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Abstract: Gully Land Consolidation (GLC) is a proven method to create farmlands and increase
crop yields in the Loess Hilly and Gully Region, China. However, GLC influences phreatic water
transformation and might cause the farmlands water disasters, such as salinization and swamping.
For exploring the influence of GLC on phreatic water transformation and mitigating disasters, a series
of indoor experiments were conducted in the artificial rainfall hall. Then, we simulated the phreatic
water transformation patterns under more conditions with HYDRUS-3D. Finally, an engineering
demonstration in the field was performed to validate our research. The indoor experiments indicated
that GLC could increase phreatic water outflow rate 4.39 times and phreatic water coefficient (PWC)
2.86 times with a considerable delay. After calibration and validation with experimental data, the
HYDRUS-3D was used to simulate phreatic water transformation under more soil thickness and
rainfall intensities. Accordingly, we summarized the relationship among PWC, rainfall intensities,
and soil thickness, and therefore suggested a blind ditch system to alleviate farmlands disasters.
Field application showed that a blind ditch system could avoid disasters with 3.2 times the phreatic
water transformation rate compared to loess. Our research provides implications for sustainable land
uses and management in the region with thick soil covers.

Keywords: Loess Hilly and Gully Region; Gully Land Consolidation; phreatic water transformation;
HYDRUS-3D

1. Introduction

The growing population and developing urbanization have increased the demands
for quality arable land around the world, which even causes food security, especially in
developing countries [1,2]. Taking China as an example, the proportion of urban areas’
population has increased from 30.4% to 52.6% from 1998 to 2012, and total farmland reduced
by 7.93 million ha simultaneously [3]. Using 7.63% of the world’s arable land to feed China’s
19.78% of the world’s population is one of China’s top priorities [4]. The modern land
consolidation project, which originated in Germany [5], has gained global attention as
a pivotal role in expanding arable land and improving agricultural productivity [6,7].
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Different countries and regions have different goals and land consolidation methods due
to their specific conditions, political and social development, physical geography, and
historical background [8]. For constructing large rice paddy lots, the Japanese carry out
land consolidation projects by consolidating their scattered cultivating lots into one place [9].
In the European Union, Russia, and other Southeast Asian countries, land consolidation
has contributed to retaining farmland for agricultural use and rural development [10–12].
Besides, to develop the economy, the local government encourages land consolidation to
improve landscapes and tourism, such as in Italy, Finland, and Kazakhstan [13,14]. The
Chinese government-planned land consolidation activities began in the 1980s to alleviate
the food crisis [15,16].

The Loess Plateau has long been suffering from severe soil erosion and faced problems
such as water shortage, poverty, and ecological deterioration in China [17]. To cope with
these worsening ecological problems, the Chinese government have implemented the
“Grain for Green” project in the Loess Plateau since 1999 [18]. However, the “Grain for
Green” project achieved erosion reduction and revegetation at the cost of reducing more
than half of the arable land [19]. Therefore, in order to solidify achievements of the “Grain
for Green” project and increase the area of high-quality arable land, the “Gully Land
Consolidation (GLC)” in the Loess Hilly and Gully Region was initially implemented by
the Chinese government in 2010 [20].

The primary process of GLC is cutting off the hill on both sides of the gully by ma-
chinery firstly, then, by filling the gully with the soil removed from the cut hill, the gully
farmlands could be quickly created (as shown in Figure S1 in Supplementary Materials) [21].
Besides, dams were built in the farmlands to reduce erosion from gully runoff. There are
nearly 35,000 hectares of newly reclaimed gully farmland, crop yields increased by 10.9%,
and soil erosion was reduced by 9.87% from 2013 to 2020 [18,20,22,23]. The GLC has effec-
tively solved the depletion of fertile land caused by extensive soil erosion and significantly
alleviates regional poverty, with declined food problems for local urbanization [24,25].
Furthermore, the GLC improved local land use structure and landscape pattern [26]. It
also reduced the peak discharge, sediment, nitrate-nitrogen, and ammonium nitrogen in
the gully [27,28]. Compared with the undisturbed gully, the soil redistribution caused
by GLC could decrease mean soil CO2 emissions and increase mean soil organic carbon
pool [29,30]. However, the GLC is controversial among Chinese geological, ecological,
and environmental scientists. One of the controversies is the gully filling that can increase
the frequency of significant disasters, such as dam breaks and landslides [31]. Several
researchers have reported that about 2000 hectares of farmland were damaged by the
salinization, swamping, and dam breaks after the continuous rainfall in the Yan’an typical
GLC area in 2013 [32–34].

Rainfall and phreatic water are the direct influencing factors of gully water disasters,
such as dam breaks and soil salinization in the semiarid area [35–38]. Therefore, we made
a major contribution to the potential influence of GLC on the transformation between
these two water bodies in this research. The measure combining indoor experiments
and mathematical models was chosen to achieve the following goals, (1) examine the
influences of GLC on the rainfall transformation to gully phreatic water, (2) identify how
the change of transformation between rainfall and phreatic lead to gully disasters, and (3)
discover an effective solution to prevent gully disasters such as dam breaks and salinization.
Understanding the gully disaster causations and prevention measures in the GLC area is
vital to sustainable land uses and management in the Loess Hilly and Gully Region, China.

