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Abstract: Groundwater arsenic in Uruguay is an important environmental hazard, hence, predicting
its distribution is important to inform stakeholders. Furthermore, occurrences in Uruguay are
known to variably show dependence on depth and geology, arguably reflecting different processes
controlling groundwater arsenic concentrations. Here, we present the distribution of groundwater
arsenic in Uruguay modelled by a variety of machine learning, basic expert systems, and hybrid
approaches. A pure random forest approach, using 26 potential predictor variables, gave rise to a
groundwater arsenic distribution model with a very high degree of accuracy (AUC = 0.92), which is
consistent with known high groundwater arsenic hazard areas. These areas are mainly in southwest
Uruguay, including the Paysandú, Río Negro, Soriano, Colonia, Flores, San José, Florida, Montevideo,
and Canelones departments, where the Mercedes, Cuaternario Oeste, Raigón, and Cretácico main
aquifers occur. A hybrid approach separating the country into sedimentary and crystalline aquifer
domains resulted in slight material improvement in a high arsenic hazard distribution. However, a
further hybrid approach separately modelling shallow (<50 m) and deep aquifers (>50 m) resulted
in the identification of more high hazard areas in Flores, Durazno, and the northwest corner of
Florida departments in shallow aquifers than the pure model. Both hybrid models considering depth
(AUC = 0.95) and geology (AUC = 0.97) produced improved accuracy. Hybrid machine learning
models with expert selection of important environmental parameters may sometimes be a better
choice than pure machine learning models, particularly where there are incomplete datasets, but
perhaps, counterintuitively, this is not always the case.

Keywords: arsenic; groundwater; Uruguay; geostatistics; depth; geology

1. Introduction

Arsenic in groundwater utilized as drinking water constitutes a major public health
hazard in many parts of the world [1], most notably in Asia [2–6], but also in South
America [7,8]. While the countries most impacted in South America have been reported as
Argentina [9,10] and Chile [11], groundwater arsenic has also been identified as a public
health concern in Uruguay since 2007 [12,13]. High groundwater arsenic occurrences
in Uruguay have been documented in the Raigón and Mercedes aquifers in southwest
Uruguay [12,14]. Strong positive correlations were reported between arsenic, vanadium,
fluoride, and sodium in shallow wells up to 50 m in depth [15,16]. Quaternary ash deposits
were regarded as a possible primary source of geogenic arsenic in aquifers in the southern
part of the country [14,17,18].

The utilization of groundwater resources has increased rapidly since the 1950s. In
Uruguay, domestic drinking water demands in urban areas are mainly satisfied by the
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Obras Sanitarias del Estado (OSE), Uruguay’s national water supply company. OSE has
approximately 600 water outlets all around the country. For two cities in the northern
part of the country, Rivera and Artigas, such groundwater represents 100% and 80%,
respectively, of drinking water supplies. The main challenge OSE faces in relation to
groundwater quality is high levels of arsenic, followed by high concentrations of nitrate
and fluoride in some areas. Arsenic represents a water quality concern both in urban areas,
largely supplied by OSE, and in rural areas, where many householders rely on private
wells for drinking water.

Epidemiological studies have demonstrated that long-term exposure to arsenic can
lead to various skin diseases, cancers, and cardiovascular diseases [1]. Drinking arsenic-
contaminated groundwater or consuming crops, notably rice, grown in high-arsenic soils
and irrigated with arsenic-contaminated groundwater are the main intake pathways. The
provisional guideline value of arsenic in drinking water recommended by the World Health
Organization (WHO) is 10 µg/L [1]. It is expected that the Uruguayan regulations for
arsenic in drinking water could be reduced from 20 µg/L to 10 µg/L in 2021 [19].

Spatial geostatistical models have been used to predict the distribution of ground-
water arsenic at a global scale [20,21], at a regional scale [22,23], for individual countries
(India [24], Pakistan [25], Bangladesh [26], Cambodia [27], China [28], USA [29], and
Burkina Faso [30]), or for individual states [31]. Notwithstanding recent compilations of
groundwater arsenic data for Uruguay, a country-wide and country-specific groundwater
arsenic distribution model has not yet been developed. Recent global models [20] did not
utilize groundwater arsenic concentration data from Uruguay. Advances in the monitoring,
collation, and public availability of groundwater arsenic data by the OSE provide the
opportunity for much more comprehensive models of groundwater arsenic distribution in
Uruguay to be constructed.

Machine learning approaches (e.g., random forest) can and have been used to predict
the distribution of arsenic contamination in groundwater effectively [20,23,24,26,32]. To
date, most of the machine learning prediction models for the distribution of arsenic in
groundwater have been pure machine learning models. However, hybrid machine learning
models using expert selection for important factors, such as groundwater depth and
geology, are worthy of being studied to determine whether they have better predictive
performance than pure machine learning models.

The aim of this work was to develop and render detailed models of groundwater
arsenic distribution in Uruguay by both a pure machine learning method and a hybrid
machine learning method with expert selection for groundwater depth and geology, using
a comprehensive dataset of groundwater arsenic concentrations combined with various
environmental parameters. We also aimed to compare prediction performance between
pure and hybrid machine learning models (Table 1), and to explore potential differences
in groundwater arsenic distribution: (a) between shallow and deeper aquifers, and (b)
between sedimentary and crystalline aquifers in Uruguay.

Table 1. Names, types, and descriptions of the models generated in this study.

No. Model Code Name of Model Pure/
Hybrid

Expert
System Description

1 1A-ML-Pure Pure overall model Pure No Random forest model of groundwater arsenic
>10 µg/L in the whole of Uruguay

2 1B-ML-Pure
with Geol

Pure overall model with
sedimentary or crystalline

as a predictor
Pure No

Random forest model with one more predictor,
sedimentary or crystalline, of groundwater
arsenic >10 µg/L in the whole of Uruguay

3 2A-HML-Shal Hybrid shallow model Hybrid Yes
Random forest model of groundwater arsenic

>10 µg/L in shallow aquifers (≤50 m)
in Uruguay

4 2B-HML-Deep Hybrid deep model Hybrid Yes Random forest model of groundwater arsenic
>10 µg/L in deep aquifers (>50 m) in Uruguay
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Table 1. Cont.

