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Abstract: Systems exposed to hydroclimatic variability, such as the integrated electric system in
Uruguay, increasingly require real-time multiscale information to optimize management. Monitoring
of the precipitation field is key to inform the future hydroelectric energy availability. We present an
operational implementation of an algorithm that merges satellite precipitation estimates with rain
gauge data, based on a 3-step technique: (i) Regression of station data on the satellite estimate using
a Generalized Linear Model; (ii) Interpolation of the regression residuals at station locations to the
entire grid using Ordinary Kriging and (iii) Application of a rain/no rain mask. The operational im-
plementation follows five steps: (i) Data download and daily accumulation; (ii) Data quality control;
(iii) Merging technique; (iv) Hydrological modeling and (v) Electricity-system simulation. The hydro-
logical modeling is carried with the GR4J rainfall-runoff model applied to 17 sub-catchments of the
G. Terra basin with routing up to the reservoir. The implementation became operational at the Elec-
tricity Market Administration (ADME) on June 2020. The performance of the merged precipitation
estimate was evaluated through comparison with an independent, dense and uniformly distributed
rain gauge network using several relevant statistics. Further validation is presented comparing the
simulated inflow to the estimate derived from a reservoir mass budget. Results confirm that the
estimation that incorporates the satellite information in addition to the surface observations has
a higher performance than the one that only uses rain gauge data, both in the rainfall statistical
evaluation and hydrological simulation.

Keywords: daily precipitation; satellite-based estimates; precipitation data merging; geostatistical
methods; hydrological modeling; hydropower generation; operational modeling

1. Introduction

The renewable contribution of the electric energy matrix in Uruguay has been increas-
ing steadily during the last decades, with hydroelectric, wind and solar components that
have different inherent variability and predictability. This poses both a challenge and an op-
portunity to optimize planning at different embedded timescales and, ultimately, dispatch.
The interconnected Electric System Simulator (SimSEE [1]) is used for these purposes [2],
from the management of the spot market to long-term analysis of the evolution of the
generation capacity, with intermediate seasonal and nested weekly planning. Particularly,
in the case of the hydroelectric generation, we used a coupled hydrological and electric sys-
tem modeling approach in order to generate and process a hydrological ensemble forecast
for the largest reservoir of the system [3]. The ability to forecast the hydrological inflow
contributes to the optimal use of each energy source, with the corresponding economic and
environmental benefits.

In most applications that use operational hydrological models, the spatial and tem-
poral variability of precipitation constitutes one of the dominant factors and with greater
associated uncertainty. In this context, remote sensing products are ideal instruments to
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be used in real-time hydrological modeling, embedded in operational systems for flood
warnings, drought monitoring and water resource management [4,5]. These products are
especially useful in data-sparse, ungauged or large-scale catchments. Several satellite-
based precipitation estimates, with high spatial and temporal resolution, are currently
available in near-real-time (NRT): the Climate Prediction Center (CPC) MORPHing algo-
rithm (CMORPH) [6], the CPC Quick MORPHing technique (QMORPH) [7], the Tropical
Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 [8],
the Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks and a Cloud Classification System (PERSIANN-CCS) [9], the Global Satellite
Mapping of Precipitation (GSMaP) [10,11] and the Integrated Multi-satellite Retrievals for
Global Precipitation Measurement (IMERG-GPM) [12]. Information from a large number
of rain gauges, which are more accurate but generally sparsely distributed, is already
assimilated as part of these global/regional satellite algorithms. However, since they are
indirect estimates derived by algorithms from satellite images, they require validation
in each region and climate and eventually calibration against local ground-based pre-
cipitation measurements. Additionally, it is well known that the NRT versions of these
products are less accurate (as compared with the final or research-quality products) but pro-
vide quick precipitation estimates suitable for NRT monitoring and operational modeling
activities [13].