2. Materials and Methods
2.1. Research Area

The simulated gully in our indoor experiment is located in Yangjuangou catchment of
Baota District in Yan’an City (109◦31′17.91′′ E, 36◦41′48.31′′ N), which is in the central part
of the Loess Plateau and belongs to the northern Shaanxi Loess Hilly and Gully region (as
shown in Figure 1). The Yangjuangou catchment covers an area of 2.02 km2, with elevation
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ranging from 1018 to 1268 m. This catchment has the typical climate and geomorphological
characteristics of the Loess Hilly and Gully region. The climate is semiarid, the geomorphic
type is dominated by loess beam, and loess gully with the valley’s degree is 2.74 km/km2.
The annual mean temperature is 8.8 ◦C in the region, with the mean lowest temperature of
−6.9 ◦C and the mean highest temperature of 22.6 ◦C. The mean annual precipitation is
about 500 mm, with 70% falling from July to September [39,40].

Water 2021, 13, x FOR PEER REVIEW 3 of 19 
 

 

2. Materials and Methods  
2.1. Research Area 

The simulated gully in our indoor experiment is located in Yangjuangou catchment 
of Baota District in Yan ‘an City (109°31'17.91"E, 36°41'48.31"N), which is in the central 
part of the Loess Plateau and belongs to the northern Shaanxi Loess Hilly and Gully region 
(as shown in Figure 1). The Yangjuangou catchment covers an area of 2.02 km2, with ele-
vation ranging from 1018 to 1268 m. This catchment has the typical climate and geomor-
phological characteristics of the Loess Hilly and Gully region. The climate is semiarid, the 
geomorphic type is dominated by loess beam, and loess gully with the valley's degree is 
2.74 km/km2. The annual mean temperature is 8.8 °C in the region, with the mean lowest 
temperature of −6.9 °C and the mean highest temperature of 22.6 °C. The mean annual 
precipitation is about 500 mm, with 70% falling from July to September [39,40].  

 

Figure 1. Research area. 

The undisturbed gully (UG) in this region comprises a loess layer, a weathered fissure 
layer, and a bedrock layer from top to bottom. The loess layer’s thickness is 3–15 m with 
the bulk density ranging from 1.3 to 1.5 g/cm3, and the permeability coefficient is 0.2–0.5 
m/d. The thickness of the weathered fissure layer is about 20 m, and the permeability co-
efficient is 20–80 m/d. The bedrock layer's permeability coefficient is about 0.03–0.22 m/d, 
which can be considered impervious compared with the upper two layers. In the GLC 
area, the thickness of surface cushion loess is generally 2.2 m higher than the gully phre-
atic water [21]. 

Simultaneously, the land consolidation project in the Yangjuangou catchment is one 
of the subprojects of GLC from 2013, with a construction scale of 27.84 hectares. The GLC 
aims to build a platform by stages as the gully farmlands. At the end of 2020, a series of 
engineering measures, including land leveling engineering, irrigation, and drainage engi-
neering, significantly improved the local farmland production capacity, farmland quality, 
and land-use efficiency in the region. Selecting the gully in such a typical catchment as a 
research area can show the GLC's effect on the phreatic water transformation and related 
disasters prevention in the Loess Hilly and Gully Region. 

2.2. Experimental Design 
2.2.1. Experimental Conditions and Equipment 

The indoor simulated rainfall experiments were carried out in the Artificial Rainfall 
Simulation Hall of the State Key Laboratory of Soil Erosion and Dryland Farming on the 
Loess Plateau from June to October of 2018 (as shown in Figure 2b). With an automatic 

Figure 1. Research area.

The undisturbed gully (UG) in this region comprises a loess layer, a weathered fissure
layer, and a bedrock layer from top to bottom. The loess layer’s thickness is 3–15 m with the
bulk density ranging from 1.3 to 1.5 g/cm3, and the permeability coefficient is 0.2–0.5 m/d.
The thickness of the weathered fissure layer is about 20 m, and the permeability coefficient
is 20–80 m/d. The bedrock layer’s permeability coefficient is about 0.03–0.22 m/d, which
can be considered impervious compared with the upper two layers. In the GLC area,
the thickness of surface cushion loess is generally 2.2 m higher than the gully phreatic
water [21].

Simultaneously, the land consolidation project in the Yangjuangou catchment is one
of the subprojects of GLC from 2013, with a construction scale of 27.84 hectares. The GLC
aims to build a platform by stages as the gully farmlands. At the end of 2020, a series
of engineering measures, including land leveling engineering, irrigation, and drainage
engineering, significantly improved the local farmland production capacity, farmland
quality, and land-use efficiency in the region. Selecting the gully in such a typical catchment
as a research area can show the GLC’s effect on the phreatic water transformation and
related disasters prevention in the Loess Hilly and Gully Region.

