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Abstract: Cryptic species are a biological phenomenon only recently recognized due to progress in
molecular studies. They pose a significant challenge to conventional taxonomic work since these
species manifest low morphological differences, but considerable genetic disparity. New taxonomic
methods are in development but have yet to be tested for many animal groups. Isopods belonging
to the suborder Microcerberidea are one such group. The Asian microcerberid isopod, Coxicerberus
fukudai (Ito, 1974), is a major component of marine interstitial fauna with suspected cryptic species
inhabiting Japan and Korea. We chose six Korean populations with high molecular interpopulations
divergence and applied 2D landmark-based geometric morphometrics to cephalic sensilla, pleonal
points, and male pleopod II. This quantitative approach allowed us to study interpopulation size
and shape variations, morphospace structure, and whether the morphological pattern mirrored the
genetic species. We determined that a high degree of interpopulation size variation significantly
influences shape changes. Once we removed the allometric effect, the size-corrected male pleopod
II shape variations yielded a new species, C. jangsaensis sp. nov. At the same time, we were able to
resolve the C. fukadai species complex.

Keywords: crustacean; cryptic species; integrative taxonomy; marine interstitial; peracarida; re-
verse taxonomy

1. Introduction

The body shape of a species often reflects the accumulation of historical contingen-
cies naturally selected by the environment [1]. Certain environmental conditions can
impose morphological stability resulting in population lineages, living in allopatry, with
no apparent morphological differences [2]. This phenomenon, called “cryptic species”,
refers to a group of closely related genetic species morphologically indistinguishable and
erroneously classified as a single nominal species [3,4]. This unexpected genetic diversity
has greatly altered not only global species diversity estimates, but conventional taxonomy
as well [5,6]. An integrative approach combining morphology and molecular data might
resolve these taxonomic problems [7–13]. This is because applying multiple lines of ev-
idence is more likely to better define species boundaries [8]. Quantitative analysis is a
complementary approach for providing objective data along with traditional taxonomic
work. Landmark-based geometric morphometrics (LBGM) and an outline contour, for
instance, can analyze complex biological structures using landmark sets, which are located
on every specimen [11]. This technique analyzes shape data defined by a superimposed
landmark configuration with size, rotation, and translation effects removed [14]. Shape
variations are presented as statistical components describing landmark shifts. These can be
visualized using a wire frame [15]. Landmark-based geometric morphometrics can detect
subtle variations, providing insight into the asymmetry [16–19], intrapopulation shape
variations [20–22], as well as ontogenetic variation [23,24].
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Applying LBGM techniques with respect to cryptic species is an emerging taxonomic
field, especially in microcrustaceans. Several morphological structures have been used
for this purpose: carapace outline in ostracods [25,26], cuticular pores in copepods [27,28],
epimera in amphipods [29], and body surface in cladocerans [30]. Only a few terrestrial
oniscidean species have been studied in the order Isopoda, and those were to discern
morphological and genetic diversity. Results showed that allopatric populations of the
common sea slater, Ligia Fabricius, 1798, display a high level of genetic divergence but
no morphological differences between coastal populations [31,32]. Subsequent geometric
morphometrics studies detected significant morphological variation between geographical
lineages in lateral tergite tips of each body segment [33,34].

Members of the isopod suborder Microcerberidea are small animals (less than 1 mm)
inhabiting marine and freshwater interstitial habitats [35]. Since Karaman (1933) [36] de-
scribed the first microcerberid species, nearly 30 species have been recognized so far [37].
The group is morphologically homogenous, lacking pigmentation and having an elongated
body, adapted to interstitial water environmental conditions [38]. Despite recent phyloge-
netic and ecological studies [39,40], there are many biological aspects that remain largely
unknown. For example, intraspecific morphological variation studies are almost absent
even though some microcerberid species are widely distributed geographically [41–44].
Most taxonomic studies use a small number of individuals, which makes variability de-
tection difficult. Kim et al. (2018) [40] studied variability within the East Asian species,
Coxicerberus fukudai (Ito, 1974), originally described from northern Hokkaido’s sand beach
and later found in Korea. Molecular analyses revealed two divergent Korean lineages,
one distributed in the northern part of South Korea, and forming a monophyletic clade
with C. fukadai, and the other, separate lineage, to the southern part. Kim et al. (2018) [40]
observed morphological abnormalities in antenna among southern population individuals,
but detected no consistent morphological disparity between the two lineages. A high
genetic divergence (mtCOI: 10.5%; Cytb: 9.5%) and absence of consistent morphological
differences indicates the presence of cryptic species. Male genitalia morphology in mi-
crocerberid isopods is a major diagnostic characteristic [38,44], so the lack of a difference
between genetically distinct populations is unusual and may indicate a new impediment
to traditional microcerberid taxonomy.