Several validation studies evaluated the utility of the satellite precipitation products
as input for hydrologic models [4,14–19]. Particularly, Jiang et al. (2019) [5] provided
a comprehensive review about the role of satellite-based remote sensing products in
improving simulated streamflow. They highlighted that, in general, the capability and
feasibility of satellite rainfall estimates in driving hydrological models vary widely due
to differences in topography, season, climate, basin scale, selected hydrological model
and satellite product type. Moreover, prior to their implementation in the hydrological
model, the estimates require thorough validation; bias correction based on rain gauge
data is commonly needed. Nerini et al. (2015) [20] and Beck et al. (2017) [16] emphasized
that careful data merging can exploit the complementary strengths of each source of
precipitation data. Considering this, several merging methods have been developed
based on the early efforts of the radar research community: mean-field bias correction,
inverse-error-weighted averaging methods, interpolations by inverse distance weighting,
double-kernel smoothing, nearest neighbor method, correction through regression analysis,
correction using probability distributions and geostatistical methods (cokriging, kriging
with external drift, regression kriging, Bayesian combination, among others) [20,21]. In
general, identifying the spatial correlation in the error (residual) structure model is the
most important step in the merging process.

Previous experience with this type of products (CMORPH) in the study area, the Rio
Negro basin in northeastern Uruguay, confirms the need to implement a bias removal
scheme based on available surface observations prior to any application [22,23]. Their
results indicated that quantile matching method produces an unbiased estimate whose
skill, as measured by the probability of detection (POD), is better than that obtained
from surface observations for average distances among stations larger than approximately
50 km. Adjustment of satellite estimates using spatial interpolation of CMORPH residuals
evaluated at nearby points eliminates biases to a large degree. Moreover, it shows higher
skill than using only surface data for the entire range of distances and daily precipitation
thresholds considered and for both seasons (cold and warm).

In this study, we present the operational implementation of a methodology for the
combination of rain gauge observations and satellite-rainfall estimates at daily time step
to improve the rainfall monitoring in NRT over the Rio Negro Basin. The interpolated
precipitation field obtained with the proposed methodology is then used as initial condition
for the hydrological modeling of the basin, coupled with an electric system modeling, in
order to obtain the optimal dispatch of the system for the following seven days [3]. The
performance of the proposed merged precipitation estimate was statistically evaluated
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through comparison with an independent historic rain gauge dataset. Furthermore, a
hydrological application was implemented using the GR4J model [24] at daily time step
and compared to the estimated “theoretical” inflow to the hydroelectric reservoir. We
expect that this work will contribute to the understanding of the reliability of the latest
NRT satellite-based precipitation products and provide a reference for their applications in
operational hydrological simulation and water resource management.

2. Study Area

The upper Rio Negro basin, in northeastern Uruguay, has a surface area of about
40,000 km2 (Table 1), taking Gabriel Terra hydroelectric plant (G. Terra) as its closure point.

Table 1. Main catchment characteristics of G. Terra basin.

Parameter Value

Basin area (km2) 39,500
River length (km) 400

Elevation drop in main river (m) 320
Mean slope (m/km) 0.8

Soil water storage capacity (mm) 108

Downstream G. Terra in the Rio Negro, we find Baygorria and Constitución hydro-
electric plants. The binational (Argentina-Uruguay) hydroelectric plant Salto Grande, in
the Uruguay River, completes the total hydroelectric capacity that collectively represents a
third of the current installed power in the country’s electric system and contribute with
more than the 50% of the mean total generated electricity [25] with large interannual
variability. In the Uruguayan system, the main storable resource is the water in the hy-
dropower reservoirs, particularly in G. Terra, since it has the highest storage capacity
(Table 2). Considering the growing pressure for water demand from both agricultural and
forestry expansion, together with the continuous increase of electric energy demand, this
highlights the need for adequate tools for the management of water resources in the Rio
Negro basin [26].

Table 2. Characteristics of existing hydroelectric plants in Uruguay.

Plant Installed Power (MW) Maximum Volume (Hm3) Basin Area (km2)

G. Terra 152 8800 39,500
Baygorria 108 570 4100 (incremental)

Constitución 333 2854 18,900 (incremental)
Salto Grande 945 * 3058 * 244,000

* Values corresponding to the Uruguayan 50% part of the plant.

Figure 1 shows the location of existing hydroelectric plants (black triangle) and the
delimitation of G. Terra basin. We also included the location of the rain gauges available
at NRT (red square), used for the operational implementation of the merging approach
and the historic rain gauge data (blue dot) used for validation purposes. Both datasets are
presented in Section 3.
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Figure 1. Delimitation of G. Terra basin and location of existing hydroelectric plants (black triangle)
and pluviometric stations: near-real-time data (red square) and historic data (blue dot).