2.2. Experimental Design
2.2.1. Experimental Conditions and Equipment

The indoor simulated rainfall experiments were carried out in the Artificial Rainfall
Simulation Hall of the State Key Laboratory of Soil Erosion and Dryland Farming on the
Loess Plateau from June to October of 2018 (as shown in Figure 2b). With an automatic
simulation device of under sprinklers, the simulated rainfall system could ensure the kinetic
energy of simulated precipitation close to the natural rainfall for the mean fall-height of
18 m [41].
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The experiments were conducted in the sand-box model [42,43], 5.3 m × 1 m × 1 m,
at the Rainfall Simulation Hall. The slope of the model could be adjusted manually from 0◦

to 35◦. There were two water tanks, 0.15 m × 1 m × 1 m, in front and back of the model
flume, to regulate the underflow level. Above the front side of the water tank, there was
one surface water groove, and there was one drainage pipe of groundwater of 0.4 m high
at the front side of the water tank (as shown in Supplementary Figure S2b). Moreover,
two neutron probes access tubes down to a depth of 0.9 m in experimental flume for soil
moisture control (as shown in Supplementary Figure S2a and Figure 2).

2.2.2. Gully Generalization and Artificial Rainfall Design

According to field survey results and sand-box model size, we generalized the gully
into a straight shape, and the experimental flume was fixed at an angle of 3◦ in this research.
The impervious steel bottom of the flume indicated the impervious bedrock layer of the
gully. The air-dried and sieved coarse sand in the lower layer was 0.9 m thick (0.25 mm ≤
grain size ≤ 0.5 mm) with a bulk density of 1.5 g/cm3, which simulated the fissured layer
for phreatic water transportation in the gully [44]. The top layer of the filling medium in
the flume was 0.1 m local loess with a bulk density of 1.28 g/cm3 and a water content of
13%, which simulated the gully’s surface soil (grading curve is shown in Figure 3). The
initial phreatic water level was parallel to the flume bottom, and the distance between the
two lines was 0.4 m.

The GLC dam could ensure that gully farmlands would remain stable in rainstorms [20].
So, the dam system in GLC was generalized as an aluminum-plastic plate with 10 mm
thickness and 0.05 m height. The upstream area of the dam in the flume was simulated
gully farmlands with a length of 1.5 m, soil height of 0.1 m, and slope gradient of 0◦. The en-
tire simulated gully had two generalized dams, and the control ratio was 60% (as shown in
Figure 2d). Before we performed the simulated gully surface with loess, three performance
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tests with pure coarse sand had been conducted to ensure the accuracy of the amount
and flow field of phreatic water in the flume (as shown in Figure S2 in Supplementary
Materials). As for the subsequent experiments with loess covered, they could be regarded
as controlled experiments.
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Considering the influences of rainfall and duration on the GLC project, we designed
120 mm as the total artificial rainfall in this research, and three constant rainfall intensities
were set as 60, 90, and 120 mm/h, with rainfall occurrence periods of 1.5, 2, and 5 years,
respectively [45]. The size distribution of raindrops is an important factor in affecting
rainfall infiltration, and the stain method was used to measure raindrop size in this re-
search [46]. We spread the dye powder on the filter paper thinly and evenly, and the filter
paper was pale pink under dry conditions. We put the filter paper in the rain, and then
there was an approximately circular red stain formed where the raindrops hit (as shown in
Figure S3 in Supplementary Materials). After measuring the average diameter of stains,
we used the relationship between stain diameter and raindrop diameter to calculate the
raindrop diameter [47]. Furthermore, after our measurement and statistics, the rainfall
information of this research is shown in Table 1, and the calibration tests showed more
than 85% uniformity of the rainfall.

Table 1. Rainfall information in different rainfall intensity.

Rainfall Intensities Uniformity
Coefficient

Average Rain
Intensity

Raindrop Median
Diameters

(mm/h) (%) (mm/h) (mm)

60 86.17 61.75 1.32
90 90.41 91.51 1.58

120 85.74 122.4 1.69
Average 87.44

2.3. Monitoring Methods and Data Collection

The experiments started after adjusting the initial phreatic water level up to 0.4 m.
During this research, the main monitoring items included surface runoff amount, surface
runoff in the process, phreatic water amount, and outflow process of phreatic water. Surface
runoff was collected by collecting buckets at the beginning of runoff yield. Collecting
buckets were used to collect surface runoff at the beginning of runoff yield for 30 s at 5 min
intervals during experiments. Besides, phreatic water was collected by measuring cylinder
per 2000 mL uninterrupted for about 24 h. According to the phreatic water condition, the
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monitoring interval was lengthened gradually until the phreatic water level dropped to
0.4 m, the initial control phreatic water level.

2.4. Water Transformation Model

The US Salinity Laboratory has developed HYDRUS to simulate water and solute
transportation in variable saturated porous media [48,49]. HYDRUS-3D is a finite element
computer model that can simulate the three-dimensional water flow movement in variable
saturation porous media. The soil moisture module used by HYDRUS-3D follows Darcy’s
law and the continuity principle of mass conservation. It could reasonably simulate the
transportation regular pattern of water and solute in soil [50–52]. Therefore, we chose the
HYDRUS-3D to explore the influence of rainfall transformation to phreatic water under
more conditions, such as more loess thickness and rainfall intensities with or without GLC.