In this study, we used LBGM to evaluate morphological variability between two
genetically divergent Korean populations. We chose three structures: cuticular sensilla on
the dorsal surface of the cephalothorax, the pleon’s anatomical points along each pleonite,
and the male’s pleopod II. Sensilla [45,46] refer to minute cuticular sensory receptor organs
covering a vast area of the crustacean body [47]. Due to their variability in size, shape,
number, and position, many studies have investigated their taxonomic importance in
various crustacean taxa [48–54]. The pleon’s anatomical points along each pleonite and
pleotelson boundary are used to estimate segment length ratio changes, which is considered
important in the taxonomy of isopods [33,34]. The male pleopod II endopodite displays a
particularly modified morphology, so-called “arm and hammer”. This is a synapomorphy
of Asellota and Microcerberidea, phylogenetically closely related groups, and supposedly
it has a constrained evolution due to interlinked parts and its role as a continuous sperm
conduit [55]. The endopodite of the male’s pleopod II is specialized for conveying sperm
packets to female genitalia and has a variety of forms that have been generally sufficient for
species identification. Our initial study could not detect differences in the anatomy of male’s
pleopod II between the two lineages of the Korean populations of C. fukudai. Nevertheless,
we chose this structure for our quantitative analysis based on the fact that mismatch in
the genitalia has long been posited as a mechanism of reproductive isolation [56]. The
primary aim of our study is to resolve the C. fukadai species complex with LBGM, as a novel
approach in the microcerberid and isopod studies in general.
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2. Materials and Methods
2.1. Sample Collection

We collected samples from Gazin, Sokcho, Dongho (lineage A), Detan, Jangsa, and
Imrang (lineage B) beaches in Korea for our two genetic lineages comparative analysis
study [40]. We collected samples on two occasions in September and October 2020 by
filtering the water with a hand net (mesh size 46 µm) and immediately preserved the
samples in 99% ethanol. We kept all collected animals in three plastic bottles (200 mL)
separately from each beach and preserved them in the portable refrigerator until reaching
the laboratory. All newly collected animals with geographical information were deposited
in the collection of the National Institute of Biological Resources (NIBR), Incheon, Korea
(Table S1).

2.2. Genetic and SEM Analyses

To confirm the population’s previously established genetic identity, we randomly
selected 1–3 individuals from each sample and extracted their DNA. We amplified the mi-
tochondrial cytochrome b sequences following the same procedure as Kim et al. (2018) [40].
We confirmed all obtained sequences with BLAST search [57], which were deposited in Gen-
Bank (Table S2) [58]. We performed sequence alignment using the MAFFT v7.313 [59] with
those of C. fukudai already published and publicly available. We used the TCS algorithm
implemented in PopART [60] to visualize the haplotype network for the aligned sequence
dataset. We evaluated the best substitution model (TIM1) as well as maximum likelihood
(ML) trees using the iqtree version 1.6.9 [61] with 1000 ultrafast bootstrap replicates. We
constructed an ML phylogram with iqtree default parameters. We transferred specimens
for the observation under the scanning electron microscope (SEM) to isoamyl acetate for
20 min and dried them in a critical-point dryer (Hitachi E-1010; Hitachi, Tokyo, Japan). We
mounted dried specimens on an SEM stub coated with gold using a sputter coater to a
thickness of 15–30 nm. We then photographed the coated specimens with a Hitachi S-3400
scanning electron microscope at Chungang University, Seoul, Korea.