No. Model Code Name of Model Pure/
Hybrid

Expert
System Description

5 2C-HML-
Depth Hybrid depth model Hybrid Yes Combination of hybrid shallow and deep models

6 3A-HML-Sed Hybrid sedimentary
model Hybrid Yes Random forest model of groundwater arsenic

>10 µg/L in sedimentary aquifers in Uruguay

7 3B-HML-Cry Hybrid crystalline model Hybrid Yes Random forest model of groundwater arsenic
>10 µg/L in crystalline aquifers in Uruguay

8 3C-HML-Geol Hybrid geology model Hybrid Yes Combination of hybrid sedimentary and
crystalline models

9 4-ES-Aqui Simple expert system
aquifer model Pure Yes

Combination of the percentage (%) of OSE
arsenic concentrations by pixel >10 µg/L in each
aquifer in Uruguay, used to compared with the

above models

2. Materials and Methods
2.1. Study Area

Uruguay is a country in the southeast part of South America, bordered by Argentina
to the west, Brazil to the east and north, the Río de la Plata estuary to the south, and the
Atlantic Ocean to the southeast. Uruguay has a population of around 3.3 million, of which
1.8 million live in its capital and largest city, Montevideo [33].

In Uruguay, the geological environments of the major aquifers used for water supply
reveal a great deal of variability, ranging from a sedimentary basin fill with good matrix
porosity and permeability to a crystalline basement with permeability largely related to
interconnected faults and fractures [17,34].

The country consists of three hydrogeological systems: the Paranaense, Meridional,
and Costero systems [35]. The Paranaense system, located in the northcentral and northeast
parts of the country, includes the Arapey fissured basaltic aquifer and the Guaraní, Mer-
cedes, and Salto sedimentary aquifers. The Guaraní aquifer is one of the largest freshwater
reservoirs in the world, and one of the most important aquifers in the country. The Guaraní
aquifer contains approximately 37,000 km3 of water, covering 1.2 million km2 in Argentina,
Brazil, Paraguay, and Uruguay [16]. The Meridional system underlies most of the coun-
try’s area, and is comprised largely of fissured aquifers of the Uruguayan Precambrian
cratons [34,36,37]. The Costero system is formed by: (i) the Raigón sedimentary aquifer
of the Santa Lucía Basin, which is the largest reserve of groundwater in the southern part
of the country; (ii) quaternary sediments of the Merín Basin; and (iii) the Chuy aquifer,
located on the eastern Uruguayan coast [17,34,35].

Groundwater arsenic, in general, may be associated with some possible anthropogenic
sources, such as fertilizer and pesticides, mining activities, and industrial/urban pollution
of large population centers [38]. However, to date, there has been little if any definite
evidence for anthropogenic arsenic in Uruguayan aquifers; rather, the natural origins of
groundwater arsenic have received widespread attention in Uruguay. The bulk concentra-
tion of arsenic in the upper continental crust is between 1.5 to 2 mg/kg [39], although it
can be much higher in certain igneous and metamorphic rocks, as well as some types of
sedimentary rocks, such as mudstones [40]. In Uruguay, high arsenic concentrations have
been found in the following geological units: (i) Precambrian basement rocks related to
sulfur-bearing minerals, notably pyrite and arsenopyrite; (ii) sedimentary aquifers (e.g.,
Raigón and Salto Aquifers) from the Tertiary Period to the present impacted by ash-fall de-
posits from Andes volcanic activities [41]; arsenic occurs within a large variety of minerals,
as well as being absorbed into clay and oxide-hydroxide minerals; and (iii) the Guaraní
aquifer, inferred from high arsenic concentrations detected in some water wells [16] and
suspected to be related to the alteration of sulfur minerals.
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Dissolved arsenic species in Uruguay aquifers are dominated by inorganic As(III) and
As(V), but with contrasting As(III)/As(V) ratios in different aquifer types [15]. As(V) has
been found to be the predominant species in the majority of the aquifers, particularly those
with elevated arsenic concentrations; low As(III)/As(V) ratios are typically associated
with elevated pH, possibly reflecting pH-dependent desorption processes as a major
mechanism for arsenic mobilization. As(III) has been found to be the predominant species
in groundwater from the Guaraní aquifer, while groundwater from the Mercedes aquifer
typically has been found to have intermediate As(III)/As(v) ratios [15].

2.2. Dataset Compilation

Geolocated (longitude/latitude) (Figure 1) groundwater total arsenic concentration
(tAs) data (n = 504), mostly (n = 432) accompanied by depth data, were kindly provided
by the Uruguay public water supply company, Obras Sanitarias del Estado (OSE). For
each well, the average of the arsenic concentrations from sampling carried out in 2018
and 2019 was used, although no systematic substantial variations in arsenic concentration
with the year of sampling were noted: (i) 140 arsenic data points exceeded a concentra-
tion of 10 µg/L; and (ii) 347 data points were located in the sedimentary aquifers and
157 data points were located in the crystalline aquifers. Figure S1 shows the frequency of
groundwater arsenic concentrations.

Figure 1. Location of groundwater with arsenic concentration data used in this study and the distribution with respect to
(a) main aquifers and (b) sedimentary and crystalline rocks in Uruguay [34]. Note that the Cretácico Arapey Formation is
composed of basalts, with vacuolar porosity and some interbedded sandstones. Although arguably ambiguous, we classify
these here as crystalline. Groundwater arsenic data are from OSE. Aquifer map (a) modified from [17].