According to the indoor experiment and calculation principle of HYDRUS-3D, the
loess landfill layer with same size and slope had a tetrahedral grid (as shown in Figure 4).
The calculation time unit of the model was minutes (min), and the calculation period was
set according to the observation time of the indoor rainfall experiments. The impervious
boundary was set around the soil layer. The rainfall was generalized as atmospheric
boundary. The bottom soil layer was set as seepage boundary, and the dam measure
was set as impervious boundary. Thus, the cumulative flow of seepage boundary in the
simulation was accounted as a total amount of phreatic water. Initial water content and
other parameters were set according to experiment and soil parameters.
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3. Results
3.1. Influence of Gully Land Consolidation on the Phreatic Water Based on Indoor Experiments

The implementation of GLC has controlled soil erosion and increased farmlands
area over the Loess Plateau. However, various disasters have been reported in the gully
farmlands created by the GLC, such as swamping and salinization [31,33]. These disasters
have negatively affected local agriculture. To explore the main reasons causing these
disasters, we first conducted indoor experiments in the artificial rainfall simulation hall.
We attempted to reveal the influence of GLC on the phreatic water transformation under
different gully conditions. The relevant results are shown in the following.

As shown in Figure 5, the phreatic water outflow processes with or without land
consolidation treatment are entirely different. The hydrographs are similar under differ-
ent rainfall intensities with the same gully treatments. Without land consolidation, the
phreatic water hydrographs have weak responses to rainfall intensities, and the outflow
rate continues to decrease with small fluctuations. Moreover, the magnitude of phreatic
water is relatively small. The average phreatic water runoff under three rainfall intensities
is 1.85 × 10−5 m3/s, 1.82 × 10−5 m3/s, and 1.67 × 10−5 m3/s. In contrast, the phreatic
water hydrographs with GLC have large peaks 6.2 h after the rainfall, and the outflow rate
of phreatic water in GLC is 5.39 times that in UG. The average phreatic water runoff under
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three rainfall intensities is 9.91 × 10−5 m3/s, 9.67 × 10−5 m3/s, and 9.21 × 10−5 m3/s.
Meanwhile, we analyzed ratios among three water balance components, including sur-
face runoff, soil water, and phreatic water (see Figure S4 in Supplementary Materials).
Obviously, the GLC can adjust the average ratios from 79:9:12 to 40:14:46. The GLC ef-
fectively increases the proportion of precipitation transformed to soil water and phreatic
water from 21% to 60%. In a word, GLC influenced the interaction mechanism between
precipitation and phreatic water, and there was more phreatic water transformed with a
long-prolonged time.
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Although the impact of GLC on the process of phreatic water transformation is
demonstrated in Figure 5, it cannot directly express the influence of different rainfall
intensities on the transformation quantity from precipitation to phreatic water. The runoff
coefficient is widely used to describe the precipitation transformed to runoff [53–55].
Similarly, we introduced the phreatic water coefficient (PWC) to better evaluate the ability
to transform rainfall into phreatic water under different rainfall intensities. The PWC can
be expressed as follows:

PWC =
1000Qre

PA
(1)

where PWC is the phreatic water coefficient (dimensionless), Qre is the phreatic water
volume (m3), P is the rainfall (mm), and A is the catchment area (m2). As shown in Table 2,
with increasing rainfall intensity, PWC is decreasing regardless of the treatments. However,
the average PWC of GLC is 0.46, which is 3.86 times that of UG. What’s more, the range of
PWC in GLC is smaller than UG. It indicates that the GLC has dramatically improved the
phreatic water transformation and is less affected by the rainfall intensities.

Table 2. Phreatic water coefficient (PWC) under different conditions.

Items PWC GLC/UG

Measures UG GLC

Rainfall intensities/(mm·h−1)
60 0.14 0.47 3.43
90 0.12 0.46 3.78

120 0.10 0.45 4.45
Average 0.12 0.46 3.86

Through the above analysis, we can conclude that GLC impacts the process and
quantity of phreatic water transformation. In the UG treatments, most precipitation directly
flows out of the gully in surface runoff. As for GLC treatments, the dam of GLC impounds
surface runoff firstly. Then, the impounded water would infiltrate into soil water and
phreatic water after a long period (as shown in Figures 2d and 5). The more surface runoff
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impounded, the more phreatic water would be transformed under ideal circumstances.
However, the GLC thickens the loess soil in the gully, and the frequently heavy rain
accelerates the physical crust formation process of loess. The time of impounded runoff
transformed to phreatic water would be longer. The long-term accumulation of impound
surface runoff may cause farmland disasters. Therefore, it is necessary to explore the
influence of different thickness loess soil on the phreatic water transformation for farmlands’
disaster prevention.

3.2. Simulation Based on HYDRUS-3D

Based on the indoor experiments and analysis above, we know that the GLC signifi-
cantly impacts gully phreatic water transformation, i.e., increase the transformation volume
and extend the transformation time. The GLC creates farmlands by cutting the slope to fill
the gully. It brings thick filling loess in the gully farmlands, which is why transformation
time extends [33,56]. Due to the indoor experiments’ limitations of time and workforce,
it is impracticable to explore the influence of GLC on phreatic water transformation un-
der various loess thicknesses. The HYDRUS-3D provides a way to reasonably simulate
water and solute transportation regular patterns in soil with high efficiency. Therefore,
we used HYDRUS-3D to explore the effects of different loess thickness on phreatic water
transformation under more rainfall intensities.

