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Abstract: Accurate simulation of pollution load at basin scale is very important for controlling
pollution. Although data-driven models are increasingly popular in water environment studies,
they are not extensively utilized in the simulation of pollution load at basin scale. In this paper, we
developed a data-driven model based on Long-Short Term Memory (LSTM)-Back Propagation (BP)
spatiotemporal combination. The model comprises several time simulators based on LSTM and a
spatial combiner based on BP. The time series of the daily pollution load in the Zhouhe River basin
during the period from 2006 to 2017 were simulated using the developed model, the BP model, the
LSTM model and the Soil and Water Assessment Tool (SWAT) model, independently. Results showed
that the spatial correlation (i.e., Pearson’s correlation coefficient is larger than 0.5) supports using a
single model to simulate the pollution load at all sub-basins, rather than using independent models
for each sub-basin. Comparison of the LSTM-BP spatiotemporal combination model with the BP,
LSTM and SWAT models showed that the performance of the LSTM model is better than that of the
BP model and the LSTM model can obtain comparable performance with the SWAT model in most
cases, whereas the performance of the LSTM-BP spatiotemporal combination model is much better
than that of the LSTM and SWAT models. Although the variation of the simulated pollution load
with the LSTM-BP model is high under different hydrological periods and precipitation intensities,
the LSTM-BP model can track the temporal variation trend of pollution load accurately (i.e., the
RMSE is 6.27, NSE is 0.86 and BIAS is 19.46 for the NHj load and the RMSE is 20.27, NSE is 0.71 and
BIAS 36.87 is for the TN load). The results of this study demonstrate the applicability of data-driven
models, especially the LSTM-BP model, in the simulation of pollution load at basin scale.

Keywords: long short-term memory-back propagation; spatiotemporal combination; pollution load
simulation; data-driven model

1. Introduction

Accurate simulation of pollution load at basin scale is very important for controlling
pollution. At present, the estimation of pollution load in a basin is mainly performed using
physical models, such as the Hydrological Simulation Program-Fortran (HSPF) model [1-3],
the Soil and Water Assessment Tool (SWAT) model [4-6] and the Agricultural Non-Point
Source (AGNPS) model [7-9]. However, these models describe the hydrological process
and the transport processes of pollutants with complex physical mechanisms. Thus, these
models are usually sensitive to parameters, data and resolution [10]. Moreover, they require
great effort in terms of model calibration because of the uncertainty in model structure and
parameter estimation [11].

Data-driven models can learn complex associations between inputs and outputs in-
stantly and work with high accuracy even without prior knowledge of the underlying
processes [12]. However, despite their advantages, the application of data-driven models
in simulating pollution load at basin scale is still scarce. Several data-driven models, such
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as the Support Vector Machine (SVM) model [13], the Auto-Regressive Moving Average
(ARMA) model [14] and the Back Propagation Neural Network (BPNN) model [15], have
been applied in different domains of water environment modeling. These conventional
machine-learning models achieved similar or even better performance compared with
the physical- or process-based models in many cases, including the water quality simula-
tion [15], the soil water and groundwater simulation [16,17] and the runoff simulation [18].
However, conventional machine-learning models are not specifically designed for process-
ing temporal data and cannot retain temporal information, which is important in the case
of time-series problems [19].

Compared with conventional machine-learning models, deep-learning models, such as
the Recurrent Neural Network (RNN) model [19] and the Long-Short Term Memory Neural
Network (LSTMNN) model [20], are characterized by high dimensionality, nonlinearity;,
self-adaptability and extensive inter-connectivity among neurons [21]. The RNN model
solves the problem of conventional machine-learning models not being able to retain
temporal information by establishing weight connection between neurons [19]. However,
the RNN model is not problem-free. The primary challenge to RNN is exploding and
vanishing gradient problem [22]. The LSTM model, by adding gate functions to its memory
unit, overcomes the issues encountered by RNN, as well as preserving the long-term
temporal information of the time-series data [23]. Due to the unique network structure, the
LSTM model is more suitable for simulating hydrological events with long time series [24].
In addition, Kratzert et al. [25] trained LSTM models to simulate the rainfall-runoff process
for hundreds of basins over the U.S. Results demonstrated that the performance of the
LSTM model in rainfall-runoff simulation is better than that of the hydrological model in
most basins. All aforementioned studies have presented the potential of LSTM in water
environment modeling applications but they have not been utilized in the simulation of
pollution load at basin scale. The models similar to that of Kratzert et al. [25] only use data
from their own sub-basin as input, neglecting the fact that the associated input from nearby
sub-basins may improve simulation performance. Furthermore, the studies mostly take
time-series data (i.e., meteorology, precipitation intensity, runoff, month and hydrological
period) as the input, neglecting the effects of spatial data (i.e., digital elevation, soil type
and land use). Although the simulation with only time-series data can achieve desirable
results in some cases, whether it can be further improved in model performance with
spatial data as input is still vague.