In total, 26 potential predictors, selected based on established and proposed rela-
tionships with models of the release and enrichment of groundwater arsenic [2,42,43],
were used to produce models. The potential predictors were related to: (i) climate: actual
evapotranspiration [44], aridity [45], potential evapotranspiration [45], precipitation [44],
the Priestley–Taylor alpha coefficient [44], and temperature [45]; (ii) soil: calcisols [46],
clay [46], coarse fragments [46], fluvisols [46], gleysols [46], sand [46], silt [46], soil cation
exchange capacity [46], soil pH [46], soil organic carbon density [46], soil organic carbon
content [46], soil organic carbon stock [46], soil and sedimentary deposit thickness [47],
solonchaks [46], and water wilting points [46]; (iii) topography: elevation [48], slope [49],
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landform [49], and topographic wetness index [49]; and (iv) lithology [49]. The detailed
descriptions of the predictors are shown in Table S1.

2.3. Dataset Preparation

Prior to modelling, 504 arsenic concentrations were assigned to one square kilometer
pixels. Where more than one data point was available within a pixel, the geometric mean
of those values was taken to represent the groundwater arsenic concentration of the pixel,
resulting in a reduction of the number of groundwater arsenic data to 434. Of these, 26%
(115) groundwater arsenic concentrations exceeded 10 µg/L. The prediction of a binary
dependent variable can avoid some related uncertainties, therefore improving the accuracy
and effectiveness of models. The averaged arsenic concentrations were therefore converted
into a binary variable (0 or 1) according to whether the arsenic concentration was less than
or equal to 10 µg/L or greater than 10 µg/L. The proportions of arsenic concentrations by
pixel exceeding 10 µg/L in each department (administrative division) and the whole of the
country are listed in Table 2.

Table 2. Proportion of areas in each department of Uruguay with a high groundwater arsenic hazard: comparison of
modelled and observed values. Modelled high groundwater hazard areas were defined as those with a probability of
arsenic concentration greater than 10 µg/L, exceeding a cutoff value of 0.5 and a specific cutoff value where sensitivity is
equal to specificity (overall: 0.71; shallow: 0.67; deep: 0.73; sedimentary: 0.63; crystalline: 0.85). Observed values were based
on the proportion of high arsenic (>10 µg/L) in the departments, and the geometric mean of arsenic concentrations was
taken within a pixel (1 km2).

Country/
Department

Areas Exposed to Arsenic Concentrations Greater Than 10 µg/L

Percentage of Averaged
Arsenic Concentrations
Exceeding 10 µg/L (%)

Pure Overall
Model (%)

Hybrid
Shallow

Model (%)

Hybrid Deep
Model (%)

Hybrid Sedimentary and
Crystalline Models (%)

(Fraction Area with
Crystalline Aquifers)

Artigas 0.00 0.00 0.00 0.00 0.00 (n = 0)
Canelones 3.34−21.70 9.48−34.57 9.12−17.00 6.32−20.39 20.83 (n = 5)

Cerro Largo 0.00−0.01 0.00−0.01 0.00 0.00 0.00 (n = 0)
Colonia 24.22−42.16 30.81−51.17 29.98−41.95 30.44−40.88 (0.00−0.42) 45.24 (n = 19)
Durazno 0.00−2.97 0.74−13.41 0.00−1.08 0.00−0.65 0.00 (n = 0)

Flores 0.82−20.87 8.70−49.27 0.08−1.66 0.77−8.36 (0.00−1.12) 46.67 (n = 7)
Florida 0.12−4.24 2.35−13.17 0.00−0.08 0.36−2.09 (0.00−0.15) 37.50 (n = 9)

Lavalleja 0.00−0.01 0.00−0.54 0.00−0.02 0.00−0.01 5.00 (n = 1)
Maldonado 0.00 0.00−0.09 0.00−0.44 0.00 n.a.
Montevideo 0.00−29.55 0.94−14.57 69.23−99.73 0.81−6.88 n.a.
Paysandú 6.65−17.24 0.19−5.82 11.11−19.56 11.31−18.33 36.84 (n = 7)

Rivera 0.00 0.00−0.09 0.00 0.00 3.57 (n = 1)
Rocha 0.00−0.11 0.00−0.15 0.00−0.86 0.00 2.38 (n = 1)

Río Negro 31.43−51.04 11.94−35.09 42.63−49.27 37.38−49.17 60.00 (n = 18)
Salto 0.00 0.00 0.00 0.00 0.00 (n = 0)

San José 14.54−33.84 29.49−50.88 16.70−25.87 24.38−38.64 67.65 (n = 23)
Soriano 45.63−72.13 38.86−75.96 59.15−72.41 50.06−64.35 (0.00−0.02) 69.70 (n = 23)

Tacuarembó 0.00−0.23 0.00−0.31 0.00−1.02 0.00−0.41 0.00 (n = 0)
Treinta y Tres 0.00 0.00−0.04 0.00−1.67 0.00−0.01 (0.00−0.01) 5.56 (n = 1)

Uruguay 6−12 5−14 8−11 8−11 26 (n = 115)

The above dataset was used to develop a pure overall model to predict the distribution
of groundwater arsenic in the whole country. For comparison to hybrid models with expert
parameter selection and robust accounting for potential differences in groundwater arsenic
distribution between shallow and deep and between sedimentary and crystalline aquifers
in Uruguay, four other subsets of the data were prepared and modelled: (i) shallow aquifers
(≤50 m, 234 arsenic concentrations); (ii) deep aquifers (>50 m, 153 arsenic concentrations);
(iii) sedimentary aquifers (300 arsenic concentrations); and (iv) crystalline aquifers (134 ar-
senic concentrations). Then, the five datasets were randomly split into training (80%) and
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testing (20%) datasets, maintaining the same ratio of low to high values in the entire set
and the subsets [24,31].