3. Datasets
3.1. Rain Gauge Data Available in Near-Real-Time

Precipitation data available in NRT, used for the operational implementation of the
merging technique, comes from the public electric utility (UTE) network. After a data qual-
ity control, we selected 19 automatic stations within the Rio Negro basin. The data quality
control included the identification of missing data and outlier values, the implementation
of plausibility checks based on Scherrer et al. (2011) [27], as well as the evaluation of the
accumulated and mean annual rainfall, the average number of wet days (having nonzero
rainfall) and the length of the longest dry spell. The period analyzed is 31 January 2010 to
31 May 2020. Daily rainfall totals are taken at 1000 UTC. Figure 1 shows the location of the
selected pluviometric stations (symbolized with red squares). It highlights that they are not
uniformly distributed, which surely influences the performance of the merging technique
to be implemented.

3.2. Historic Rain Gauge Data for Validation Purposes

The historic reference data used to evaluate the proposed methodology comes from
a relatively dense and uniformly distributed network of 95 stations provided by UTE,
the National Institute of Meteorology (INUMET), the National Institute of Agricultural
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Research (INIA) and the National Water Agency (ANA) of Brazil. Figure 1 presents the
spatial distribution of these stations (blue dots) in comparison with the location of the
automatic stations selected for the operational implementation of the merging approach
(red squares).

The validation period is 1 February 2017 to 31 May 2020, during which the satellite
rainfall estimates selected (presented in Section 3.3) are also available. Daily rainfall totals
are taken at 1000 UTC.

3.3. Satellite Rainfall Estimates

In view of the new generation of global precipitation satellite products, which integrate
multiple platforms and previously existing algorithms, with high spatial and temporal
resolution and better performance than the predecessor products [17,28], the following
products were selected:

GSMaP: Global Satellite Mapping of Precipitation [10,11] of the Japan Aerospace
Exploration Agency (JAXA), version GSMaP-Gauge-NRT v7 (https://sharaku.eorc.jaxa.jp/
GSMaP/).

IMERG: Integrated Multi-satellitE Retrievals for GPM, Global Precipitation Measure-
ment [12] of the National Aeronautics and Space Administration (NASA), version Level
3 V06, NRT Late Run (https://pmm.nasa.gov/data-access/downloads/gpm).

We also took into account in the selection the data latency and accuracy of the different
available products. Table 3 presents the main characteristics of the selected datasets (spatial
and temporal resolution, data latency and period of availability). Although both products
are available on an hourly frequency, the present study is limited to daily precipitation
totals since this is the information needed for the hydrological modeling (presented in
Section 4.2).

Table 3. Main characteristics of the satellite rainfall estimates datasets selected.

GSMaP IMERG

Spatial resolution 0.1◦ 0.1◦

Temporal resolution Hourly Half-hourly
Data latency (h) 4 12

Period of availability 2017–Present 2000–Present

Exploratory Analysis

As a first exploration to evaluate the satellite-rainfall estimates at daily time step, the
root mean squared error (RMSE) and the probability of detection (POD) for a precipitation
threshold of 5 mm were calculated for both, GSMaP and IMERG, against the observed
records. To this end, we only considered those grid boxes of the satellite grid that contained
at least one gauge observation for the specific day (collocated gauge-satellite data pairs).
Table 4 presents the results obtained for the period 1 February 2017 to 31 May 2020.
Additionally, the coverage of each satellite product for the entire period is included, as
expressed as the percentage of pixels × day of available data.

Table 4. Exploratory analysis of satellite estimates for the period 1 February 2017 to 31 May 2020.

Product RMSE (mm) POD (P ≥ 5 mm) Medium Coverage (%)

IMERG 9.59 0.69 99.3
GSMaP 12.86 0.71 99.9

It shows that, in both cases, the satellite estimates present a satisfactory performance.
Both products have a very good coverage in the analyzed period (close to 100%).

However, as mentioned earlier, previous experience with this type of products in
the study area [22,23] confirms the need to implement a bias removal scheme based on
available surface observations prior to any application.

https://sharaku.eorc.jaxa.jp/GSMaP/
https://sharaku.eorc.jaxa.jp/GSMaP/
https://pmm.nasa.gov/data-access/downloads/gpm
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As an example, Figure 2 shows the comparison of the rain gauge observations and
satellite-rainfall estimates for a particular day (15 December 2019).