The objectives of this study are to develop a data-driven model based on LSTM-
BP spatiotemporal combination for the simulation of pollution load and to evaluate the
model’s simulation performance. The model comprises several time simulators based
on LSTM and a spatial combiner based on BP. First, the spatial correlation between the
pollution load at different sub-basins is calculated by Pearson’s correlation coefficient.
Then, the LSTM-BP model is compared with the BP, LSTM and SWAT models to evaluate
the applicability of the LSTM-BP model in simulating pollution load at basin scale. Finally,
the LSTM-BP model’s simulation performance is analyzed under different hydrological
periods and precipitation intensities.

2. Materials and Methods
2.1. Study Area

The Zhouhe River is the largest tributary on the left bank of the Qujiang River in
northeastern Sichuan province, China (30°00” to 32°45’ N, 106°17’ to 109°00’ E) with an

area of 11,180 km? and elevation ranging from 188 to 2669 m (Figure 1). The average annual
flow is 22 m3/s.
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Figure 1. Basic information of the Zhouhe River basin. (a) Location of the Zhouhe River basin; (b) Land use; (c) Soil type;
(d) Soil total nitrogen (TN) content.

2.2. Data Acquisition
2.2.1. Time-Series Data

Meteorological data, including precipitation, minimum and maximum temperatures,
relative humidity, wind speed and solar radiation, were monitored at weather stations in
the Zhouhe River basin (Figure 1a). Flow rates (i.e., runoff) and concentrations of NH; and
TN were measured at the automatic water quantity monitoring stations at the outlet of the
basin (i.e., Liangtan station, shown in Figure 1a). Pollution discharged from point sources,
including industrial and urban sewage and atmospheric deposition, were monitored by
the Sichuan Environmental Monitoring Center. The time range is from 1 January 2006 to
31 December 2017 and the monitoring frequency is days, as well as these time series data
were measured in accordance with China’s Surface Water Quality Measurement Code.

The values of monthly NHj3 load, TN load and precipitation on the validation set
are shown in Figures 2 and 3, respectively. Since the impact of precipitation on runoff
and pollution load in the basin is different under different precipitation intensities and
precipitation intensity influences the amount of water that dilutes the pollutants, the
precipitation was divided into six levels, including no rain, light rain (precipitation between
0 and 10 mm, inclusive), moderate rain (precipitation between 10 and 25 mm, inclusive),
heavy rain (precipitation between 25 and 50 mm, inclusive), torrential rain (precipitation
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between 50 and 100 mm, inclusive) and severe torrential rain (precipitation greater than
100 mm). Moreover, pollution load shows significant differences in different months and
hydrological periods [26] and these differences play a crucial role in achieving an accurate
simulation. According to the total precipitation of each month, it was divided into flood
season, dry season and flat season. In the Zhouhe River basin, the annual precipitation is
concentrated in the flood season (during the period from June to October). The dry season
is from December to March of the following year. There is less precipitation during the
dry season and the pollution load is significantly reduced due to the reduced runoff. The
flat season is from April to May and November. During the flat season, the pollutants
accumulated on the soil surface during the dry season converge into the rivers through
surface runoff due to the increase of air temperature and precipitation. The flow rates and
pollutants concentrations varied in the dry, flat and flood seasons.
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Figure 2. Values of monthly NHj3 load and precipitation on the validation set.
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Figure 3. Values of monthly TN load and precipitation on the validation set.