2.4. Machine Learning (Random Forest) Modelling

A random forest model is an ensemble of decision trees, and is a classification model
that can be used to predict binary target variables. In a random forest model, the binary
dependent variable (groundwater arsenic concentration in this study) is split based on
both independent variables at each branch and their cutoff values. In a random forest,
randomness is introduced into the growth of each individual decision tree by: (i) only two
or three data rows in the training dataset being used to grow an individual tree (some of
which are selected multiple times due to random selection with replacement of data rows);
and (ii) a restricted number of predictors and randomly chosen predictor combinations at
each branch, leading to trees developing differently. Introduced randomness and taking
the classification average of the class prediction results of all trees as the final result
effectively eliminates multicollinearity amongst predictor variables, producing a more
robust model. [50,51]

In order to comprehensively understand the distribution of arsenic in groundwater,
compare the prediction performance between pure and hybrid machine learning models,
and discover differences in groundwater arsenic distribution between shallow and deep
and between sedimentary and crystalline aquifers in Uruguay, we first established five
models (Table 1): (i) pure overall (1A-ML-Pure) (Figure 2) hybrid, (ii) shallow (2A-HML-
Shal), and (iii) deep (2B-HML-Deep) models with expert selection for groundwater depth
(Figure 3); and hybrid (iv) sedimentary (3A-HML-Sed) and (v) crystalline (3B-HML-Cry)
models with expert selection for surface geology (Figure 4).

Figure 2. Pure overall model (1A-ML-Pure) of Uruguay groundwater arsenic concentrations: (a) map of
probability of groundwater arsenic concentrations exceeding 10 µg/L; (b) map of high groundwater
arsenic hazard areas (defined here by a probability exceeding cutoff values of 0.50 or 0.71).

The optimal number of predictors at each branch of the trees grown in a random forest
was determined by trying values between 1 and 26 (the total number of potential predictors)
and comparing the out-of-bag (OOB) error results. The number with the smallest OOB error,
which produced the most accurate model, was then used as the optimal number [24]. The
random forest models produced in this study encompassed 1001 trees. These models were
applied to create the probability maps of groundwater arsenic concentrations exceeding
10 µg/L in Uruguay.

Then, the probability maps were converted into occurrence maps of groundwater
arsenic concentrations exceeding 10 µg/L by using two approaches: (i) a default probability
cutoff value of 0.5, and (ii) the cutoff where sensitivity was equal to specificity [24,31],
representing a model that arguably classifies high and low arsenic values equally well.
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Figure 3. Hybrid machine learning models of Uruguay groundwater arsenic concentrations in shallow
(2A-HML-Shal; ≤50 m) and deep (2B-HML-Deep; >50 m) aquifers. Shallow aquifers: (a) map of
probability of groundwater arsenic concentrations exceeding 10 µg/L; (b) map of high groundwater
arsenic hazard areas (defined here by a probability exceeding cutoff values of 0.50 or 0.67); deep aquifers:
(c) map of probability of groundwater arsenic concentrations exceeding 10 µg/L; (d) map of high
groundwater arsenic hazard areas (defined here by a probability exceeding cutoff values of 0.50 or 0.73).

The accuracy of each random forest model was evaluated by the area (AUC) under
the receiver operating characteristic (ROC) curve calculated on its testing dataset, which is
produced in turn by plotting sensitivity and specificity against the probability cutoff from
0 to 1. The area under the ROC curve (AUC) in general varies between 0.5 (for a random
model) and 1 (for a perfect model) [52]. An AUC < 0.5 can theoretically be achieved for a
model that is worse than random.

2.5. The Importance of the Predictors

The importance of the predictors in the random forest models were assessed by two
statistical indices: (i) the decrease in accuracy, and (ii) the decrease in Gini node impurity.
Both decreases in the two indexes were normalized by their largest values, respectively.
Higher positive values of the decreases in accuracy and Gini node impurity indicated
a greater relative importance of the predictor. Nevertheless, predictors with a negative
decrease in value do not benefit the model, and were therefore removed from the models.

2.6. The Comparison of Prediction Performance between Pure and Hybrid Machine Learning Models

Hybrid machine learning models using expert selection for important factors, in this
case depth and geology, are worthy of being studied to determine whether they have better
predictive performance than pure ones. We combined shallow with deep and sedimentary
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with crystalline testing datasets to calculate AUC values of hybrid depth (2C-HML-Depth)
and geology (3C-HML-Geol) models, respectively, and then compared with the AUC value
of the pure overall model (1A-ML-Pure). Furthermore, another pure overall model with
sedimentary or crystalline as the new predictor (1B-ML-Pure with Geol) was created to
compare with the hybrid geology (sedimentary and crystalline; 3C-HML-Geol) models, so
that the impact of expert selection of groundwater geology (sedimentary and crystalline)
could be evaluated intuitively and effectively. Hybrid machine learning models were also
compared with a simple expert system aquifer model (4-ES-Aqui), which consisted of the
percentage (%) of OSE arsenic concentrations by pixel exceeding 10 µg/L in each aquifer in
Uruguay (Table 1).

Figure 4. Hybrid machine learning models of Uruguay groundwater arsenic concentrations in sed-
imentary (3A-HML-Sed) and crystalline (3B-HML-Cry) aquifers. Sedimentary aquifers: (a) map of
probability of groundwater arsenic concentrations exceeding 10 µg/L; (b) map of high groundwater
arsenic hazard areas (defined here by a probability exceeding cutoff values of 0.50 or 0.63); crystalline
aquifers: (c) map of probability of groundwater arsenic concentrations exceeding 10 µg/L; (d) map of
high groundwater arsenic hazard areas (defined here by a probability exceeding cutoff values of 0.50
or 0.85); hybrid machine learning and expert system model for all aquifers (3C-HML-Geol): (e) map
of probability of groundwater arsenic concentrations exceeding 10 µg/L; (f) map of high groundwater
arsenic hazard areas; (e) was obtained by combining (a,c); (f) was obtained by combining (b,d).
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3. Results and Discussion
3.1. Pure Overall Machine Learning Model

A total of 434 averaged groundwater arsenic concentrations (26% > 10 µg/L) and their
matching potential predictors were used to develop the pure overall model (1A-ML-Pure)
for the whole of Uruguay. The optimal number (producing the lowest out-of-bag (OOB)
error) of predictors at each branch of the trees grown in the pure overall random forest
was 19. The comparison of the OOB error results by varying the branch predictor number
between 1 to 26 is shown in Table S2. Two potential predictors, calcisols and fluvisols, with
negative mean decreases in accuracy and/or Gini node impurity did not contribute to the
model, hence, they were removed from the model (1A-ML-Pure).

