works [32]. Principal component regression (PCR) is an excellent method for hyperspectral
data with a high correlation among different bands [11]. It is an ideal choice to use the
partial principal components, which retain the main information of the image and have
low correlation to the model for estimating the content of soil components.

Multiple linear regression (MLR) is more effective in the estimation of the soil compo-
nent content by using multiple sensitive bands and has achieved good results in certain
studies [33]. In this study, the model was developed using PLSR, PCR, and MLR using
the coefficient of determination (R2) and root mean squared error (RMSE) to evaluate the
model (Equations (2) and (3)). The larger the R2 value, the better the accuracy of the model,
and the smaller the RMSE, the better the accuracy of the model. Finally, the model was
cross validated.

R2= 1−∑n
i=1 (Y i−Ŷi

)2

∑n
i=1 (Y i−Yi

)2 (2)

RMSE =

√√√√ n

∑
i=1

(Y i−Ŷi
)2

n
(3)

where n is the sample size, Yi is the measured component content of the soil sample, Ŷi is
the model prediction value of the soil composition content, and Yi is the average value of
the soil composition content in the sample.

3. Results
3.1. Analysis of Soil Spectral Characteristics

The following data were obtained by measuring the soil samples (Table 1). The results
showed that the average value of the soil pH was 8.38, and the average value of the soil
salinity was 58.02 g/kg, which indicated that the soil salinity in the study area was severe.
In this study, the spectral data of the soil were collected from the laboratory and satellite
spectral data were obtained for a similar time period; thus, we were able to evaluate the
ability of the laboratory and satellite data in establishing the soil content by analyzing the
spectral characteristics of the salinized soil.
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Table 1. Descriptive statistical parameters of the soil pH, SSC, and the contents of Na+, Ca2+, Mg2+,
K+, Cl−, and SO4

2−.

pH SSC Na+ Ca2+ Mg2+ K+ Cl− SO42−

Unit 1 g/kg ppm ppm ppm ppm ppm ppm
Min 8.14 3.17 75.00 0.00 0.00 63.40 0.69 1.97
Max 8.98 143.57 11,960.00 6241.00 4142.00 693.40 3935.70 4541.90

Mean 8.38 58.02 3723.90 1361.50 960.16 286.23 1273.64 1506.53
SD 0.15 37.40 2796.85 1373.11 976.29 125.91 824.75 985.81

Figure 2 shows the laboratory measured soil spectra for different soil salinities, where
the overall soil reflectance did not increase with the increasing soil salinity and vice versa.
For example, a soil sample with a salinity of 143.57 g/kg had the lowest reflectance of the
samples compared, while the sample with the highest reflectance was at the mean soil
salinity level. This is consistent with the results of another study [21]. For the AHSI data,
the same analysis was done, as in (Figure 3). The results showed that the soil reflectance
increased as the soil salt content increased, although there were some exceptions, such as
the reflectance of soil samples with a soil salt content of 143.57 g/kg was lower than the
reflectance of samples with a salt content of 135.58 g/kg; however, on the whole, this trend
was evident.

Figure 4 shows a comparison of the spectral data of soil samples measured in the
laboratory using an ASD spectrometer with the AHSI data, which showed that the spectral
data measured in the laboratory had better agreement with the AHSI spectral data when
the soil salinity was low (e.g., the SSC was 3.17, 33.48, and 41.75 g/kg), and when the SSC
was increasing compared to the laboratory measured spectra, the AHSI-measured reflectance
had a significant increase in the visible NIR band, which also reflects the greater potential for
estimating soil salinity using the visible NIR band. The AHSI reflectance curves also showed
that the reflection peaks in the range of 550–650 nm became increasingly pronounced as the
salt content increased, which is a characteristic not shown in the ASD data.