3.2.1. Calibration and Validation

In HYDRUS-3D, the van Genuchten model and the Brooks-Corey model are com-
monly used to model soil moisture characteristics. The Brooks-Corey model is better for
homogeneous and isotropic coarse-textured soil with narrow pore size distribution but has
worse accuracy for fine-textured soils. The van Genuchten model, on the other hand, is
continuous and universal for most soils in a wide range of moisture content, and its line
shape fits well with the measured data curve. Simultaneously, it can make the suction force
of saturated soil zero, which is in line with the characteristics of soil suction force change
during the process of moisture absorption. Considering the soil’s nature for this research,
which is high clay content [39], therefore, the van Genuchten model is more suitable than
another model [57,58]. The expression is:

Se =
θ − θr

θs − θr
=

(
1

1 + (ah)n

)m
(2)

Kh = KsSl
e

[
1−

(
1− S1/m

e

)m]2
(3)

where Se is the relative saturation (dimensionless), θs is the saturated water content of
the soil (cm3/cm3), θr is the retained water content of the soil (cm3/cm3), h is the soil
negative pressure head (cm), Kh is the unsaturated hydraulic conductivity (cm/min), Ks is
the saturated hydraulic conductivity (cm/min), a, m, n are fitting parameters, which are
related to the physical properties of the soil, where m = 1− 1

n , n > 1, and l is the pore
connectivity parameter, which generally is 0.5.

Model calibration is the process whereby selected model input parameters are ad-
justed within reasonable limits to produce simulation results that best match the known
or measured values. It is the most critical process in building a model because the calibra-
tion and validation quality inevitably determines the reliability of any conclusions and
recommendations made using the simulation results. Thus, we chose the accumulation
process of phreatic water in indoor UG treatments under the rainfall intensity of 60 mm/h
as the calibrated data to obtain the van Genuchten model’s final parameters. As for default
parameters, we can determine them using the Rosetta neural network prediction module
of HYDRUS-3D. The final parameters are shown in Table 3.
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Table 3. The van Genuchten model’s parameters of test soil.

Parameter
θr θs a n Ks lcm3/cm3 cm3/cm3 cm/min

Default 0.0526 0.3751 0.0316 1.5628 0.017 0.5
Final 0.0526 0.3751 0.0312 1.5654 0.013 0.5

After determining the final parameters by calibration, we took the indoor experiment’s
data with GLC treatments under the same rainfall intensity (60 mm/h) to validate the
model. As shown in Figure 6, there are the results of calibration and verification. Figure 6a
draws the accumulation process by observing and calculating data. Analyzing the accumu-
lation process from experiments beginning at the phreatic water outflow stop under UG
and GLC treatments. We can conclude that the model calculation curves fit well with the
indoor experiment’s phreatic water accumulative curve. The phreatic water accumulation
of UG increases at a slow rate, which is 1.82 × 10−5 m3/s on average and coincides with
the above. The calculated accumulation of GLC is like the indoor experimental process.
The phreatic water transformation rate was slow before rainfall stops (0–120 min). Then,
the rate increased to a maximum of 1.81 × 10−4 m3/s at 376 min. Later, the rate decreased
until most surface impounds water transformed to phreatic water (376–647 min). Finally,
the remaining surface water transformed to phreatic water at a similar rate as UG, which
is 1.98 × 10−5 m3/s. Additionally, we use the mean absolute percentage error (MAPE) to
evaluate model accuracy. The MAPE of the calibration period is 8.03%, and the validation
period is 12.08%. Figure 6b compares the calculated and observed quantities of phreatic
water under all experimental conditions. The MAPE of the observed value and calcula-
tion is 7.21%. Therefore, the simulation of precipitation transformed to phreatic water
performed well, and we consider that HYDRUS-3D can meet the simulation accuracy of
phreatic water transformation in this research.
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3.2.2. Model Simulation of Phreatic Water Transformation under More Conditions

After calibration and verification, the accuracy of the phreatic water transformation
model constructed by HYDRUS-3D shows that we can use this model to simulate more
conditions, such as more different soil thicknesses and rainfall intensities. Therefore,
we constructed GLC and UG gully models with treatments of filling 0.1–1 m thickness
engineering loess and adding two more rainfall intensities that have not been tested
indoors (30 and 150 mm/h). Then, we count the phreatic water transformation in various
conditions, as follows.

Figure 7 shows the relationship between PWC under more loess thickness and rainfall
intensities, including thickness range from 0.1 to 1 m and rainfall intensities from 30 to
150 mm/h. In this graph with a double logarithmic coordinate system, we can summarize
the following laws. The average PWC of GLC is 4.12 times that of UG. Furthermore, the
phreatic water transformation curve’s changing pattern is similar under the same gully
condition regardless of the rainfall intensities. The rainfall intensities determine how
much the phreatic water quantities are negatively correlated. Thus, the quantity of rainfall
transformed to phreatic water in the UG is more than GLC. For example, the phreatic water
transformation of UG with 30 mm/h is a smaller portion more than that in GLC under
150 mm/h rainfall intensity, with the loess thickness increasing from 0.2 to 0.4 m.