The cross-validation results of the pure overall model (1A-ML-Pure) as applied to
its testing dataset are plotted in Figure S2a. The area under the ROC (receiver operator
characteristic) curve (AUC) was 0.92. This was somewhat better than that (AUC = 0.89)
for a recent global groundwater arsenic random forest model, the dataset of which does
not contain any arsenic concentration from Uruguay [20]. The pure overall model (1A-ML-
Pure) presented here, therefore, provided a better prediction result at the country-specific
scale for Uruguay. This is perhaps not a surprising result, given the global diversity of
processes leading to elevated groundwater arsenic concentrations.

The prediction model (Figure 2) using cutoff values of 0.5 and 0.71 (Figure S3a)
captured a markedly large area of high hazard levels of groundwater arsenic in southwest
Uruguay, including the Paysandú, Río Negro, Soriano, Colonia, Flores, San José, Florida,
Montevideo, and Canelones departments, where the Mercedes, Cuaternario Oeste, Raigón,
and Cretácico main aquifers exist (Figure 1). About 35–60% of Mercedes, 53–88% of
Cuaternario Oeste, 25–57% of Raigón, and 2–15% of Cretácico aquifer areas were modelled
as high groundwater arsenic (>10 µg/L) hazard areas (Table 3). Meanwhile, relatively
small areas of high groundwater arsenic hazard were also indicated in the Tacuarembó,
Durazno, and Rocha departments. The Raigón aquifer, located in the San José department,
is the most exploited groundwater resource in the country. The areas exposed to arsenic
concentrations greater than 10 µg/L in the departments/country and aquifers generated
by the pure overall model (1A-ML-Pure) are listed in Tables 2 and 3, respectively.

Table 3. Proportion of areas in each aquifer of Uruguay with a high (>10 µg/L) groundwater arsenic hazard: comparison
of modelled and observed values. Modelled high groundwater hazard areas were defined as those with a probability of
arsenic concentration greater than 10 µg/L, exceeding a cutoff value of 0.5 and a specific cutoff value where sensitivity is
equal to specificity (overall: 0.71; shallow: 0.67; deep: 0.73; sedimentary: 0.63; crystalline: 0.85). Observed values were based
on the proportion of high arsenic (>10 µg/L) in the aquifers, and the geometric mean of arsenic concentrations was taken
within a pixel (1 km2).

Aquifer

Areas Exposed to Arsenic Concentrations Greater Than 10 µg/L
Percentage (Number)
of Averaged OSE Ar-
senic Concentrations
Exceeding 10 µg/L (%)

Pure Overall
Model (%)

Hybrid
Shallow

Model (%)

Hybrid Deep
Model (%)

Hybrid Sedimentary and
Crystalline Models (%)

(Fraction Area with
Crystalline Aquifers)

Arapey 0.01−0.16 0.02−0.96 0.01−0.65 0.01−0.04 0.00 (n = 0)
Basamento Cristalino 1.20−5.45 2.14−11.83 2.32−4.69 1.07−2.30 (0.00−0.19) 5.93 (n = 7)

Chuy 0.00 0.00 0.00−1.97 0.00 0.00 (n = 0)
Cretácico 2.23−14.96 7.20−26.11 5.59−9.88 4.29−14.90 33.33 (n = 6)

Cuaternario Este 0.00−0.08 0.00−0.56 0.00−1.73 0.00 4.00 (n = 1)
Cuaternario Oeste 53.16−88.45 69.09−90.48 79.25−97.43 68.34−85.67 100.00 (n = 4)
Devónico-pérmico 0.00−0.53 0.04−1.45 0.00−0.38 0.00−0.39 2.22 (n = 1)

Guaraní 0.00−0.04 0.00 0.00−0.03 0.01−0.13 0.00 (n = 0)
Mercedes 35.10−60.24 23.19−50.35 46.46−57.19 43.04−58.73 65.69 (n = 67)

Raigón 25.12−56.52 50.64−73.28 29.17−45.40 43.24−66.63 85.29 (n = 29)
Salto 0.00 0.00 0.00 0.00 0.00 (n = 0)
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The high groundwater arsenic occurrence in southwestern Uruguay is likely related
to continental sediments containing volcanic ashes, as in the Puelche aquifer in Argentina.
This is consistent with positive correlations between arsenic and chemical elements, such
as vanadium, typically encountered in volcanic ashes [18,53].

The importance of the predictors in the pure overall model (1A-ML-Pure) was assessed
by the normalized mean decreases in accuracy, as well as Gini node impurity, which are
displayed together in Figure 5a. The importance of aridity significantly ranks above
the others, followed by the soil pH and topographic wetness index. However, the least
important predictors of those included for consideration were soil water capacity and
solonchaks. Aridity may accelerate the evaporation of surface waters, and, therefore,
increase arsenic concentrations in groundwater recharge. In general, large-scale geogenic
groundwater, particularly those related to oxidizing conditions, tend to occur in inland or
closed basins in arid or semi-arid areas. Soil pH can impact the desorption of arsenic from
mineral oxides, especially Fe oxides [42].

3.2. Hybrid Machine Learning Model with Expert Selection of Depth (Shallow and Deep)

In Uruguay, high arsenic concentrations (defined here as >10 µg/L) were more likely
to be observed in shallow (31%; n = 72 of 234) than deep (24%; n = 36 of 153) aquifers.
For some aquifers, notably the Basamento Cristalino, Raigón, and Devónico-pérmico,
50 m might be able to be used as a reasonably effective single depth cutoff to distinguish
whether high arsenic is likely to occur (Figure S4). Two datasets, 234 averaged arsenic
concentrations with depths ≤ y50 m and 153 averaged arsenic concentrations with depths
>50 m, were therefore used to produce the hybrid shallow (2A-HML-Shal; ≤50 m) and
deep (2B-HML-Deep; >50 m) aquifer machine learning models.