Figure 5 shows the correlation between the ASD data and AHSI data under different
SSCs. The results showed that when the SSC was less than 33.48 g/kg, there was a
good correlation between the ASD data and AHSI data. When the SSC was greater than
33.48 g/kg, the correlation gradually decreased. When the SSC reached 74.5 g/kg or greater
than 74.5 g/kg, there was a negative correlation between the ASD data and AHSI data. In
general, the AHSI data better reflected the real characteristics of saline soils; therefore, the
AHSI data were chosen as the basis for the soil salinity estimation model.

Figure 2. Spectral curves of soil samples corresponding to different soil salinity levels measured in
the laboratory using an analytical spectral device (ASD).
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Figure 3. Spectral curves of soil samples on images obtained from the advanced hyperspectral imager
(AHSI) sensor.

Figure 4. Resampling of the spectral curves obtained by laboratory instruments (ASD) to spectral curves obtained by
satellite sensors (AHSI) and comparison with the AHSI data. (a–i) shows the comparison between ASD data and AHSI data
under soil salt content of 3.17 g/kg, 33.48 g/kg, 41.75 g/kg, 65.68 g/kg, 87.28 g/kg, 96.52 g/kg, 105.78 g/kg, 135.58 g/kg
and 143.57 g/kg.
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Figure 5. Correlation between ASD data and AHSI data under different SSCs.

3.2. Feature Band Selection

We performed correlation analysis of the raw spectral data, spectral first derivative
data, and spectral principal component data with soil salinity data to summarize the
maximum correlation coefficients between the three spectral data and soil composition
data (Table 2). The correlation coefficient between the SSC and the raw spectrum was
the best, the maximum correlation coefficient was 0.86, and the maximum correlation
coefficient was obtained for the 424 nm band. The correlation coefficients of the Na+,
Cl−, and SO4

2− contents with the first derivative data were the best, and the maximum
correlation coefficients were −0.68, −0.58, −0.52, and −0.54, respectively.

Table 2. Statistical table of the maximum correlation coefficient between the raw spectra (RS), first-derivative analysis
(FDA), principal component analysis (PCA) and SSC, as well as Na+, Ca2+, Mg2+, K+, Cl−, and SO4

2− contents.

Spectral
Data Type Index SSC

(g/kg)
Na+

(ppm)
Ca2+

(ppm)
Mg2+

(ppm)
K+

(ppm)
Cl−

(ppm)
SO42−

(ppm)

RS
Wavelength (nm) 424 424 591 2007 428 424 463

Correlation
coefficient 0.86 * 0.66 * −0.08 −0.34 * 0.30 * 0.51 * 0.54 *

FDA
Wavelength (nm) 625 736 1105 1965 2167 1948 1956

Correlation
coefficient −0.85 * −0.68 * 0.24 * −0.58 * 0.37 * −0.52 * −0.54 *

PCA
Component 1 1 6 2 2 2 2
Correlation
coefficient 0.80 * 0.60 * −0.19 * −0.52 * −0.34 * −0.46 * −0.53 *

* The correlation is significant at the 0.05 level, using a two-tailed significance test.

The maximum correlation coefficients of Ca2+, Mg2+, and K+ were 0.24, −0.58, and
0.37, respectively. As the correlation coefficients were too small to establish a credible
model to estimate the contents, this study did not carry out content estimation. We selected
the characteristic bands of remote sensing data for soil components with high correlation
coefficients, after which it was necessary to plot the correlation between each band or
component of SSC and the AHSI raw data, first derivative data, and principal component
data to find sensitive bands or sensitive band intervals.
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(Figure 6a) shows the correlation of each soil component for the raw spectral data,
and the correlation coefficients of the various soil component data changed similarly,
with a decreasing trend from 420 nm, a slight increase after 1500 nm, and an increase
after 2000 nm. In general, the correlations in the visible NIR band were better than
those in the short-wave infrared. The correlation between the first-derivative data and
the soil composition (Figure 6b) was very similar, and the overall trend was unevenly
distributed. The first derivative amplified the details on the raw spectral data, resulting in
improved correlations in the short-wave infrared band where the raw spectral correlation
was lower, with higher correlation coefficients at 450–518, 779–788, 903, 1072, 1164, 1257,
1527, 1679, 2091, and 2235–2260 nm. Figure 6c shows the correlation between each principal
component of the spectral data and the soil components, with the first, third, fourth, and
sixth principal components being positively correlated with all soil data and the second
and tenth principal components being negatively correlated with all soil data. The overall
more strongly correlated principal components were the first, second, third, fourth, and
tenth. Combined with the autocorrelation among the bands, the results of the sensitive
bands screened in this paper are shown in (Table 3), and the three bands that were optimal
for the modeling results were selected.