Figure 2. Comparison of rain gauge observations and satellite-rainfall estimates at daily time step
(15 December 2019).

3.4. Other Data

The following datasets are used for the hydrological modeling (presented in Section 4.2):
Precipitation forecast: a 14-day ensemble precipitation forecast is obtained from the

Global Ensemble Forecast System (GEFS v11.0) produced by the National Centers for
Environmental Prediction (NCEP-NOAA). The ensemble is composed of the control run
and 20 perturbed members and has a spatial resolution of 1◦ × 1◦ [29].

Potential evapotranspiration (PET): the mean annual cycle of PET was calculated from
the records of 9 meteorological stations belonging to INUMET and INIA for the period
1991–2015, using the Penman-Monteith method.

Amount of water storage capacity (SC) in the soils present in the G. Terra basin: the
SC for each soil type was obtained from the CONEAT soil map at scale 1:40.000 [30] of
the Office of Natural Resources of the Ministry of Livestock, Agriculture and Fisheries of
Uruguay (DGRN-MGAP). Then, it is weighted by area to obtain a representative value for
each sub-basin.

A digital elevation model (DEM) of the Shuttle Radar Topography Mission (SRTM-
NASA) with a resolution of 90 m was used to perform watersheds delineation and charac-
terization.

Additionally, for the evaluation of the hydrological model, we used the daily series
of estimated inflow to G. Terra reservoir provided by UTE (represented with grey dots in
Figure 3). This series is called “theoretical” since it consists of an estimation based on a
water balance in the reservoir and it is not a direct observation. Specifically, the estimated
“theoretical” inflow is obtained (indirectly) from the water surface elevation at the dam
and the turbinated and discharged flows. Therefore, this estimation is sensitive to the
representation of the reservoir and the effect of the wind on its surface. Indeed, Figure 3
shows negative inflow values, which may be due to the compensation effect of excessively
high values particular of the methodology (possibly associated with the action of the wind
in the reservoir). Figure 3 also includes the time series of the 7-days filtered estimated
“theoretical” inflow (blue line), considering that the model is used as a tool to support the
decision-making of the weekly dispatch.
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Figure 3. Estimated “theoretical” inflow to G. Terra reservoir: daily (grey dot) and 7-days filtered
(blue line).

4. Methodology
4.1. Merging Approach

The satellite-rain gauge data merging technique considered is based on the universal
model of spatial variation [31,32]. As one of the hybrid geostatistical models, Regression
Kriging (RK) is a spatial interpolation technique that combines a deterministic model
(regression) with a statistical model (Ordinary Kriging of the regression residuals). It uses
a deterministic model to estimate a value of the variable (precipitation) by using actual
ground measurements to calibrate a model for the satellite estimates and then refines the
estimate analyzing the residuals for spatial correlation; finally, it combines the statistical
fitting and deterministic modeling [33].

The 3-step proposed model is summarized as follows (Figure 4).

Figure 4. Flow chart describing the steps of the satellite-rain gauge data merging technique proposed.
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Regression of the station data on the satellite data using a Generalized Linear Model (GLM). A
GLM model is implemented in order to fit the satellite estimates to the rainfall observations
at station locations. For the GLM, we use a spatially correlated residual structure that
is fit to the available data. For each day, we calculate both exponential and spherical
spatial correlations and choose the one with the highest Akaike information criterion (AIC).
Several regressors alternatives were tested, including both satellite products and each one
separately. Based on the performance statistics obtained (not shown), we decided to use,
for each day the individual satellite product, either IMERG or GSMaP, with the highest
Pearson correlation between the rain gauge observations and the collocated satellite values.

Interpolation of the regression residuals at station locations to the entire grid using Ordinary
Kriging. Once the regressed satellite estimation is obtained, we calculate the error (residual)
between it and the observations at the station locations. Then, the interpolation of the
regression residuals to the entire grid is done through Ordinary Kriging [34], which exploits
the spatial correlation in the residuals and this is added to the regressed satellite estimation
in order to obtain the “unmasked” merged product.