2.2.2. Spatial Data

The Digital Elevation Model (DEM) used the global land GTOPO30 data from the
United States Geological Survey (USGS)-Earth Resources Observation and Science (EROS)
data center. Land use information for 2018 was obtained from the Chinese Academy of
Sciences (Figure 1b). According to the World Reference Base [27], the soil in the calculation
area includes 11 types (Figure 1c). Soil physical properties (i.e., particle size distribu-
tion, bulk density, field capacity and hydraulic conductivity) were obtained from the soil
database and field survey in the Zhouhe River basin. Soil nutrient (i.e., TN content) was
obtained from local soil survey reports (Figure 1d). The basin was divided into five sub-
basins (i.e., S1 to S5 as shown in Figure 1a). Basic information of the five sub-basins (51-S5)
is show in Table 1.
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Table 1. Basic information of the five sub-basins (51-S5).
Sub-Basin S1 S2 S3 S4 S5
Area (km?) 2040.1 816.0 2448.2 30194 2856.2
Mean slope (degree) 12.2 8.4 16.8 13.5 114
Drainage density (km™1) 0.174 0.201 0.165 0.164 0.157
Clay (%) 21.56 +4.87 * 22.74 4+ 8.48 16.24 + 5.80 19.04 + 6.99 17.94 + 10.27
Soil Silt (%) 35.78 + 12.04 31.18 £12.87 40.04 £18.12 30.17 +11.38 22.17 +15.84
. Sand (%) 41.16 £+ 14.55 40.09 +19.72 4426 +15.10 49.51 £+ 15.07 59. 51 + 18.40
properties Hydraulic conductivi
y (106 m-s—1) ty 13.46 + 8.71 12.41 + 6.17 9.77 + 8.54 10.24 + 6.60 16.51 £+ 8.31
Bulk density (g cm~2) 1.38 £ 0.56 1.36 + 0.44 1.37 £ 0.61 1.36 + 0.52 1.33 £0.32

* Mean and STD stand for the mean value and the deviation.

2.3. Data Preprocessing

To avoid data dependence on measurement units and to improve the convergence
speed of the calibration, data normalization was conducted before entering the model [28].
The data (i.e., pollution load, meteorology, runoff, digital elevation, land use and soil
type data) were normalized between 0 and 1 by linear normalization. The normalization
formula is as follows: )

oo X ming , 1)
maxy — miny
where x is the original data and min, and max, represent the minimum and maximum
values of the variable of the original data x, respectively. The normalized value of pollution
load simulated by the model was converted to the output layer’s actual value by the
following formula:

x = x*(max, —miny) + miny. 2)

For nominal features such as month, hydrological period and precipitation intensity
that do not have sequence and cannot be compared in size, simple values could not be
used instead, because the attribute value of such features affects the operation of the model
weight matrix. One-hot encoding is used to convert these nominal features into binary
codes [29]. For example, one-hot encoding of the hydrological period features included
“001,” “010” and “100” for the flood season, the dry season and the flat season, respectively.

2.4. Spatial Correlation Analysis

The basin was divided into five sub-basins (Figure 1a). More information about the
five sub-basins is shown in Table 1. Pearson’s correlation coefficient was used to measure
the correlation between two random variables:

Cov(xj, xj)

20 1) —
R = o)

j ®G)
where x; and x; respectively represent the series of NH3 or TN load at sub-basin i and
sub-basin j; Cov(-) is covariance and o(-) is standard deviation. The correlations in the
pollution load at the sub-basins are shown in Table 2. Notably, except the correlation
coefficients between S1 and S5, between S2 and S5 and between S3 and S5 which are small
due to the long distance and no confluence between the two sub-basins, the correlation
coefficient in the pollution load between sub-basins is larger than 0.5. The strong spatial
correlation supports using a single model to simulate the pollution load at all sub-basins,
rather than using independent models for each sub-basin, because the associated inputs
from nearby sub-basins can improve simulation accuracy [22].
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Table 2. Spatial correlation between the pollution load at different sub-basins.

s1 S2 S3 S4 S5
NH; TN NH; TN NH; TN NH; TN NH; TN

S1 1.00 1.00 0.74 0.71 0.76 0.67 0.81 0.72 0.32 0.33
52 0.74 0.71 1.00 1.00 0.54 0.51 0.68 0.64 0.27 0.27
S3 0.76 0.67 0.54 0.51 1.00 1.00 0.97 0.97 0.48 0.46
54 0.81 0.72 0.68 0.64 0.97 0.97 1.00 1.00 0.75 0.87
S5 0.32 0.33 0.27 0.27 0.48 0.46 0.75 0.87 1.00 1.00