Figure 6. Cont.
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Figure 6. Correlation graph between the SSC, Na+, Cl−, and SO4
2− contents and each band of RS data (a), graph of the

correlation with each band of FDA data (b), graph of the correlation with each component of PCA (c).

Table 3. Based on the RS, FDA, and PCA data, the bands with the highest correlation with the SSC, Na+, Cl−, and SO4
2−

contents were extracted as the characteristic bands sensitive to soil components.

Spectral Data Type SSC Feature Selection Na+ Feature Selection Cl− Feature Selection SO4
2− Feature

Selection

RS 424, 441, 471 nm 424, 441, 471 nm 424, 441, 475 nm 463, 475, 420 nm
FDA 625, 612, 2091 nm 736, 625, 1670 nm 1948, 604, 642 nm 1956, 2100, 728 nm
PCA 1,2,4 1,2,4 1,2,4 2,1,4

3.3. Model Establishment and Verification

In this study, three methods, PLSR, PCR, and MLR, were used to model the estimation
of the soil constituent contents. The results showed that the use of MLR yielded the largest
R2 for modeling the content of each constituent under different data transformations and
obtained the smallest RMSE value at the maximum extracted value. Compared to PCR,
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PLSR performed better in estimating the soil constituent contents under different data
transformations. The raw spectral data showed better performance in estimating the SSC
and Na+ contents with R2 values of 0.79 and 0.58, respectively. The first-derivative trans-
formation and principal component transformation performed optimally in estimating
the Cl− and SO4

2− contents, respectively (Figure 6). Table 4 shows the soil composition
content estimation models developed using the sensitive band and the optimal data trans-
formations as well as the optimal method. (Figure 7) shows the results of cross validation
of the developed models. Using the developed model, we obtained a final graph of the
results of each soil content estimation (Figure 8), and it should be noted that we excluded
the lake range from the soil content estimation.

Table 4. The model expression and evaluation parameters of data transformation and modeling
method for estimating the soil composition.

Spectral Data Type Method Models RMSE (g/kg) R2

RS MLR SSC = 721.177*b424 + 1273*b441 −
1618*b471 + 16.46 16.4 0.79

RS MLR Na+ = 68860*b424 + 172700*b441 −
2127*b471 + 2191.99 1773.825 0.589

FDA MLR Cl− = −0.878*b1948 − 3.283*b604
− 1.041*b642 + 406.21 563.41 0.46

PCA MLR SO4
2− = −0.06265*b2 + 0.0123*b1

+ 0.256*b4 + 877.77
670.01 0.41

Figure 7. The performance of each soil component estimation model was established by combining different modeling data
(RS, FDA, and PCA data) with different modeling methods (PLSR, PCR, and MLR). R2 and RMSE were used to evaluate the
performance of the models.
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Figure 8. Relationship between the results for each soil component estimated using optimal data transformation and the
best modelling methods and results for the actual measured soil components. (a) The relationship between measured SSC
and estimated SSC; (b) the relationship between measured Na+ content and estimated Na+ content; (c) the relationship
between measured Cl− content and estimated Cl− content; (d) the relationship between measured SO4

2− content and
estimated SO4

2− content.