Application of a rain/no rain mask (RNR mask). We apply an RNR mask to the merged
product to prevent overestimation of the occurrence of rainfall in the interpolated field.
The mask is obtained using the same merged precipitation estimate (RK) technique but
switching the target observations to binary rain/no rain observations. Satellite estimates
are used as regressors to forecast this binary field with the same RK technique described in
1 and 2. We use a threshold of 0.3 in the output of RK, a continuous field, to delimitate rainy
region for the mask. Finally, the unmasked product is multiplied by the RNR mask to obtain
the final masked merged product. Figure 5 shows an example of the application of the
RNR mask for a given day (6 July 2017). The middle column corresponds to the unmasked
OK and RK products while the rightmost column shows the masked versions. As can be
seen, there is a large purple region of slightly positive values (zeros are transparent) in the
unmasked product, while in the masked products this region is forced to zero.

Figure 5. Example of application of the rain/no rain mask for the day 6 July 2017.

The merging algorithm in this study was written in R and is available on GitHub [35,36].
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4.2. Rainfall-Runoff Model

The G. Terra basin (39,500 km2) was discretized into 17 sub-basins with areas smaller
than 7000 km2. Figure 6 presents the delimited catchments and their characteristics includ-
ing: basin area (km2), slope (%), concentration-time (Tc) (h) and SC (mm).

Figure 6. Delimited sub-basins for hydrological modeling in G. Terra basin.

To simulate the hydrological inflows to G. Terra reservoir we use a daily hydrological
model (GR4J) coupled with a hydrological transit model (Muskingum). The GR4J model is
a daily lumped four-parameter rainfall-runoff model developed by Perrin et al. (2003) [24].
The Muskingum model [37] is a two-parameter hydrologic flood routing method, based on
the storage continuity equation.

In a previous study, Narbondo et al. (2020) [38] present a successful application of the
GR4J daily rainfall-runoff model at 13 watersheds of Uruguay. They proposed an improved
regionalization approach to predict runoff time series in ungauged catchments at country
scale. Particularly, they found the optimal set of parameters of the GR4J model and, in
addition, they found the relationships between them and watershed-physiographic factors.
Table 5 shows the description of the “GR4J-Muskingum” model parameters and the values
adopted in each case following these recommendations.

Table 5. Description of the GR4J-Muskingum model parameters and adopted values (SC: storage
capacity; Tc: concentration-time; L: length of each stretch of the main river; Lm: mean length of the
stretches of the main river).

Parameter Model Description Value

x1 GR4J Maximum capacity of the production store SC (mm)
x2 GR4J Groundwater exchange coefficient 0 mm
x3 GR4J Capacity of the nonlinear routing store 59 mm
x4 GR4J Unit-hydrograph routing store 1.24 × Tc0.205 (day)
X Muskingum Weight coefficient of discharge 0.20
K Muskingum Wave travel time 2 × L/Lm (day)

4.3. Goodness-of-Fit Indicators

The performance of the merged precipitation estimate (RK) was statistically evalu-
ated through comparison with an independent rain gauge network, relatively dense and
uniformly distributed (referred to as “historic data” in Figure 1). We also included in the
evaluation the estimation based on the Ordinary Kriging interpolation from NRT rain
gauge observations (OK) at the same grid as the satellite data (0.1◦ × 0.1◦), which serves as
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the baseline for comparison with the merged product. Both estimates (RK and OK) were
compared with the rain gauge observations belonging to the historic reference dataset. The
performance statistics used for the comparison are the mean error (ME), the RMSE, the
frequency bias (FBS), the POD and the false alarm ratio (FAR) for a precipitation threshold
of 5 mm [39,40].

Furthermore, several verification indices were used to quantitatively assess the hy-
drological utility of the precipitation estimates based on the estimated “theoretical” inflow
to G. Terra reservoir (Figure 3), including the difference of total accumulated inflow (∆V),
the Nash–Sutcliffe efficiency (NSE), the Kling-Gupta efficiency (KGE), the coefficient of
determination (R2) and RMSE [41]. Additionally, we also conducted a first-level catchment
water balance using the runoff ratio (RR), defined as the ratio of the precipitation that
contributes to runoff [20]. The RR values calculated using the different outputs from both
estimates (RK and OK) were compared to known values from the literature [42].