RZ

2.5. LSTM-BP Model Setup
2.5.1. LSTM-Based Temporal Simulator

Using the excellent ability of the LSTM model to remember long-term dependencies
in time-series forecasting and modeling problems [30], a time simulator based on LSTM
was established for each sub-basin to extract the time-series features of historical data and
the complicated nonlinear relationships between input features automatically (Figure 4).
For the LSTM model, at sub-basin i, the input layer is an input vector (x;, x;—1, ... , Xt—n)
and x; includes meteorology, precipitation intensity, runoff, month, hydrological period
and pollution load. The hidden layer is the output (i.e., pollution load simulated value
hj; at time t). At time ¢, the input of the LSTM memory unit includes the current moment
input variable x;, the previous moment hidden layer state variable /1;_; and the previous
moment memory unit state variable c;_;. The model passes through the forgotten gate f;,
the input gate i; and the output gate o in turn. The output of LSTM memory unit includes
the current moment output variable /; and the current moment memory unit state variable
¢t. The calculation formulas are as follows:

fo= oWyl %] + by ), 4)
ir = c(Wilhy—1, x¢] + b;), (5)
¢t = tanh(We[hy—1, x¢] + bc), (6)
ct = fr-cp—1 +ip-C, (7)

or = c(Wo[hi_1,x¢] + bo), 8)
hy = op-tanh(cy), 9)

ye = Wg-ht + by, (10)

where Wr, Wi, We, Wy, Wy, b iz bi, be, by and by. are adjustable parameter matrices or
vectors (these parameters were automatically optimized by the reverse error propagation
algorithm in the calibration), o is the Sigmoid activation function and tanh is the hyperbolic
tangent activation function. In the simulation of pollution load, the input gate controls
the influence of the new measured value on the current simulated value, while the output
gate controls the influence of a past trend. For example, when the pollution load changes
slowly, the output gate tends to close, retaining the trend information; when the pollution
load changes sharply, the input gate is opened to obtain new observations.

Figure 4. Long Short-Term Memory (LSTM)-based temporal simulator.
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2.5.2. BP-Based Spatial Combinatory

Using the nonlinear expression ability of the BP model [31], a spatial combiner based
on BP was constructed to describe the spatial relationships among the sub-basins automati-
cally, thus achieving the accurate simulation of pollution load at each sub-basin (Figure 5).
The output z; of the jth neuron in the hidden layer of the BP neural network is as follows:

m
i=1

1

Input layer Hidden layer  Output layer

Figure 5. Back Propagation (BP)-based spatial combinatory.

The z; after the hidden layer mapping of BP neural network is directly used as the
input of the BP model’s output layer and the output layer performs nonlinear fitting. The
output Sy at sub-basin k in the output layer is as follows:

n
S = Z Wikzj + by, (12)
i=1

where I, is a vector composed of the underlying surface characteristics (i.e., digital eleva-
tion, land use and soil type) of sub-basin i and the output /;; of the LSTM model at time ¢;
wij, Wik, bj and by are adjustable parameter matrices or vectors (these parameters will be
automatically optimized by the reverse error propagation algorithm in the calibration); m
is the total number of sub-basins, 7 is the number of neurons in the hidden layer and f(-) is
the activation function of neurons (Sigmoid activation function was selected in this study).

2.5.3. LSTM-BP Model

Using the deep-learning framework Keras, a LSTM-BP spatiotemporal combination
model for the simulation of pollution load at basin scale was constructed (Figure 6). The
model comprised several time simulators based on LSTM and a spatial combiner based
on BP. Historical data of time-series of the meteorology, precipitation intensity, runoff,
month, hydrological period and pollution load were selected as the LSTM model’s input. A
time simulator based on LSTM was used to simulate changes of the pollution load in each
sub-basin. Spatial data, including digital elevation, land use and soil type and the hidden
layer output of LSTM models, were treated as the BP model’s input. Then, a BP-based
spatial combiner was released to capture the spatial relationships among the sub-basins
to obtain the simulated value of pollution load at each sub-basin at time t at the output
layer. The calibration period is from 1 January 2006 to 31 December 2014 and the validation
period is from 1 January 2015 to 31 December 2017.
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Figure 6. Illustration of the Long-Short Term Memory (LSTM)-Back Propagation (BP) model structure for simulating

pollution load at basin scale.

2.5.4. Tuning for Hyper-Parameters

The optimal hyper-parameters were determined through multiple experiments. There
were two hidden layers of the LSTM network (15 neurons in the first hidden layer and
10 neurons in the second hidden layer) and one hidden layer of the BP network (64 neurons).
A dropout layer was set on the hidden layer with a dropout rate of 0.3 to reduce overfitting.
The maximum number of iterations is 200. The learning rate is 0.001. The batch_size is 50.
The window size is 30. Adam stochastic gradient descent algorithm is used. Root Mean
Square Error (RMSE) is used as the loss function.