2.3. Morphological Data Acquisition

We confirmed individual maturity using a combination of the following characteristics:
(1) length of the pereonite VII (longer in adults vs. much shorter in juveniles); (2) length
of the pereopod VII (incompletely developed in juveniles); (3) length of the male pleopod
II (absent in juveniles); (4) whole body length (adults generally exceed 0.8 mm). We
confirmed individual sex using a combination of the following characteristics: (1) pereonite
VII penial papillae (present in males vs. absents in female); (2) male pleopod II (present
in males vs. absent in females); (3) whole body length (males measure less than 1 mm
vs. females longer than 1 mm). Information on individual animals is summarized in
Table S2. We dissected the animals using a stereo dissecting microscope, Olympus BX51
(Olympus, Tokyo, Japan). We separated the cephalothorax and pleon from the body and
mounted them immediately on microscope slides with lactophenol and two coverslips. We
made line drawings of cephalothorax, pleon, and male’s pleopod II endopodite using a
compound microscope, Olympus BX51 (Olympus, Tokyo, Japan), equipped with a camera
lucida. To make a dorsal perspective angle perpendicular to the microscope objective,
we manipulated the coverslip by hand, and focused on the symmetrical view [28]. After
each specimen was adequately positioned consistently, we made pencil drawings of the
cephalothorax, pleon, and pleopod II endopodite. We scanned the images and generated a
TPS file using tpsUtil software (File S1) [62]. We digitized the chosen landmark (LM), all
Type I [63], twice using tpsDig2 software [64] to estimate digitization-related errors [65].
We analyzed the sensilla distribution (SD) on cephalothorax, pleonal points (PP), and
pleopod II endopodite (PE) as separate datasets. We selected eight sensilla (Figure 1A):
two located above a pair of incisions on the dorsoposterior margin (LMs 1 and 2), two
along the posterolateral margins (LMs 3 and 4), two on the medial margin (LMs 5 and
6), and two along the anterolateral margin (LMs 7 and 8). We selected eight anatomical
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points of pleon (Figure 1B): two on the right and left vertex of the pleonite I anteriorly
(LMs 1 and 2), two on the right and left vertex of the pleonite II anteriorly (LMs 3 and 4),
two on the right and left vertex of the pleotelson anteriorly (LMs 5 and 6), and two points
on the pleotelson’s posterior end (LMs 7 and 8). The endopodite is an asymmetric object
with overall shape out curved, its distal end is bifurcated, of which the lateral projection
is elongate and distally pointed. We noticed from the preliminary observation that the
location of lateral projection seems to vary across the populations, which was previously
unreported. We, therefore, selected six anatomical points at the distal end of right PE at
the ventral position (Figure 1C,D) to evaluate the relative position of lateral projection
against tip of medial body: one on the distal tip of medial body (LM 1), one on the proximal
groove’s vertex between the body and the projection (LM 2), one on the medial side of the
projection symmetrically in the same position as the distal tip of the body (LM 3), one on
the distal tip of projection (LM 4), one on the lateral side of the projection symmetrically
in the same position as the distal tip of the body (LM 5), and one on the proximal end of
the projection symmetrically in the same position as the LM 2 (LM 5). The SD, PP, and PE
datasets included 360, 370, and 182 digitized images (from the original 180, 185, and 91
pencil drawings), respectively. We summarized the image numbers generated according
to the classifier (lineage and population, and sex) in Table 1. Except when performing the
Procrustes analysis of variance (ANOVA) to test measurement error, we used only the first
digitization for the subsequent LBGM analyses.
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Figure 1. Coxicerberus fukudai digitized pencil drawings. Left panel shows an adult male habitus (NIBRIV0000000000), scale
bar: 100 µm. (A) Dorsal view of cephalothorax, sensilla distributions are marked with red circles, scale bar: 50 µm; (B)
dorsal view of pleon, pleonal points are marked with red circles, scale bar: 50 µm; (C) scanning electron microscope image
of pleon, white arrow indicates pleopod II endopodite; (D) pleopod II endopodite excluding appendix masculina pencil
image, right panel shows close up image of digitizing points with red marks.
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Table 1. Summary of image numbers included in the landmark-based geometric morphometrics
(LBGM) analyses. The alphabets represent classifiers as (A) lineage A; (B) lineage B; (F) female;
(M) male.

Sensilla
Distribution (SD)

Pleonal
Points (PP)

Pleopod II
Endopodite (PE)