Meanwhile, all curves have a characteristic: the PWC decreases quickly when the soil
thickness exceeds 0.4 m, and the average decrease rate per meter of 0.4–0.5 m is 139.3 times
that of 0.1–0.4 m. Moreover, the rate of the decrease per meter of GLC with loess thickness
of 0.1–0.4 m is 3.87 times that of UG. It also shows that the accumulated runoff caused
by GLC further inhibits the phreatic water transformation [40]. The area with thick soil
cover and heavy rain is prone to disasters caused by more surface runoff accumulation
and the tardy phreatic water transformation, especially in the Loess Plateau, where the
loess has low water permeability and is easy to form the physical crust to impede the
infiltration process.
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According to Figure 7, the changing pattern of curves is similar, and to better summa-
rize the phreatic water transformation laws, we can describe this pattern with such equa-
tion:

PWC = ahb (4)

where PWC is the phreatic water coefficient (dimensionless), h is the thickness of the loess
soil (m), and a and b are parameters related to rainfall intensities. Then, summarizing the
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parameters in the Equation (4), we can establish the correlation among parameters a, b, and
i (rain intensity) as a linear relationship, as shown in Figure 8, and the equations describing
the linear relationship between the parameters a, b, and i are shown as Equations (5)–(8):

aUG = −0.0001i + 0.017 (5)

bUG = −0.0054i− 0.87 (6)

aGLC = 4.24i−1.18 (7)

bGLC = −0.0035i− 0.96 (8)

Next, we incorporate Equations (5)–(8) into (4), respectively. Equations (9) and (10)
can be obtained as show in the following:

PWCUG =
−0.0001× (i− 174)

h0.0054i+0.88 (9)

PWCGLC =
4.24

i1.18h0.0035i+0.96 (10)

By comparing and analyzing the Equations (9) and (10), we can conclude that the
PWC of GLC is more sensitive to loess thickness. The average standard deviation of GLC
is 0.17 under the same rain intensity and different loess thickness, which is 3.74 times that
of UG. Although, when the loess thickness is the same, the PWC of UG are stable within
a small range, while rainfall intensities increase. Too little phreatic water transformation
means more surface runoff and soil erosion. Therefore, there is a need to reduce the
impact of loess thickness on PWC of GLC to increase gully phreatic water and reduce
erosion. Meanwhile, considering that the cultivated soil thickness in the Loess Hilly and
Gully Region is mostly 0–0.2 m [59,60], the average rainfall intensity is within the range
of 30–140 mm/h [61]. We conclude that GLC transforms rainfall to phreatic water more
efficiently in gully agricultural land by calculating Equations (9) and (10). The average
PWC of the GLC is 4.15 times that of the UG under the condition that impounds surface
rainfall transforms to phreatic water smoothly. On the one hand, the GLC dams protect
farmland from floods and increase the phreatic water transformation volume; on the other
hand, more surface runoff accumulation caused by GLC brings some hidden dangers of
disasters, especially in the area with thick loess and frequent heavy rain.
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3.3. Field Application and Gully Farmlands’ Disaster Prevention

It is concluded that the farmlands near the dam with thick soil are more likely to
accumulate surface runoff by field investigation, indoor experiments, and model simulation.
In response to this problem and better utilization of GLC for phreatic water transformation,
this research simulated phreatic water transformation and drainage measures in a sub-basin
in the Yangjuangou GLC area, Yan’an, Shaanxi Province.

There is a GLC dam that is 30 m in length and 5 m high at the exit of this sub-basin. The
farmland created by GLC is 30 m wide and 65 m long, with a longitudinal gradient of 3◦,
and the soil properties are the same as the loess in the experiments. The simulated phreatic
water drainage and transformation measure is the underground blind ditch filled with
gravel, which adopts the main and branch blind ditch. Three blind ditches are connected
by the horizontal blind ditch in the upper consolidation dam. In HYDRUS-3D, it was set as
a “combined cave” in the simulated soil layer, and the buried depth designed according
to Equation (10) is 0.4–2 m and varies with the slope. The surrounding interface was
generalized as free drainage, and its internal permeability coefficient was 9.7 cm/s, which
simulates filling gravel (as shown in Figure S5a in Supplementary Materials). Based on
the simulation, we demonstrated the blind ditch transformation and drainage engineering
project in this sub-basin, with the same blind ditch layout as the simulation (as shown in
Figure S5b in Supplementary Materials). A cellar was arranged at the blind ditch terminal
to collect, monitor, and efficiently utilize the phreatic water.

Three days after rainfall of 54.2 mm in August 2019, we conducted a field investigation
on this sub-basin. We measured the cellar’s water collection, and about 1.87 × 10−1 m3 of
phreatic water was collected. By inputting the rainfall into the forecasting model above, we
calculated the accumulated flow of free infiltration, which is 1.63 × 10−1 m3. Compared
with the actual measurement, the MAPE is 13.1%. Figure 9 depicts the comparison of the
phreatic water process between the blind ditch and cellar collecting and compares the ob-
served and simulated water depth of the cellar. By comparing the data at observation time,
the MAPE is 9.43%. Later, we counted the average infiltration rate at the junction between
the blind ditch and loess (Figure S6 in Supplementary Materials shows the water velocity
vector in different simulation periods). It can conclude that the maximum infiltration rate
in the loess is 2.88 × 10−4 m/d, which remains unchanged on the first day after the rainfall
stopped. In contrast, the maximum rate in the blind ditch comes on day 1.5, which is
2.1 times that of the loess layer. The maximum drainage transformation efficiency of the
blind ditch is 3.2 times that of the loess layer (as shown in Figure S7 in Supplementary
Materials). Therefore, the blind ditch could effectively avoid swamping and salinization by
increasing the infiltration rate to promote rainfall transformation to phreatic water.