In all cases, the period analyzed is from 1 February 2017 to 31 May 2020.

4.4. Operational Implementation

The 5-step operational implementation of the coupled hydrological and electric system
modeling approach is presented next (Figure 7).

Figure 7. Flow chart describing the steps of the operational implementation of the coupled hydrolog-
ical and electric system modeling approach.
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Data download and daily accumulation. The required precipitation input data are ade-
quately collected: records of NRT stations, GSMaP-NRT, IMERG-NRT Late Run and GEFS
ensemble forecast. Daily rainfall totals are accumulated at 1000 UTC.

Data quality control. Prior to the merging algorithm, a data quality control from both
NRT rain gauges and satellite estimates is performed based on the Climate Data Tools (CDT-
IRI) [43]. Data quality control focuses on outlier detection for the purpose of elimination of
data contamination, including the implementation of spatial-plausibility checks based on
Scherrer et al. (2011) [27]. The threshold values used in the controls were adjusted manually,
looking to eliminate the most obvious suspicious values in the available historical data set.

Merging technique. The satellite-rain gauge data merging technique is implemented in
order to obtain the RK precipitation estimate over the Rio Negro basin.

Hydrological modeling. Based on the RK estimate and the GEFS precipitation ensem-
ble forecast, the GR4J rainfall-runoff model is implemented at the 17 sub-catchments of
the G. Terra basin. The runoff output is then routed along the river network using the
Muskingum model to simulate the daily inflow ensemble to G. Terra reservoir.

Electricity-system simulation. The simulated inflow ensemble is integrated to the exist-
ing model of the interconnected electric system (SimSEE), particularly into the synthesizer
model (CEGH), through biases and noise attenuators per time step adjusted through
maximum likelihood [44].

The implemented model was integrated into SimSEE’s on June 2020 and has since run
under the responsibility of the Electricity Market Administration (ADME) of Uruguay. The
application (called VATES) is continuously updating and executing a SimSEE Room with
the representation of the Uruguayan generation system, in order to obtain the dispatch
of the following seven days with hourly detail. The results and information relevant to
the operation are published automatically on ADME’s website [45]. They also provide
the required statistical information for the design of exchange offers with neighboring
countries and the energy spot market.

5. Results and Discussion
5.1. Rainfall Model Performance

Table 6 presents the comparison of the performance metrics for the OK (stations only)
and the RK (merged product) precipitation estimates. The results obtained are global values,
integrated both spatially (among the 95 stations in the Rio Negro basin) and temporally
(averaged over the analyzed period). Overall, both estimates have a good performance
but RK performs slightly better. This indicates an improvement in the accuracy of the
precipitation estimation by the incorporation of satellite data.

Table 6. Comparison of the averaged performance metrics for the Ordinary Kriging (stations only) and
the Regression Kriging (merged product) estimates for the period 1 February 2017 to 31 May 2020.

Estimates ME (mm) RMSE (mm) FBS POD FAR

Ordinary Kriging −0.59 7.92 1.05 0.85 0.19
Regression Kriging −0.49 7.72 1.03 0.84 0.19

Figure 8 shows the spatial distribution of RMSE at the reference data locations obtained
with both estimates, OK and RK, averaged over the analyzed period. As can be seen, both
maps exhibit similar distribution patterns but there are some differences on the border with
Brazil, where there are practically no NRT stations (see Figure 1). The RK estimate in that
region has a better performance than OK with differences in RMSE between 10% and 20%.

As an example, Figure 9 compares the interpolated precipitation fields obtained with
OK (stations only) and RK (stations and satellite) for a given day (15 December 2019).
Black dots represent the NRT rainfall observations used for the interpolation. As expected,
both maps present a similar spatial distribution of daily precipitation but, particularly
in the region towards Rio Grande Do Sul (Brazil), the two estimates show significantly
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different values, with OK showing amounts of the order of 40 mm and RK of 25–30 mm.
In this region, the OK estimate does not appear to be natural, with uniform high values
in a smooth zone that gradually fades, as a result of the weighted sum estimation, rather
than irregular zones with intensely high peaks as observed in the RK estimate. This
highlights the advantage of satellite data in the representation of spatial rainfall variability,
particularly in data-sparse regions, as is the case here.