4. Discussion

We evaluated the ability of laboratory spectral data and AHSI data in estimating the
soil composition, and used the AHSI data to model the estimation using the best modeling
approach. We selected SSC, Na+, Cl−, and SO4

2− for modeling and mapping due to the
limitation of low correlation between some of the ions and the spectral data.

Surface reflectance is affected by many factors, and the changes in reflectance with
changing conditions as well as minimizing or eliminating these effects is key to improving
the accuracy of estimates [32]. Satellite remote sensing data record information about the
surface at a particular moment in time, and this is consistent for all samples collected
simultaneously but is also affected by factors, such as the spectral and spatial resolution,
image correction accuracy, and sensor characteristics, which can lead to errors between the
measured and actual reflectance [34].

In contrast, a laboratory is able to control the interference of external factors to guaran-
tee the measurements; however, there are also factors, such as the soil roughness, moisture,
light, and changes in the field of view conditions, which are important factors that cause
changes in the soil reflectivity [15]. It is therefore necessary to analyze the capabilities
of both types of data when used as base data for estimating the soil composition con-
tent. A comparison of the ASD data with the AHSI data showed that as the soil salinity
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increased, the reflectivity of the AHSI data increased, while the ASD data did not show
this characteristic, which indicates that the ASD data were subject to a greater number of
interfering factors.

From Figure 5, when the soil salt content was low, the ASD data and the AHSI data
had a good correlation, which indicates that the laboratory spectral measurement data and
satellite data estimated the soil in the area with a low soil salt content. The content of the
components had good consistency, but as the soil salt content increased, the correlation
between the ASD data and the AHSI data gradually decreased and even showed a negative
correlation. When soil has a high salt content, the salt in the soil will precipitate out of the
ground as the soil moisture changes, which will increase the soil reflectivity measured by
the sensor, rather than decrease it as measured by the ASD data. This shows that the ASD
data were subject to greater interference factors. Therefore, AHSI data have the potential to
estimate the content of soil components.

The analysis of the AHSI reflectance data showed that the soil spectrum formed a
reflection peak in the yellow and orange bands, which became increasingly pronounced as
the salt content of the soil increased. This can be seen in Figures 3 and 4. The AHSI data
had significant data noise in the 900–1000 nm range, and thus the spectral features that
appeared are not characteristic of saline soils. For the soil compositions evaluated in this
paper, the correlation coefficients of the raw soil spectra were not significantly different in
the visible NIR (420–1006 nm), which is consistent with the results of several studies [21],
and some of the short-wave infrared spectral bands (1006–1325 nm) also have the potential
to estimate the salt content, as a significant decrease in the correlation coefficients was only
observed starting at 1325 nm (Figure 6a).

The first-derivative transformation amplified the fine features of the spectral data,
resulting in a significant increase in the correlation between each soil component and the
spectral data from visible near infrared to short wave infrared, a result recognized in many
studies [35,36], while the derivative transformation also reduced the correlation between
sensitive bands, which is useful for modeling. The principal component transformation
achieved good performance in estimating the SO4

2− content.
Principal component transformations reduced the correlation between components

and resulted in dimensionality reduction, which is a great source of inspiration for future
methods of estimating the soil component content. MLR realized the best results in
estimating the soil component content, and Abliz et al. also concluded that MLR was
superior to PLSR in estimating the soil salinity in the Keriya Oasis [37]. However, there is
no one method that can be applied to all regions [38], and regional differences are important
factors that researchers should consider. At the same time, we can conclude that linear
models are very effective for estimating soil composition, and their simple expressions
have the advantage of being easy to use.