Gazin A
F 27 18 –
M 11 19 8

Sokcho A
F 9 9 –
M 11 11 20

Dongho A
F 10 21 –
M 10 10 13

Detan B
F 11 16 –
M 16 14 19

Jangsa B F 43 20 –
M 12 19 28

Imrang B
F 11 19 –
M 9 9 3

Total 180 185 91

2.4. Geometric Morphometric Analyses

We used algorithms implemented in Morpho J package software version 1.07a [66]
for all LBGM analyses. We aligned and superimposed all landmark configurations with
generalized Procrustes analysis (GPA) to remove the effects of non-shape variation [14].
Of SD, PP, and PE datasets, the former two ones were object symmetry [65], with the
axis of plane passing through the LM configuration; each LM has a corresponding pair
on the opposite side (Figure 1A,B). The GPA also detects directional and fluctuating
asymmetry and shape differences. For this study, however, we considered the symmetric
component only, which represents average shape changes between the left and right sides.
Because the potential discrepancies in angle can be induced by specimen positioning
on the microscope that has significant effects on the asymmetric component [28,67], we
converted the Procrustes shape coordinates into a covariance matrix [68]. As a size proxy,
we estimated the centroid size (CS) for each individual from the raw LM coordinates
(Table S3) [15]. We calculated the CS as the square root of the sum of squared distances
for a set of centroid LMs [69]. Descriptive statistical values of CS such as means, standard
deviation, and standard errors were calculated and displayed with box plots generated by
a web-tool for generation of box plots, “BoxPlotR” [70].

We analyzed the SD, PP, and PE covariance matrices independently (File S2). We used
Procrustes ANOVA to test group structuring evidence in the overall dataset with lineage
and sex as classifiers as well as the digitizing errors [71]. We performed regressions of shape
onto size to test allometry using regression scores and CS. [72,73]. The null hypothesis
states that shape develops isometrically; thus, a statistically significant result demonstrates
that shape changes with increasing size according to a predictable model [74]. We applied
a permutation test [75] to assess the statistical significance against the null hypothesis. The
number of shape variations determined by the regression was expressed as a percentage
of the total variation percentage around the mean [24]. We calculated the SD, PP, and
PE datasets residual components to subtract the portion of shape variation predicted by
the regression for further analyses. We analyzed the residual shape component using
principal component analysis (PCA), which is the most efficient method for examining
the variation of multiple variables within a single sample. This analysis is often used as
the first exploratory analysis of a large dataset composed of several samples to provide
a visual impression of overall shape variation. [69]. We performed the PCA twice on the
entire dataset and then on datasets of females and males separately with the wire frame
to visualize SD, PP, and PE’s average shape variation along major PCA axes. We used the
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LM displacement described in the PCA to establish the new species’ taxonomic diagnosis.
We employed PE dataset residual components for discriminant function analysis (DFA)
and canonical variate analysis (CVA). Both are multivariate LBGM methods that produce
a criterion for reliably distinguishing two lineages and among multiple populations, re-
spectively. DFA and CVA results indicate the separation among groups by maximizing
distances between group means relative to the variation within groups [76]. For the re-
sult of DFA, we applied cross-validation to test the reliability of groups separation [76].
We used multivariate statistics as Mahalanobis distances [77] to estimate the difference
between groups. The permutation test assessed the statistical significance against the equal
group means’ null hypothesis. We finally used the cross-validation score of DFA and the
Mahalanobis distances of CVA to evaluate the availability of pleopod II endopodite for
delimiting the groups.

3. Results
3.1. Confirmation of Genetic Indentity

The haplotype network (Figure 2A) detected six haplotypes, with the Gazin, Sokcho,
and Dongho populations (lineage A) sharing a haplotype separated from the lineage
B’s ones with over 30 mutational substitutions. The Imarang population showed four
haplotypes; each of them is separated by one mutational substitution. The Imrang one was
the only location where multiple haplotypes exist. The Detan, and Jangsa, populations
shared a haplotype distinguished by one substitution from the Imrang’s one. The ML
phylogram (Figure 2B) revealed two distinct clades with absolute certainty. The Gazin,
Sokcho, and Dongho sequences formed a distinct clade representing a diverged lineage
from that of Detan, Jangsa, and Imrang’s clades. All Imrang sequences formed separated
clades from the Detan and Jangsa ones.
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Figure 2. Map of Korea displaying the spatial distribution of C. fukudai complex individuals employed in the study. (A) The
relationship between the Cytb haplotypes of C. fukudai is shown, vertical parallel lines of network represent the number of
substitutions; (B) maximum-likelihood (ML) phylogram using Cytb sequences; scale shows substitutions per site, bootstrap
values of terminal nodes are excluded, and the locality names with accession code indicate the GenBank sequences hired for
the analysis.
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3.2. Testing Variations in Size and Shape