Figure 8. Spatial distribution of RMSE at the reference data locations obtained with (a) Ordinary
Kriging (stations only) and (b) Regression Kriging (stations and satellite).

Figure 9. Comparison of the interpolated precipitation fields obtained with (a) Ordinary Kriging (OK)
(stations only) and (b) Regression Kriging (RK) (stations and satellite) for the day 15 December 2019.

5.2. Rainfall-Runoff Model Performance

In this section, the precipitation estimates are incorporated into the hydrological
model that runs operationally in ADME (see Section 4.2) and the performance is assessed
as compared to the estimated “theoretical” inflow to the hydroelectric reservoir (Figure 3).
The “GR4J-Muskingum” model was forced by the two precipitation estimates (OK and RK)
using the model parameters presented in Table 5 to simulate the daily inflows to G. Terra
reservoir for the period 1 February 2017 to 31 May 2020.

The simulated and “theoretical” hydrographs are shown in Figure 10 and the statistical
comparisons are summarized in Tables 7 and 8. Considering that the model is used as a tool
to support the decision-making of the weekly dispatch, we also included the comparison
of the 7-days moving average inflows (Figure 11).
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Figure 10. Comparison between theoretical and simulated (Ordinary Kriging and Regression Kriging)
daily inflows to G. Terra reservoir.

Table 7. Comparison of the runoff ratio and total accumulated inflow for the estimated and simulated
(OK and RK) series.

Model
Accumulated
Precipitation

(Hm3)

Total Accumulated Inflow
(Hm3) Runoff Ratio

Est Sim ∆V Est Sim

Ordinary Kriging 178,020 82,802 78,385 −5.3% 0.47 0.44
Regression Kriging 180,818 82,802 80,708 −2.5% 0.46 0.45

Table 8. Comparison of the performance metrics for simulated series (OK and RK) for daily and
7-days filtered inflow.

Metric
Daily Inflow 7-Days Filtered Inflow

Ordinary Kriging Regression Kriging Ordinary Kriging Regression Kriging

RMSE (m3/s) 650.4 628.6 442.8 411.5
R2 0.59 0.62 0.75 0.79

NSE 0.58 0.61 0.75 0.79
KGE 0.71 0.74 0.81 0.85

Figure 11. Comparison between theoretical and simulated (Ordinary Kriging and Regression Kriging)
7-days filtered inflows to G. Terra reservoir.
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As shown in Figures 10 and 11, both simulations have generally good agreement with
the “theoretical” streamflow both at daily and weekly time step, although overestimation
and underestimation of the peaks are evident in some cases.

Both estimates present a slight underestimation of total accumulated inflow, with a
difference of −5.3% and −2.5% for OK (station only) and RK (merged product) output
respectively (Table 7); which correspond to a very good performance according to Moriasi
et al. (2015) [41].

DINAGUA [42] reports an annual runoff ratio (RR) between 0.37 and 0.43. This
reference value is very close to those obtained with the OK and RK estimates from both
the estimated “theoretical” inflow (RR Est) and the simulated inflow (RR Sim) (Table 7).
On the one hand, when using the “theoretical” inflows to calculate the RR, we verified
that the performance of the precipitation estimates is satisfactory. On the other hand,
when considering the simulated inflows series, we confirmed that the hydrological model
achieves a good representation of the rainfall-runoff transformation process, regardless of
the precipitation estimate considered.

As context, we present the general performance ratings for the adopted statistics rec-
ommended by Moriasi et al. (2015) [41], simulated inflow using both estimates (RK and OK)
have a satisfactory performance at daily time step (0.60 < R2 ≤ 0.75 and 0.50 < NSE ≤ 0.70)
and a good performance at weekly time step (0.75 < R2 ≤ 0.85 and 0.70 < NSE ≤ 0.80).
Furthermore, for all statistics considered, the RK simulated inflow has a better performance
than the OK, for both daily and weekly time step.

5.3. Discussion

These results confirm that, as expected, the estimation that incorporates the satellite
information in addition to the surface observations (RK) has a higher performance than
the one that only incorporates the rain gauge data (OK), both in the rainfall statistical
evaluation and hydrological simulation of the basin.