For the hybrid shallow model (2A-HML-Shal), the number of predictors at each
branch of the decision trees was three, which produced the most accurate model (for the
comparison, see Table S2). The predictors—coarse fragments, soil water capacity, and
landform—with negative mean decreases in accuracy and/or Gini node impurity did not
benefit the model and were removed. However, for the hybrid deep model (2B-HML-Deep),
the number of predictors at each branch was 15, and the predictors—calcisols, slope, and
landform—were excluded from the model due to their negative mean decreases in accuracy
and/or Gini node impurity. The AUC values of hybrid shallow (2A-HML-Shal; ≤50 m) and
deep (2B-HML-Deep; >50 m) aquifer models were 0.92 (Figure S2d) and 0.96 (Figure S2e),
respectively. These values are close to 1 (perfect predictive model), reflecting that both
of these models have an excellent predictive ability, even better than the pure machine
learning overall model (1A-ML-Pure).

The arsenic probability and occurrence maps using cutoffs of 0.50 or 0.67 (Figure
S3c) for shallow aquifers and 0.50 or 0.73 (Figure S3d) for deep aquifers, developed by
the hybrid shallow (2A-HML-Shal) and deep (2B-HML-Deep) models, are displayed in
Figure 3. Both shallow and deep aquifers possessed similar distributions of high arsenic
groundwater in the four departments in southwestern Uruguay: Paysandú, Río Negro,
Soriano, and Colonia, which are provided for by the Mercedes and Cuaternario Oeste
aquifers. Furthermore, high arsenic occurs more in shallow groundwater in the San José
(where the Raigón aquifer is located), Canelones (cf. Cretácico aquifer), the northwest
corner of Florida, west Durazno, and Flores departments. On the contrary, the junction
of the Treinta y Tres and Rocha departments, which is underlain by the Cuaternario Este
aquifer, and the junction of the Tacuarembó and Durazno departments, underlain by
the Arapey aquifer, tended to be characterized by higher arsenic in the deep aquifers.
The areas exposed to groundwater arsenic concentrations greater than 10 µg/L in the
departments/country and aquifers generated by hybrid shallow (2A-HML-Shal) and deep
(2B-HML-Deep) models are listed in Tables 2 and 3, respectively.

High hazard areas generated by the hybrid deep aquifer model (2B-HML-Deep) were
almost completely overlapped by high hazard areas predicted by the pure overall model
(1A-ML-Pure), however, high hazard areas of the hybrid shallow model (2A-HML-Shal) far
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exceeded those of the pure overall model (1A-ML-Pure), especially in the Flores, Durazno,
and the northwest corner of Florida departments. The hybrid shallow model (2A-HML-
Shal) had better utility in identifying potential high hazard areas, which was also one of
the purposes of modelling at different depths. Moreover, the AUC value (0.95) of hybrid
depth models (2C-HML-Depth; Figure S2c), using combined testing datasets, was greater
than that of the pure overall model (1A-ML-Pure; Figure S2a), showing a better accuracy of
the hybrid models, with expert selection of depth as a key variable.

Figure 5. Normalized importance of predictors in terms of mean decrease values in accuracy and in Gini node impurity in
the (a) pure overall model (1A-ML-Pure); (b) pure overall model with sedimentary or crystalline as the predictor (1B-ML-
Pure with Geol); (c) hybrid shallow model (2A-HML-Shal); (d) hybrid deep model (2B-HML-Deep); (e) hybrid sedimentary
model (3A-HML-Sed); and (f) hybrid crystalline model (3B-HML-Cry). Decreases in both the mean values in accuracy and
in Gini node impurity were normalized by their largest value, respectively.
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The normalized mean decreases in accuracy and Gini node impurity of predictors
reflecting their importance for both hybrid shallow (2A-HML-Shal) and deep (2B-HML-
Deep) models are shown together in Figure 5c,d. Aridity, precipitation, soil pH, and the
topographic wetness index were of relatively high importance in both models. Meanwhile,
the ranks of importance of soil cation exchange capacity, sand, soil organic carbon density,
clay, and soil and sedimentary deposit thickness in the two models were obviously different
(rank difference >5).

3.3. Hybrid Machine Learning Model with Expert Selection of Geology (Sedimentary and Crystalline)

High arsenic groundwater tended to appear more in sedimentary (36%; n = 108 of 300)
than crystalline (5%; n = 7 of 134) aquifers, this potentially being related to different pre-
dominant processes of mobilization. Separate datasets of averaged arsenic concentrations
in sedimentary aquifers and in crystalline aquifers were therefore used to develop hybrid
sedimentary (3A-HML-Sed) and crystalline (3B-HML-Cry) models, respectively.

The hybrid sedimentary model (3A-HML-Sed) performing most accurately was an
ensemble of decision trees with two predictors at each branch (Table S2). Calcisols with
negative importance indexes (mean decreases in accuracy and/or Gini node impurity) were
removed from the hybrid sedimentary model (3A-HML-Sed). For the hybrid crystalline
model (3B-HML-Cry), the number of predictors at each branch of the decision trees was
three, which produced the most accurate model (Table S2). The predictors soil and sedimen-
tary deposit thickness, coarse fragments, slope, solonchaks, and landform were excluded
from the hybrid crystalline model (3B-HML-Cry) because of their negative importance
values. The AUC values of the two models were 0.91 (Figure S2g) and 0.98 (Figure S2h),
respectively, indicating good classification ability (close to 1).