Water 2021, 13, x FOR PEER REVIEW 13 of 19 
 

 

Compared with the actual measurement, the MAPE is 13.1%. Figure 9 depicts the com-
parison of the phreatic water process between the blind ditch and cellar collecting and 
compares the observed and simulated water depth of the cellar. By comparing the data at 
observation time, the MAPE is 9.43%. Later, we counted the average infiltration rate at the 
junction between the blind ditch and loess (Figure S6 in Supplementary Materials shows 
the water velocity vector in different simulation periods). It can conclude that the maxi-
mum infiltration rate in the loess is 2.88 × 10−4 m/d, which remains unchanged on the 
first day after the rainfall stopped. In contrast, the maximum rate in the blind ditch comes 
on day 1.5, which is 2.1 times that of the loess layer. The maximum drainage transfor-
mation efficiency of the blind ditch is 3.2 times that of the loess layer (as shown in Figure 
S7 in Supplementary Materials). Therefore, the blind ditch could effectively avoid swamp-
ing and salinization by increasing the infiltration rate to promote rainfall transformation 
to phreatic water. 

 
Figure 9. Comparison of phreatic water and water depth between observed and simulated. 

4. Discussion 
4.1. Impact of GLC on Gully Surface Runoff and Phreatic Water 

This research strongly suggested that the GLC played an essential role in transform-
ing rainfall to gully phreatic water. We confirm that as a soil and water conservation meas-
ure, the dam of GLC impounds the rainfall and forms reservoirs of gully phreatic water, 
which alleviate water shortage and increase the area of quality farmland [56,62]. On the 
other hand, as a unique and essential invention designed for both food production and 
environment in the Loess Plateau, dam land has thick loess and higher water retention 
capacity [63]. The gully surface runoff could be formed in a short time after rainfall [64] 
and the characteristics of loess (clayey and easily form physical soil crusts) generate sur-
face water ponding [65–67]. It takes more time for surface ponding to be transformed into 
phreatic water. As shown in Figure 6a, there are three stages in transforming rainfall to 
phreatic water in the GLC area.  

In the first stage, the rainfall runoff is intercepted by the dam to form surface ponding, 
and the wetting peak in the loess does not reach the weathered fissure layer. The phreatic 
water infiltration rate is mainly affected by the nature of the loess. Besides, the pressure 
of the surface ponding would further increase the transformation rate of phreatic water, 
so the initial phreatic water transformation rate of GLC is higher than that of UG. Moreo-
ver, due to the loess’s higher water retention capacity, the wetting peak tends to take a 
long time to reach the weathered fissure layer, and this is why there are more delays in 
phreatic water transformation in the GLC area [68,69]. Once the wetting peak reaches the 
weathered fissure layer, the pathway for transforming surface ponded water into phreatic 
water is formed [70]. Then, the first stage of the transformation process ends, and the sec-
ond phase begins. During the second stage, the transformation rate of phreatic water in 
GLC increased significantly. However, when most surface ponding has transformed to 
phreatic water, the hydrostatic pressure of surface ponding is not enough to increase the 

Figure 9. Comparison of phreatic water and water depth between observed and simulated.

4. Discussion
4.1. Impact of GLC on Gully Surface Runoff and Phreatic Water

This research strongly suggested that the GLC played an essential role in transforming
rainfall to gully phreatic water. We confirm that as a soil and water conservation mea-
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sure, the dam of GLC impounds the rainfall and forms reservoirs of gully phreatic water,
which alleviate water shortage and increase the area of quality farmland [56,62]. On the
other hand, as a unique and essential invention designed for both food production and
environment in the Loess Plateau, dam land has thick loess and higher water retention
capacity [63]. The gully surface runoff could be formed in a short time after rainfall [64]
and the characteristics of loess (clayey and easily form physical soil crusts) generate surface
water ponding [65–67]. It takes more time for surface ponding to be transformed into
phreatic water. As shown in Figure 6a, there are three stages in transforming rainfall to
phreatic water in the GLC area.

In the first stage, the rainfall runoff is intercepted by the dam to form surface ponding,
and the wetting peak in the loess does not reach the weathered fissure layer. The phreatic
water infiltration rate is mainly affected by the nature of the loess. Besides, the pressure of
the surface ponding would further increase the transformation rate of phreatic water, so
the initial phreatic water transformation rate of GLC is higher than that of UG. Moreover,
due to the loess’s higher water retention capacity, the wetting peak tends to take a long
time to reach the weathered fissure layer, and this is why there are more delays in phreatic
water transformation in the GLC area [68,69]. Once the wetting peak reaches the weathered
fissure layer, the pathway for transforming surface ponded water into phreatic water is
formed [70]. Then, the first stage of the transformation process ends, and the second phase
begins. During the second stage, the transformation rate of phreatic water in GLC increased
significantly. However, when most surface ponding has transformed to phreatic water,
the hydrostatic pressure of surface ponding is not enough to increase the transformation
rate, resulting in the transformation rate that is only influenced by the loess’s nature. Thus,
it is the third stage of the phreatic water transformation process. In this stage, a small
amount of surface ponding and mostly saturated soil moisture reaches the weathered
fissure layer in the form of infiltration. The transformation rate of phreatic water in GLC
is just the same as that of UG. When the soil moisture becomes unsaturated, the phreatic
water transformation comes to an end.