Soil brightness is affected by the degree of soil salinity [15,27]. Studies have shown that
the soil salt content is positively correlated with the soil brightness, which is a characteristic
of NaCl, and the results of this paper also showed such a feature. However, not all
ions have such a correlation. The study by [39] illustrated that the brightness of MgCl2
and CaCl2 decreased when the salt concentration increased; however, unfortunately, the
correlations of Mg2+ and Ca2+ with the AHSI spectral data were too low to develop a
relatively credible model to assess their contents. Soil ion content estimation is currently a
research challenge [40], mainly because most of the ion contents occur in trace amounts, and
the spectral information is often masked by the spectral information of other substances.
New and improved modelling methods will be the focus of future research.

From the spatial distribution maps of each soil component, we concluded that Na+,
Cl−, SO4

2−, and SSC had good spatial agreement, reflecting the same salinity situation as
reflected in the true color images, with the SSC values being higher for the whitened pixels
and lower for the darkened pixels in the true color images. This is consistent with our
expected results and reflects the credibility of the results. For regional salinity management,
it is crucial to establish a highly accurate salinity evaluation model suitable for the region
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to achieve dynamic monitoring of the salinity conditions [19,41]. We demonstrated that
the AHSI had reliable performance in soil salinity evaluation, with more wavelengths
and larger widths than sensors of the same type [24], and its graphical unity provided
more favorable conditions for the accurate estimation of regional soil composition contents
(Figure 9).

Figure 9. Estimation of the spatial distribution of the content of each soil component in the study
area using the best available model. (a) Spatial distribution map of SSC in the study area; (b) spatial
distribution map of Na+ content in the study area; (c) spatial distribution map of Cl− content in the
study area; (d) spatial distribution map of SO4

2− content in the study area.

5. Conclusions

In this study, the correlation between the hyperspectral data measured in the labora-
tory and satellite hyperspectral data and soil salt content was compared. Finally, using
AHSI satellite hyperspectral data as the basic data and using a variety of methods as com-
parison, an estimation model of the soil component content in this area was established,
and the following conclusions were drawn.
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(a) With the increase in the soil salt content, there was a positive correlation between
the satellite hyperspectral data and the soil salt content. When the soil salt content
was less than 33.48 g/kg, the hyperspectral data measured by laboratory and satellite
had a good correlation, but with an increase in the soil salt content, the correlation
between the two gradually decreased. When the soil salt content was higher than
74.5 g/kg, the two had a negative correlation. Therefore, when the soil salt content is
high, it is not recommended to use the spectral data measured in the laboratory as the
basic data to establish the soil salt content estimation model.

(b) By analyzing the spectral characteristics of saline soil reflected in AHSI data, with
the increase in the soil salt content, the soil spectrum formed an obvious reflection
peak in the yellow and orange light bands, which was beneficial to the establishment
of the soil salt content estimation model based on the spectral characteristics. The
first-derivative transformation increased the correlation between the soil composition
and spectral data in the visible near infrared to short wave infrared bands and reduced
the correlation between characteristic bands.

(c) The best data transformation methods are different for estimating different soil com-
ponents. When the original spectrum was used as the input data of the estimation
model, the effect of estimating the soil salt content and sodium ion content was ideal,
R2 was 0.79 and 0.58, respectively, and a small RMSE was obtained. In the aspect of
the modeling method, multiple linear regression achieved good results. At the same
time, this study showed that AHSI data performed better in estimating the soil salt
content.

(d) The improvement of the soil ion content estimation accuracy is still the focus of
future research, as it is difficult to establish a reliable soil ion content estimation
model. In this study, we used satellite hyperspectral data to establish a soil ion
content estimation model. We measured the concentrations of common ions in
soil samples, namely, Na+, Ca2+, Mg2+, K+, Cl−, and SO4

2−, and calculated the
correlation between the concentration of each ion and the satellite hyperspectral data.
Unfortunately, only Na+, Cl−, and SO4

2− demonstrated a high correlation with the
hyperspectral data. Therefore, to have a certain reference value, in this paper, we only
established an estimation model with Na+, Cl−, and SO4

2− ions. This also shows that
the hyperspectral satellite sensor data used in this paper have advantages for regional
high-precision soil salinization monitoring.
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