The probability and occurrence maps, defined by cutoffs of 0.5 or 0.63 (Figure S3e) for
sedimentary aquifers and 0.5 or 0.85 (Figure S3f) for crystalline aquifers, of groundwater
arsenic exceeding 10 µg/L in the sedimentary and crystalline aquifers are plotted in
Figure 4. Comparing the results of the hybrid sedimentary (3A-HML-Sed) and crystalline
(3B-HML-Cry) models, almost all (>99%) high arsenic hazard areas were in sedimentary
aquifers. Only limited areas of high groundwater arsenic were modelled in crystalline
aquifers in the southwest corner of the Colonia department and the junction of Florida and
Flores departments. The two prediction maps of the hybrid sedimentary (3A-HML-Sed)
and crystalline (3B-HML-Cry) aquifer models were also combined to form a complete
prediction for the whole of Uruguay (Figure 4e,f). The distribution of high arsenic hazard
areas of the combined maps was similar to that of the pure overall model (1A-ML-Pure).
From the occurrence maps (Figure 4f vs. Figure 2b), only slight differences existed in the
Durazno, Flores, and northwest corner of Florida departments. The so-derived hybrid
model (3C-HML-Geol) made a more accurate prediction than the pure overall model (1A-
ML-Pure), as indicated by its great AUC value of 0.97 (Figure S2f). The areas exposed
to arsenic concentrations greater than 10 µg/L in the departments/country and aquifers
generated by hybrid sedimentary (3A-HML-Sed) and crystalline (3B-HML-Cry) models
are listed in Tables 2 and 3, respectively.

The concentrations of arsenic in sedimentary rocks typically ranged between 5 and
10 mg/kg [54], slightly above average terrestrial abundance. Arsenic in sedimentary rocks
can be released into groundwater through water–rock interactions in the aquifers. Under
the arid conditions in South America, both silicate and carbonate reactions are prominent,
and the pH of groundwater often tends to be high. In such oxidizing groundwater, arsenic
predominantly exists as As(V) [55]. Metal oxides in the sediments, particularly Fe and Mn
oxides and hydroxides, are regarded as the main sources of dissolved arsenic as a result of
desorption in the high pH groundwater environment [42].

The importance of the various predictors in the hybrid sedimentary (3A-HML-Sed)
and crystalline (3B-HML-Cry) models were assessed by the normalized mean decrease in
accuracy, as well as in Gini node impurity (Figure 5e,f). Aridity, precipitation, soil cation
exchange capacity, potential evapotranspiration, and the topographic wetness index were
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of relatively high importance in both models. Meanwhile, the ranks of importance of silt,
temperature, and soil water capacity in the two models were obviously different (rank
difference >5).

3.4. Comparison of Prediction Performance between Pure and Hybrid Machine Learning Models

A simple expert system model (4-ES-Aqui) based upon aquifer type indicated the
following probabilities of high (>10 µg/L) groundwater arsenic concentrations being found
in the following aquifers: Basamento Cristalino (6%), Cretácico (33%), Cuaternario Este
(4%), Cuaternario Oeste (100%), Devónico-pérmico (2%), Mercedes (66%), and Raigón
(85%) aquifers (Figure S6). Even though this model has a good performance (AUC = 0.90,
calculated on the entire dataset), spatial geostatistical models can better reflect the spatial
variability of groundwater arsenic within aquifers.

In order to effectively evaluate the impact of expert selection of groundwater geology
(sedimentary and crystalline) in the hybrid models, another pure overall model with
sedimentary or crystalline as the new predictor (1B-ML-Pure with Geol) was created to
compare with the hybrid geology (sedimentary and crystalline; 3C-HML-Geol) models. The
probability and occurrence maps of this new pure overall model (1B-ML-Pure with Geol)
are shown in Figure S5. These are very similar to those of the previous pure overall model
(1A-ML-Pure; Figure 2), and this may be mainly because the importance of sedimentary or
crystalline is relatively low in the new pure overall model (1B-ML-Pure with Geol), ranking
as the ninth least important of the predictor variables considered (Figure 5b). However, we
found that high groundwater arsenic was obviously more likely to occur in sedimentary
(36%; n = 108 of 300) than crystalline (5%; n = 7 of 134) aquifers (Figure 1b). Sedimentary or
crystalline as a predictor in the pure model (1B-ML-Pure with Geol) could not reflect its
actual individual importance, so hybrid models with expert selection for sedimentary and
crystalline as a categorical variable may be a better model choice.

Two pure overall (with (1B-ML-Pure with Geol)/without (1A-ML-Pure) sedimentary
or crystalline as the new predictor), hybrid depth (2C-HML-Depth), and hybrid geology
(3C-HML-Geol) models were validated based on their combined testing datasets. Their
AUC values are shown in Table 4 and Figure S2. The AUC values of hybrid models were
slightly higher than that of the pure models. Although the differences in AUC values were
not large, the hybrid machine learning models had slightly better accuracy and predictive
performance than the pure models. Therefore, hybrid machine learning models with
expert selection of important environmental parameters warrant further study and use for
predicting groundwater contaminants, such as arsenic.

Table 4. Comparison of the AUC values of two pure overall and two hybrid depth and geology models based on their
combined testing datasets.

Pure/Hybrid Model Machine Learning Models AUC Values

Pure Overall model without sedimentary or crystalline as the new predictor
(1A-ML-Pure) 0.92

Pure Overall model with sedimentary or crystalline as the new predictor
(1B-ML-Pure with Geol) 0.92

Hybrid Depth (shallow and deep aquifer) model (2C-HML-Depth) 0.95
Hybrid Geology (sedimentary and crystalline aquifer) model (3C-HML-Geol) 0.97

4. Conclusions and Limitations

Geostatistical models of the distribution of groundwater arsenic in Uruguay were
generated by a variety of basic expert system and machine learning approaches in order to
provide an overview of high arsenic hazard areas in Uruguay. A pure random forest model
(1A-ML-Pure) using 26 potential predictor variables gave rise to a groundwater arsenic
distribution model with a very high degree of accuracy (AUC = 0.92), and was consistent
with known high groundwater arsenic hazard areas and with the higher prevalence of high
arsenic groundwater in sedimentary rather than crystalline aquifers. Obvious differences
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in high groundwater arsenic hazard areas were also modelled between shallow and deep
aquifers. The modelled distribution of groundwater arsenic concentrations was more
accurate, and gave rise to a more detailed spatial resolution of groundwater arsenic hazard
areas than simple expert system models, based upon aquifer classification alone.