On the positive side, GLC reduces gully soil erosion by accumulating rainfall-runoff
and ensures the water use of gully agriculture, especially under the special rainfall condi-
tions of the Loess Plateau (heavy rainfall in a short period is common) [20,71,72]. However,
according to the above analysis, the first stage significantly affects the phreatic water trans-
formation rate. Due to excessive phreatic water transformation delays and surface ponding
from rainfall accumulation quickly, the farmlands would be prone to suffering disasters
such as swamping and dam breaks [73,74]. What’s more, there is a high evaporation rate
and surface ponding caused by transformation slowly after a short-termed rainfall. It is
easy to occur salinization in the near-dam farmlands. Even if the transformation is timely,
the water table’s rise led by excessive phreatic water may cause the same problem [33,36].
Therefore, measures must be taken to prevent gully farmlands’ water disasters by reducing
the phreatic water transformation delay.

4.2. Prevention of Gully Water Disasters

In response to the water disaster in the GLC, it seems there are two ideas to solve
these problems. Firstly, we can drain surface runoff by building drainage trenches in the
farmlands and the drainage canals on both sides of the reshaped gully [33]. This method
applies to farmlands downstream of the gully, because if drainage trenches are placed on
farmlands upstream of the gully, there is more surface runoff flow to downstream lands,
increasing the risk of water disasters in the downstream gully. Moreover, the upper stream’s
landform is more twisted than that of the downstream and does not favor water drainage.

Secondly, another concept is to accelerate the transformation of surface runoff to
phreatic water, accelerating the rate of wetting peak reaching the weathered fissure layer.
Our idea shortens the distance of wetting peak to weathered fracture layer by constructing
an artificially weathered fissure zone close to the surface—a blind ditch system filled
with gravel. Our research also confirms that it is an effective measure to solve excessive
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surface ponding in the GLC farmland. We analyzed the soil samples collected in the field.
Compared with farmland without a blind ditch, the increase of soil moisture content was
reduced by 46.81%. The maximum soil moisture content’s absolute value was reduced by
1.53% and maximum soil conductivity decreased by 15.41 µs/cm. Overall, we should lay
out the comprehensive measures reasonably to avoid gully water disasters and ensure the
sustainable use of GLC farmlands, especially in the upstream gully [75].

What’s more, the combination of the empirical Formulas (1), (9), and (10) can not only
provide a theoretical foundation for gully water disaster prevention in GLC areas but also
provide a reference for groundwater recharge management in thick soil areas around the
world. Taking this field demonstration as an example, we calculated the initial design
buried depth of the blind ditch by using the above empirical formula. Simultaneously,
the collection cellar laying at the end of the blind ditch also serves as a water source for
farmland, especially in the Loess Plateau [76,77]. Besides, the blind ditch system is an
effective measure to lower the groundwater level [78], reducing the risk of dam breaks and
swamping [79].

4.3. Methodological Limits and Future Research

The method of combining the experiment and the mathematical model had an absolute
advantage in this research. It used fewer experimental data to calibrate and verify the
selected model, HYDRUS-3D, and we used the calibrated model to simulate and predict
the other treatments. Then, the model established by experiments was used to design
and simulate the field demonstration project, which improves the efficiency of blind
ditch design.

However, we only simulated water transformation in a gully with or without GLC,
which is limited in exploring the more specific process of GLC on soil moisture, soil salinity,
and phreatic water in the Loess Plateau. It is necessary to evaluate the effectiveness of the
GLC from the scale of the area [80]. Moreover, we focused on disaster prevention in this
research and did not consider other ecosystem aspects such as crop yield. At the same time,
a research to compare the accumulation of biochar in farmland with or without disaster
protection measures (blind ditch) is underway. Although the gully with GLC is buried
with consolidation loess, the buried loess is not mixed with the gully’s original loess or
the bedrock at the gully’s bottom. The phreatic water will flow along the cracks between
different soil layers, and how to solve this problem is the direction of the next simulation.

5. Conclusions

In this research, we tried to explore the reasons for gully water disasters by simulating
the impact of GLC on the transformation of rainfall to phreatic water under different
conditions and compared it with the field demonstration project. Limited by soil texture
and climate of the Loess Hilly and Gully Region, the GLC with dam impounds too much
surface runoff. On the one hand, it reduces gully erosion and replenishes phreatic water; on
the other hand, it increases farmland swamping and salinization probability. Our research
proposed that the blind ditch system could reduce the probability of disasters and maintain
gully farmlands’ agricultural productivity. It helps sustainable land uses and management
in regions around the world with thick soils, especially in the Loess Hilly and Gully Region
with GLC.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
441/13/4/538/s1, Figure S1: Primary process of GLC. Figure S2: Pure coarse sand experiments.
(a) Soil flume filled with pure coarse sand, (b) performance testing. Figure S3: Raindrop diameter
measurement based on stain method under rainfall intensities of 120 mm/h. Figure S4: Water
balance components ratio under different rainfall intensities. Figure S5: Field simulation and
demonstration. (a) Simulation of GLC with the blind ditch in Yangjuangou sub-basin by HYDRUS-
3D, (b) demonstration of the blind ditch in Yangjuangou sub-basin. Figure S6: Compensation of
water velocity vector in different simulation periods. Figure S7: Flow rate at the junction of blind
ditch and the loess.
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