ANOVA results (Table 2) yielded a negligible digitizing error for all datasets with the
individual variability mean squares (MS) and F values by far exceeding the error values.
Lineage was a significant contributor to overall shape and size variations for SD and PE
datasets. It was highest in the PE shape component dataset (F = 29.16, p < 0.0001), followed
by the PE size dataset (F = 13.48, p < 0.0001), SD size (F = 11.96, p = 0.0007), and shape
dataset (F = 5.18, p < 0.0001). The lineage did not contribute to the size and shape in the
PP datasets (size F = 0.65, p = 0.4217; shape F = 1.5, p = 0.1746), while the sex contributed
significantly to the PP dataset (size F = 89.17, p < 0.0001; shape F = 54.2, p < 0.0001), and
the SD shape dataset (F = 4.03, p = 0.0005). In the SD dataset, sex has not contributed
to the size component of variability. The box plots summarize differences in the CS in
detail and emphasize substantial sexual size dimorphism. In the SD dataset (Figure 3A),
the largest individual was in the Gazin females and the smallest one was in the Jangsa
females. The Gazin, Sokcho, and Detan individuals generally showed larger CS indicated
by interquartile ranges than the Jangsa, Dongho, and Imrang ones. Sexual dimorphism
was, however, not much comparable as most populations displayed similar interquartile
ranges between sexes, with some exceptions from the Gazin and Dongho showing larger
female CS. On the other hand, the PP dataset (Figure 3B) showed the Gazin females and
Dongho males comprising the largest and smallest individuals. The sexual dimorphism
was a general trend in all populations, but it was more pronounced in the Dongho, Gazin,
and Jangsa populations than others in terms of the absence of the overlapped ranges. PE
dataset (not presented) displayed the CS variation ranging from four to nine across the
populations. Sokcho and Imrang individuals included the largest and smallest individuals,
respectively.

Table 2. Size and shape variation of sensilla distribution, pleonal points, and pleopod II endopodite
inferred by Procrustes ANOVA where a randomized permutation procedure was applied (10,000
iterations). F: Goodall’s F critical value, p: probability of finding a randm value larger than the
observed value.

Sensilla
Distribution (SD)

Pleonal Points
(PP)

Pleopod II
Endopodite (PE)

F/p F/p F/p

Size

Sex 0.17/0.6849 89.17/0.0001 n/a
Lineage 11.96/0.0007 0.65/0.4217 13.48/0.0001

Individual 92,695.9/0.0001 2,833,490.9/0.0001 1118.6/0.0001
Digitizing n/a n/a n/a

Shape

Sex 4.03/0.0005 54.2/0.0001 n/a
Lineage 5.18/0.0001 1.5/0.1746 29.16/0.0001

Individual 2.43/0.0001 5.06/0.0001 232.52/0.0001
Digitizing n/a n/a n/a
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Figure 3. Box plot based on centroid size of sensilla distribution and pleonal points. (A) Box plot
of sensilla distribution; (B) box plot of pleonal points. The numbers along the vertical axis indicate
the centroid size. The initials along the horizontal axis indicate the group examined; FG: females
Gazin, MG: males Gazin, FS: females Sokcho, MS: males Sokcho, FD: females Dongho, MD: males
Dongho, FT: females Detan, MT: males Detan, FJ: female Jangsa, MJ: males Jangsa, FI: females
Imrang, and MI: males Imrang. The numbers in parentheses indicate the numbers of individuals
from each population. Center lines in the boxes show the medians, box limits indicate the 25th and
75th percentiles, whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles,
and outliers are represented by dots.