2.6. Contrast Model Setup
2.6.1. BP Model

The BP model (Figure 5) implemented in this study was similar to the proposed
LSTM-BP model (Figure 6). A single BP model was used for all sub-basins. The BP
model’s input was time-series data including meteorology, precipitation intensity, runoff,
month, hydrological period and pollution load at each sub-basin and spatial data including
digital elevation, land use and soil type at each sub-basin. The BP model’s output was the
simulated value of pollution load at each sub-basin at time t. The BP model also contained
one hidden layer (64 neurons). A dropout layer was set on the hidden layer with a dropout
rate of 0.3. The maximum number of iterations is 200. The learning rate is 0.001. The
batch_size is 50. Adam stochastic gradient descent algorithm is used. RMSE is used as the
loss function. The calibration period is from 1 January 2006 to 31 December 2014 and the
validation period is from 1 January 2015 to 31 December 2017.

2.6.2. LSTM Model

The LSTM model (Figure 4) implemented in this study was similar to the proposed
LSTM-BP model (Figure 6). Independent LSTM models were used for each sub-basin. The
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LSTM model’s input was time-series data including meteorology, precipitation intensity,
runoff, month, hydrological period and pollution load at its own sub-basin. The LSTM
model’s output was the simulated value of pollution load at its own sub-basin at time ¢.
The LSTM model also contained two hidden layers (15 neurons in the first hidden layer
and 10 neurons in the second hidden layer). A dropout layer was set on the hidden layer
with a dropout rate of 0.3. The maximum number of iterations is 200. The learning rate
is 0.001. The batch_size is 50. The window size is 30. Adam stochastic gradient descent
algorithm is used. RMSE is used as the loss function. The calibration period is from
1 January 2006 to 31 December 2014 and the validation period is from 1 January 2015 to
31 December 2017.

2.6.3. SWAT Model

The SWAT model was a physical-based distributed model for simulating hydrological
and pollution load in a basin. In the SWAT model, the Zhouhe River basin was divided into
128 sub-basins based on DEM data. The sub-basin was further divided into Hydrological
Response Units (HRUs) based on land use and soil properties. The SWAT model first
simulated the process at the HRU level and subsequently routed at the sub-basin level.
The SWAT Calibration and Uncertainty Programs (SWAT-CUP) were utilized to calibrate
SWAT parameters. The Sequential Uncertainty Fitting (version 2, SUFI-2) algorithm in
SWAT-CUP was selected as the calibration algorithm due to its good performance in
large basins. The SWAT model ran at daily time step. The calibration period is from
1 January 2006 to 31 December 2014 and the validation period is from 1 January 2015 to
31 December 2017.

2.7. Model Evaluation Indicators

The RMSE, Nash-Sutcliffe Efficiency (NSE) and Bias Ratio (BIAS) were used to eval-
uate the model’s performance. The RMSE reflects the degree of difference between the
measured and simulated pollution load; the NSE verifies the model’s accuracy; the BIAS
judges whether there is a systematic bias between the measured and simulated pollution
load. The indicators are defined as follows:

1 )
RMSE = /= Y (S; — 0;)%, 13
” ;( i—0i) (13)
Y (Si— 0,)
NSE =1- === 1 (14)
Z?:l (Oi - O)
n PR— .
BIAS = 100==1"1__—12 ﬁs’ OZ), (15)
i—1 Oi

where O; and S; are the measured and simulated pollution load, respectively and 7 is the
total number of samples. The model guide developed by Moriasi et al. [32] was used to
evaluate model performance.