A hybrid approach (3C-HML-Geol model), separating the country into sedimentary
and crystalline aquifer domains, resulted in improved accuracy (AUC = 0.97) and a slight
material improvement in the modelled distribution of high arsenic hazard areas compared
to the pure machine learning model (1A-ML-Pure). A further hybrid approach (2C-HML-
Depth model) separately modelling shallow (≤50 m) and deep (>50 m) aquifers also
resulted in marginally improved accuracy (AUC = 0.95).

Hybrid machine learning models with expert selection for sedimentary and crystalline
(3C-HML-Geol) with higher AUC values (0.97) was a better choice than the pure over-
all model with sedimentary or crystalline as the new predictor (1B-ML-Pure with Geol;
AUC = 0.92). Moreover, hybrid models take the dependence of groundwater arsenic on
depth and geology into account more substantially and comprehensively.

Therefore, hybrid machine learning models with expert selection of important environ-
mental parameters may sometimes be a better choice than pure machine learning models,
particularly where there are incomplete datasets, and where the processes controlling (and,
hence, the predictors better modelling) groundwater arsenic concentrations are materially
different for different areas and/or depths. Perhaps, counterintuitively, this is not always
the case. Hybrid geospatial models deserve to be further studied and used for predicting
groundwater contaminants, such as arsenic.

Although this study is based on arsenic concentration data widely distributed across
the country, aquifer heterogeneity can cause material changes in the concentration of
arsenic in groundwater within a short distance, limiting the small-scale predictive accuracy
of the models, therefore, targeted testing is still needed to determine whether a particular
well is highly contaminated with arsenic.

While the data available have supported the development of country-wide models, it
is noted that the dataset is dominated by shallow wells, with some areas of the country
having very limited deep well data. Obtaining further data from deeper wells in these
areas would help to improve the model in these areas, although it is recognized that there
will be required costs and inputs in terms of money, time, human resources, and technical
support to achieve this.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
441/13/4/527/s1, Figure S1: Frequency distribution of groundwater arsenic concentrations in the
entire OSE dataset for Uruguay, Figure S2: The cross-validation results. ROC curves and AUC values
of: (a) pure overall (1A-ML-Pure); (b) pure overall with sedimentary or crystalline as a predictor
(1B-ML-Pure with Geol); (d) hybrid shallow (2A-HML-Shal); (e) hybrid deep (2B-HML-Deep); (g)
hybrid sedimentary (3A-HML-Sed); (h) hybrid crystalline (3B-HML-Cry) machine learning models
calculated on their testing datasets. The AUC values of (c) hybrid depth (2C-HML-Depth), and (f)
hybrid geology (3C-HML-Geol) machine learning models calculated on their combined (i.e., deep and
shallow for depth; sedimentary and crystalline for geology) testing datasets, Figure S3: Performance
of: (a) pure overall (1A-ML-Pure); (b) pure overall with sedimentary or crystalline as a predictor (1B-
ML-Pure with Geol); (c) hybrid shallow (2A-HML-Shal); (d) hybrid deep (2B-HML-Deep); (e) hybrid
sedimentary (3A-HML-Sed); (f) hybrid crystalline (3B-HML-Cry) models using entire modelling
dataset, Figure S4: Depth vs. arsenic concentration for the main aquifers in Uruguay. Data from
OSE, Figure S5: Pure overall model with sedimentary or crystalline as a predictor (1B-ML-Pure
with Geol) of Uruguay groundwater arsenic concentrations: (a) map of probability of groundwater
arsenic concentration exceeding 10 µg/L; (b) map of high groundwater arsenic hazard areas (defined
here by a probability exceeding cutoff values of 0.50 or 0.71), Figure S6: Proportion of areas in each
aquifer of Uruguay with high groundwater arsenic hazard: comparison of: (a) simple expert selection
aquifer model (4-ES-Aqui; observed value); and (b) pure overall (1A-ML-Pure); (c) hybrid geology
(sedimentary and crystalline; 3C-HML-Geol); (d) hybrid shallow (2A-HML-Shal); and (e) hybrid deep
(2B-HML-Deep) models. Simple expert selection model (observed value) based on the percentage
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of high arsenic (>10 µg/L) in the aquifers, and geometric mean of arsenic concentrations was taken
within a pixel (1 km2). Modelled high groundwater hazard areas defined as those with a probability
of arsenic concentration being than 10 µg/L exceeding a cutoff value of 0.5 and a specific cutoff value
where sensitivity is equal to specificity (overall: 0.71; shallow: 0.67; deep: 0.73; sedimentary: 0.63;
crystalline: 0.85). The mean of modelled high groundwater hazard areas defined by two cutoffs were
used to produce the (b–e) and been shown in Table S3, Table S1: Potential predictors used in the
machine learning models. Descriptions and data sources are listed. Predictors are grouped into 4
categories: climate, soil, topography, and lithology, Table S2: Comparison of number of available
predictors at each branch in random forest models from 1 to 26 (the total number of potential
predictors). The number shown in grey shadow is the optimum number of predictors at each branch
in the model, Table S3: Proportion of areas of each aquifer of Uruguay with high groundwater arsenic
hazard: comparison of: (a) simple expert selection model (4-ES-Aqui; observed values); and ((b)
pure overall (1A-ML-Pure); (c) hybrid geology (sedimentary and crystalline; 3C-HML-Geol); (d)
hybrid shallow (2A-HML-Shal); and (e) hybrid deep (2B-HML-Deep) models. Simple expert selection
aquifer model (observed value) based on the percentage of high arsenic (>10 µg/L) in the aquifers,
and geometric mean of arsenic concentrations was taken within individual 1 km2 pixels. Modelled
high groundwater hazard areas defined as those with a probability of arsenic concentration being
than 10 µg/L exceeding a cutoff value of 0.5 and a specific cutoff value where sensitivity is equal
to specificity (overall: 0.71; shallow: 0.67; deep: 0.73; sedimentary: 0.63; crystalline: 0.85). Mean of
modelled high groundwater hazard areas defined by the two cutoffs are shown.
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