3.3. Allometry and Size-Corrected Shape Variation

The SD entire dataset regression for isometric shape development estimated a signifi-
cant allometric effect (16.76%, p < 0.0001), so the null hypothesis was rejected. The PCA
based on the residuals described the major shape variations of overall dataset with the
first two axes carrying 57.4% (PC1 = 36.8%; PC2 = 20.6%) of the total variance. Despite a
high individual variability, the PCA did not describe any difference between lineages. The
sex-specific PCA using the residuals explained the major male (not presented) and female
(Figure 4A,B) shape changes, with the first two axes accounting for 63.15% (PC1 = 40.35%;
PC2 = 22.8%) and 57.27% (PC1 = 37.26%; PC2 = 20.01%) of the total variance, respectively.
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The PCA of female, however, did not show any difference in the shape between lineages
(Figure 4A) and between populations (Figure 4B). The wire frame demonstrated that some
Sokcho, Dongho, and Detan individuals showed the wider and shorter SD than average
due to LM1 and LM2 shifted antero-medially, LM3 and LM4 shifted antero-laterally, and
LM5, LM6, LM7, and LM8 shifted postero-laterally (Figure 4C upper panel). About three
Imrang individuals displayed the SD narrower and longer than mean shape due to LM1
and LM2 shifted postero-laterally, LM3 and LM4 shifted postero-medially, and LM5, LM6,
LM7, and LM8 shifted antero-medially (Figure 4C lower panel).
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The regression of the PP overall dataset estimated a significant allometric effect
(10.63%, p < 0.0001), rejecting the null hypothesis of isometric shape variation. The first
two PCA axes based on the residuals accounted for 81.7% (PC1 = 70.2%; PC2 = 11.5%) of
the total shape variation. However, lineages did not show any meaningful clustering in the
morphospace. The first two PCA axes of the male (not presented) and female residuals anal-
yses (Figure 4D,E) carried 81.91% (PC1 = 68.07%; PC2 = 13.85%) and 79.02% (PC1 = 67.06%;
PC2 = 11.97%) of the total variability, respectively. The PCA of both sexes showed hardly
any distinguishable clustering among populations. Nevertheless, the PCA of the female
dataset showed the morphospace clustering of Jangsa, Dongho, and Detan populations on
one side (with the center of gravity in the positive part of the PC1) and the one of Gazin,
Sokcho, and Imrang on the other (with the center of gravity in the negative part of the
PC1). The wire frame of PC1 (Figure 4F, upper panel) showed a narrow and elongated
PP shape for the Jangsa, Dongho, and Detan populations due to LM1 and LM2 shifted
antero-medially, LM3, LM4, LM5, and LM6 shifted postero-medially, and LM7 and LM8
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shifted antero-medially. The wire frame of PC1 for the Gazin, Sokcho, and Imrang ones
(Figure 4F lower panel) differed from the former group by having LM3 and LM4 shifted
antero-medially, and LM7 and LM8 postero-medially.

The PE dataset regression analysis estimated a significant allometric effect (6.02%,
p = 0.002) so the null hypothesis of isometric shape development was also rejected. The
PCA based on the residuals from the regression analysis showed the major shape changes
occurring in the first two PCs, accounting for 83.7% (PC1 = 49.1%; PC2 = 34.6%) of the total
variance. The PC1 emphasized morphological differences between lineages (Figure 5A),
with the lineage A having the center of gravity on the negative part of the axis, and lineage
B on the positive. When populations were used as determinant of the PC1 morphospace
clustering (Figure 5B), Gazin, Sokcho, and Dongho individuals mostly occupied the nega-
tive space between −0.4 and 0. The Jangsa and Imrang individuals had variations ranging
between −0.1 and 0.3 clearly with a positive center of gravity, while the Detan individuals
had a relatively wider variation, ranging between −0.3 and 0.2 with a center of gravity
near 0. The PC1 described the wire frame for the Gazin, Sokcho, and Dongho individuals
(Figure 5C, right panel), which differed from that of the latter group (Figure 5C, left panel)
by the following LMs displacement: LM1 and LM3 shifted proximo-medially, LM2 and
LM6 shifted disto-medially, LM4 shifted disto-laterally, and LM5 shifted proximo-laterally.
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3.4. Lineage Differentiation and Morphological Distances

The permutation test of the cross-validation of DFA and CVA rejected the PE null
hypothesis for equal group means between lineages (p < 0.0001) and between populations
(p < 0.0001). The Mahalanobis distances between lineage A and B was 2.2277 (p < 0.0001).
The cross-validation of DFA based on residuals (Table 3) relatively well classified individu-
als according to the lineage (lineage A 82.9%; lineage B 99%). The CVA analysis of the PE
residuals showed that the first two axes carried 85.4% (CV1 = 61.7%; CV2 = 23.7%). The
Mahalanobis distances comparison (Table 4) revealed that the Jangsa population was the
most distantly related to lineage A, followed by the Imrang and the Detan ones. Lineage
B showed a high intraspecific variation—the Jangsa individuals were accurately distin-
guished from the Detan ones (2.38, p < 0.0001), while those from Imrang were barely
separated from the Jangsa (3.17, p = 0.005) and Detan (2.66, p = 0.04) ones.



Water 2021, 13, 515 11 of 17

Table 3. Classification of individuals based on the PE mean shape comparison. The percentage
indicates the correct classification rate of each group based on the cross-validation scores from
discriminant function analysis (DFA).

Lineage A Lineage B Classification Rate

Lineage A 34 7 82.9%, p < 0.0001
Lineage B 6 44 88%, p < 0.0001

Table 4. Comparison of PE mean shape variation between populations from canonical variate
analysis (CVA). Left score: Mahalanobis distance; right score: probability of finding a random value
larger than the observed value.