Very good: 0.75 < NSE <1, IBIASI| <25
Good: 0.65 < NSE < 0.75, 25 < |BIAS| <40
Satisfactory: 0.5 < NSE < 0.65,40 < |BIAS| <70
Unsatisfactory: NSE < 0.5, | BIAS| > 70

(16)

3. Results and Discussion
3.1. Comparison of Simulation Performance with Other Models

The evaluation indicators of the BP, LSTM, LSTM-BP and SWAT models on the val-
idation set are shown in Table 3. For the NH3 load, the BP, LSTM, LSTM-BP and SWAT
models are “very good” for all sub-basins [32]. For the TN load, the BP model is “satis-
factory,” “good” or “very good” for all sub-basins [32], while the LSTM, LSTM-BP and
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SWAT models are “good” or “very good” for all sub-basins [32]. NHj enters the rivers
mainly in the form of dissolved N in the surface runoff, while TN enters the rivers in the
form of dissolved N, as well as solid N absorbed on the suspended mass in the surface
runoff and dissolved N in the sub-surface outflow [33]. Thus, the BP, LSTM, LSTM-BP
and SWAT models underestimated TN peak. All models simulated the NHj3 load better
than the TN load. The LSTM-BP model had the largest NSE and lowest BIAS and RMSE,
demonstrating that the performance of the LSTM-BP model is much better than that of
the BP, LSTM and SWAT models. Moreover, the performance of the LSTM model is better
than that of the BP model and the LSTM model can achieve comparable performance with
the SWAT model in most cases. These results are in substantial agreement with those of
Kratzert [25]. The study by Kratzert [25] only used data from their own sub-basin as LSTM
model’s input, neglecting the fact that the associated input from nearby sub-basins may
improve simulation performance, while our study effectively extracted the spatiotemporal
characteristics between the various data using the LSTM-BP model.

Table 3. Evaluation indicators of the BP, LSTM, LSTM-BP and Soil and Water Assessment Tool (SWAT) models on the
validation set.

Sub- BP LSTM LSTM-BP SWAT
Pollutant Basi

asm  RMSE NSE BIAS RMSE NSE BIAS RMSE NSE BIAS RMSE NSE  BIAS
S1 343 086 17.78 291 089 1584 227 092 1428 284 090 15.17
NH, S2 315 087 1642 269 090 1568 223 093 1379 267  0.92 15.09
(t/day) S3 532 084 19.09 413 089 1798 342 091 16,13 453  0.89 18.25
S4 1223 079 2445 1063 081 2242 931  0.83 2144 1045 0.82 22.16
S5 728  0.82 2243 523 089 1834 416  0.90 1648 518  0.89 19.53
S1 1245 0.81 24.17 943  0.85 2126 891 0.6 1987 9.76  0.85 21.95
32 1059 079  23.94 915 0.86 2043 872 086 1929 936  0.86 21.58
TN (t/day) S3 1745 075 2964 1366 078 2183 1224 081 2123 1382  0.79 22.47
S4 2667 069 4532  19.06 073 3957 1725 074 3432 1857 0.73 38.62
S5 1952 074 3237 1376 079 2577 1274  0.80 2383 1498 0.79 25.13

3.2. LSTM-BP Model’s Performance under Different Hydrological Periods and
Precipitation Intensities

The evaluation indicators of the LSTM-BP model in different hydrological periods
on the validation set are shown in Table 4. Among the dry season, the flat season and
the flood season, the accuracy of the LSTM-BP model was highest during the dry season.
Runoff seldom occurred during the dry season due to less rainfall. The pollution load, as
well as the overall fluctuation, were small. The LSTM-BP model captured complicated
nonlinear relationships between various factors. With the temperature and the precipitation
increased during the flat season, the pollutants which accumulated on the soil surface over
a long time during the dry season converged into the rivers with runoff, the pollution
load peaked and the overall fluctuation increased [34,35]. We surmised that the nitrogen
fertilizer application also contributed to this increase [11]. Karlen et al. [36] reported that
higher TN in water was generally found after fertilizer applications. The fertilizers in
Sichuan province are usually applied in spring and contain a large amount of nitrogen. The
simulation accuracy of the LSTM-BP model decreased. Although the pollution load and
overall fluctuation significantly increased during the flood season, the simulation accuracy
of the LSTM-BP model increased.
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Table 4. Evaluation indicators of the LSTM-BP model in different hydrological periods on the
validation set.