However, the magnitude of the improvement in the rainfall estimation is relatively
small as expressed by the global indicators shown in Table 6, averaged both in time and
space. Figures 8 and 9 already suggest that the magnitude of the original error with OK and
improvement with RK, might be larger in the upper part of the basin, where the density of
rain gauges is notably lower and, given the lack of stations on the other side of the water
part, extrapolations are required to cover the basin. This is verified in Table 9 where we
limit the RMSE indicator to the higher sub-basins (see Figure 6). We limited the analysis to
RMSE because it is the most robust statistic, as well as the most relevant for the application
and does not require the definition of a precipitation threshold like FBS, POD and FAR.
Table 9 also includes the percentage of improvement achieved with RK, which increases
from 3% for the global indicator to approximately 20% in the more poorly monitored border
sub-basins.

Table 9. Comparison of the RMSE metrics for the Ordinary Kriging (stations only) and the Regression
Kriging (merged product) estimates throughout the year and the basin and in selected seasons and
sub-basins.

Period Year Oct–Mar DFJ Year Year

Sub-Basins All All All 1, 2, 5, 7 5, 7

Ordinary Kriging 7.92 6.91 7.82 8.85 9.36
Regression Kriging 7.72 6.51 7.03 7.63 7.58
Relative difference 3% 6% 11% 16% 23%

While synoptic frontal systems are prevalent through the year in the region and are
responsible for most of the rainfall, convective scale storms become a relevant contributor to
precipitation totals during the warm season. Of course, many times the latter are embedded
in the former generating the multiscale structure of precipitations fields. However, it is
well known that precipitation daily totals decorrelate with distance faster in the warm
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season as compared to the cold one [22]. This motivated an analysis of the seasonality of
the improvement in skill when the satellite estimates are incorporated (RK). Table 9 shows
the basin averaged RMSE limited to the warmest semester (October through March) and
the peak of the warm season: December-January-February (DJF). Even with relatively high
density of surface observations, as is the case on average in the region of study, the impact
of incorporating satellite information increases as the precipitation field acquires larger
amplitude in smaller scales during the warm season, from 3% up to 11%.

These analyses give an insight of the potential for improvement in skill that can be
obtained with the merging methodology proposed as a function of rain gauge density and
characteristic of the precipitation systems.

6. Summary and Conclusions

In this study, we developed and implemented a methodology that combines rain
gauge observations and satellite-rainfall estimates at daily time step to improve the rainfall
monitoring in NRT. The proposed methodology involves 3 steps: (1) regression of station
data on the satellite estimate using a Generalized Linear Model, (2) interpolation of the
regression residuals at station locations to the entire grid using Ordinary Kriging and
(3) an application of a rain/no rain mask. The merged precipitation field thus obtained
is then used in a hydrological modeling of the Rio Negro basin whose output is, in turn,
coupled with an electric system modeling that guides planning and dispatch decisions for
the following seven days.

The performance of the proposed merged precipitation estimate was statistically
evaluated through comparison with an independent historic rain gauge dataset. The
incorporation of satellite information enhances the representation of spatial variability,
particularly in data-sparse regions with reductions in RMSE of up to 20%, although the
overall improvement is statistically marginal.

As far as the operation of the energy system is concerned, it is the input to the reser-
voirs that most directly affect the electric system simulations and, in turn, management
optimization. The GR4J hydrological model, with a daily time step, was implemented
at 17 sub-catchments of the G. Terra basin with routing up to the reservoir. Model per-
formance was assessed comparing model output to the estimated “theoretical” inflow to
G. Terra computed from a mass budget to the reservoir and rendered satisfactory statistics:
0.60 < R2 ≤ 0.75 and 0.50 < NSE ≤ 0.70. The estimation that incorporates the satellite infor-
mation in addition to the surface observations has a higher performance, for all statistics
considered, compared to the one that only incorporates the rain gauge data.

In an operational setting, simplicity and robustness of the implementation are as
important as accuracy. All steps are currently implemented and run on a daily basis
at the Electricity Market Administration (ADME): data download and quality control,
merging algorithm, hydrological modeling and electric system simulation. The presented
implementation improves the estimation of the precipitation field and carries that informa-
tion all the way to the decision-making stage, with its corresponding socio-economic and
environmental benefits.
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