Gazin Sokcho Dongho Detan Jangsa

Sokcho 1.6155/0.0555
Dongho 1.5967/0.0593 1.0404/0.2352
Detan 3.0128/0.0001 2.2330/0.0001 2.2255/0.0003
Jangsa 3.4647/0.0001 2.6135/0.0001 3.1110/0.0001 2.3830/0.0001
Imrang 3.3354/0.0432 2.7549/0.0178 2.5354/0.0296 2.6591/0.0451 3.1664/0.0053

3.5. Taxonomy

Order: Isopoda, Latreille, 1817
Suborder: Microcerberidea, Lang, 1961
Family: Microcerberidae, Karaman, 1933
Genus: Coxicerberus, Wägele, Voelz and McArthur, 1995
Coxicerberus jangsaensis, sp. nov.
Material examined. Holotype: South Korea, Gyeongsangbuk-do, Yeongdeok-gun,

Jangsa Beach (36◦16′39.26′′N 129◦22′43.07′′ E), 1♂ dissected on one slide (NIBRIV0000880991);
Paratypes: 27♂♂ from Jangsa Beach, mounted on one slide each (NIBRIV0000881023-
0000881049), 11♂♂ from Detan Beach (36◦26′24.0′′ N 129◦25′58.6′′ E), mounted on one
slide each (NIBRIV0000880945-0000880955), and 2♂♂ from Imrang Beach (35◦19′00.2′′ N
129◦15′46.5′′ E), mounted on one slide each (NIBRIV0000881132-0000881133).

Etymology. The new species is named after the type locality.
Diagnosis. General characteristics including habitus, appendages segmentation, and

appendage setal formula as given by Kim et al. (2018) [40] in redescription of C. fukudai.
Jangsa and Detan individuals, with pleopod II endopodite PC1 shape variation based on the
following LM displacements: LM1 displaced disto-medially, LM2 proximo-laterally, LM3
disto-medially, LM4 proximo-medially, LM5 disto-medially, and LM6 proximo-laterally.

Remarks. One of the major differences between C.fukudai and C.jangsaensis sp. nov.
includes the relative distance between LM1, LM3, LM4, and LM5. The Jangsa, the Imrang,
and over half of the Detan individuals representing C. jangsaensis sp. nov. displayed a shape
change with decreased distance between those landmarks, resulting in the proximity of the
projection’s distal tip and the medial body’s one (see Figure 5C Right). The Dongho, the
Gazin, and the Sokcho individuals of C. fukudai showed the shape change with increased
distance between the landmarks, representing the remoteness of the projection’s distal tip
and the medial body’s one (Figure 5C, left). In addition, the relative movement of LM1,
LM2, LM3, LM5, and LM6 described another distinct shape change between two species.
The lengthen distance among those landmarks in C. jangsaensis sp. nov. showed overall a
deep proximal rut represented by LM1–3, while those of C. fukudai showed the shortest
distance, forming a relatively shallow groove. As a result, overall LM displacements
indicates that C. jangsaensis sp. nov. tends to display the PE’s lateral projection less
developed distally than C. fukudai’s one.

4. Discussion

One of the most significant results of the LBGM analysis is a high degree of CS
differences in SD, PP, and PE datasets. The grouping factors play a dominant role in the
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overall size variations. In the SD and PE datasets, lineages A and B differed significantly
from each other in size, while the PP dataset showed hardly any statistical differences. Sex
was a significant factor accounting for the overall size variation in the PP dataset, but not in
SD. Such size variation consequently yielded a significant allometric association, which is
the main cause of the disparity or similarity between lineages and sexes. This is particularly
obvious when comparing the shape variation in SD and PP datasets with and without
allometry. The shape variation produced by a continuation of allometric association is
not an independent morphological criterion and is invalid for the species delineation [78],
but our discovery provides the first insight into the size variation in the microcerberid
isopods. Initially, Kim et al. (2018) [40] reported sexual dimorphism in body size in all
studied Korean populations of C. fukudai: the overall body length of adult females lies
between 1 and 1.5 mm and is less than 1 mm for males, which is a common trend in other
congeners [42,45,79–82]. Given such interspecific variation in size, overall body length and
sexual size dimorphism discrepancies in the sensilla distribution are prominent features of
lineage A and lineage B. Secondly, the genetic lineages did not correspond to the similarity
in CS given that all populations showed a significant difference in the intrapopulation
variation. Since size difference can either be a result of sympatric speciation [83] or a
temporary response to the ecological constraints [84–86], we need to explore the cause
further. Potential associations between size variation and seasonal changes in temperature,
nutrient levels, pH, salinity, and predation [87] would benefit from sampling over an
extended period of time; microcerberid ecology is poorly known other than salinity and
temperature tolerance ranges for one species [39].