Hydrological Periods Dry Season Flat Season Flood Season All Year
RMSE 3.98 9.31 8.97 6.27
I\?f/ﬁ’%d NSE 0.88 0.82 0.83 0.86
y BIAS 18.14 22.94 21.12 19.46
RMSE 13.75 32.31 28.24 20.27
T(Sé‘;a? NSE 0.78 0.64 0.68 0.71
y BIAS 24.43 41.28 39.03 36.87

Although the study by Baek et al. [11] analyzed the pollutant distribution under
different precipitation intensities, it did not analyze the model’s simulation performance,
while our study analyzed the model’s simulation performance under different precipita-
tion intensities. The evaluation indicators of the LSTM-BP under different precipitation
intensities on the validation set are shown in Table 5. Zheng et al. [37] found through
tests that the increase of rainfall intensity would increase the amount of pollutants. The
greater the intensity of precipitation, the greater the coefficient of runoff production, the
greater the runoff, the stronger the erosion of pollutants and soil, the stronger the capacity
of pollution production and transportation of pollutants, the more pollutants carried away,
the greater the degree of pollution generated, that is, the more threat to the surrounding
water pollution [38]. The simulation accuracy of the LSTM-BP model decreased with the
increasing of the pollution load. As the precipitation intensity was small, the pollution
load tended to remain stable and fluctuates less. The pollution load and the fluctuation
increased in orders of magnitude below the conditions of heavy precipitation [39]. The
LSTM-BP model better simulated the stable fluctuation of the pollution load [40].

Table 5. Evaluation indicators of the LSTM-BP model under different precipitation intensities on the
validation set.

Precipitation No Light Moderate Heavy Torrential Severe Torrential

Intensity Rain Rain Rain Rain Rain Rain
NH; RMSE 1.34 3.47 6.72 10.27 15.16 23.34
load NSE 0.97 0.90 0.85 0.80 0.76 0.73
(t/day) BIAS 9.85 17.16 19.89 22.64 28.19 32.27
RMSE 8.71 12.84 17.23 22.34 27.75 36.49

TN load
(t/day) NSE 0.84 0.80 0.75 0.74 0.69 0.63
BIAS 20.99 22.98 29.71 31.85 37.63 45.57

The comparison of the measured and LSTM-BP-simulated NHj3 and TN load on the
validation set are shown in Figures 7 and 8, respectively. Although the variation of the
simulated pollution load with the LSTM-BP model was high under different hydrological
periods (Table 4) and precipitation intensities (Table 5), the LSTM-BP model could track the
temporal variation trend of the pollution load accurately. Since these temporal variations
may result from pollutant transport characteristics [11], this result implies that the LSTM-BP
model can better reflect the transport characteristics of pollutants. These temporal variation
have been well simulated in previous studies. For example, Baek et al. [11] simulated the
temporal variation of TN, TP and TOC concentration using the LSTM model with the NSE
value of 0.987, 0.899 and 0.832, respectively.
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Figure 7. Comparison of the measured and LSTM-BP-simulated NHj load on the validation set.
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Figure 8. Comparison of the measured and LSTM-BP-simulated TN load on the validation set.
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4. Conclusions

This study developed a data-driven model based on LSTM-BP spatiotemporal combi-
nation for the simulation of pollution load at basin scale. The model comprised several
time simulators based on LSTM and a spatial combiner based on BP. The model was
applied in the Zhouhe River basin. Results showed that there is a high spatial correlation
(i.e., Pearson’s correlation coefficient is larger than 0.5) in the pollution load between nearby
sub-basins. The strong spatial correlation supports using a single model to simulate the
pollution load at all sub-basins, rather than independent models for each sub-basin. More-
over, the performance of the LSTM model is better than that of the BP model and the LSTM
model can achieve comparable performance with the SWAT model in most cases, whereas
the performance of the LSTM-BP model is much better than that of the LSTM and SWAT
models. Besides, the BP, LSTM, LSTM-BP and SWAT models underestimate the TN peak,
which leads to a better simulation of NHj load than TN load. Although the variation of the
simulated pollution load with the LSTM-BP model is high under different hydrological
periods and precipitation intensities, the LSTM-BP model can track the temporal variation
trend of the pollution load accurately (i.e., the RMSE is 6.27, NSE is 0.86 and BIAS is 19.46
for the NHj3 load and the RMSE is 20.27, NSE is 0.71 and BIAS 36.87 is for the TN load). The
results of this study demonstrate the applicability of data-driven models, especially the
LSTM-BP model, in the simulation of pollution load at basin scale. Although the developed
model showed the acceptable simulation performance, only NHj load and TN load were
simulated in this study. However, most physical models can simulate a variety of pollution
load (i.e., total phosphorus, chemical oxygen demand and dissolved oxygen). Therefore, a
further study to data-driven models is recommended to simulate more pollutants. Besides,
this study only considers the pollution load simulation for the next day ¢, so multi-scale
pollution load simulation can be considered in the future study, such as the variation trend
simulation of pollution load in the next seven days.
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