The PCA analysis of regression residuals in the sensilla dataset revealed that lineages
A and B have a similar intrapopulational variability ranges, resulting in indistinguishable
morphospace clustering. This is interesting because results from other microcrustacean
studies indicate that cuticular organs are important in taxonomy [27,53,88–91]. Considering
a deep genetic divergence between two lineages with a split likely occurring between 3.6
and 2.1 million years ago [40], the absence of shape differences among the populations
cannot be explained by a lack of genetic variation. Instead, it is the result of stabilizing
selections of cuticular pore distribution patterns. Selection of this sort is known to constrain
populations to relatively constant and high-fitness phenotypes and thus limits the frequency
of directional or disruptive evolutionary changes [92]. The genus Coxicerberus is a marine
interstitial group, displaying morphological characteristics associated with the life in
narrow, dark spaces [38]. Eyes are absent, forcing them to rely strongly on other sensory
organs [93]. The cephalothorax’s dorsal surface sensilla are assumed to play a prominent
role in transmitting mechanical information to the central nervous system for efficient food
sourcing and predator avoidance [94–96]. Despite their functional importance, we do not
know to what extent these sensilla are species-specific since only a few Coxicerberus studies
mention the number of sensilla along the cephalothorax’s lateral margin [42–44,82,93].
More sensilla studies are necessary in order to more accurately address their evolutionary
stability and interspecific differences. A recent LBGM copepod study describes how
cuticular pores and sensilla distribution patterns can be used to distinguish between closely
related species [97].

The PCA analysis of the pleon dataset regression residuals showed a significant
individual variability in the pleonite I, II, and pleotelson, altering their L/W ratio. However,
there is no morphological evidence to distinguish two lineages in both sexes. Instead, we
detected a distinct population clustering, but only in the female dataset. Accordingly,
Gazin and Sokcho populations clustered together (lineage A) and are separated from the
Jangsa (lineage B), the former groups showing much broader and shorten pleons than
the latter one. The majority of Detan clustered with the Jangsa population with high
similarity in the pleon shape, corresponding to the genetic membership. The Imrang
and Dongho individuals did not follow this pattern and displayed a broad and elongated
pleon, respectively. This phenomenon may indicate that the female pleon underwent a local
adaptation across the populations in a different direction from the male. The female-specific
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variation is worth studying further, as the microcerberid taxonomy has mostly relied on
male features. Female morphology is generally homogenous across taxa, with the overall
shape lacking distinct qualitative traits, consequently being neglected in previous studies.
Given that the geometric trends can differ between sexes, it is essential to test a strong
sexual dimorphism with molecular markers in order to confirm con-specificity. Marine
isopod populations show a strong female-biased sex ratio [98–100], from just over 50% to
14:1 in some Jaera Leach, 1814 species [101]. We also observed a similar phenomenon for
C. fukudai complex, which was problematic when comparing male specimens as they are
morphologically indistinguishable or are not easily available [40]. Therefore, extrapolating
our results regarding the importance of female characteristics to other taxa would be
beneficial for more reliable species delineation.

PCA, the cross-validation, and CVA analyses of the pleopod II dataset residuals
showed a distinct separation of lineages A and B leading to a new species description. Coxi-
cerberus jangsaensis sp. nov. displayed the shape variation of pleopod II endopodite’s distal
tip, which is apparently opposite to that of C. fukudai. Such variation in the genital parts
is occasionally associated with the copulation success rate, resulting in the reproductive
isolation among morphologically diverged individuals [56,102]. Wilson (1991) [55] de-
scribed that the copulation of Asellota is mainly controlled by exopod holding the pleopod
II and forcing it into the female’s genitalia when sperm packets are conveyed. Coxicerberus
jangsaensis sp. nov. shows the lateral projection of endopodite is structurally flexible and
located near the opening where the appendix masculina is developed. Given the phylo-
genetic closeness and synapomorphy of the pleopod morphology between Asellota and
Microcerberidea [35], we assume this body part interacts with the proximal part of the
appendix masculina during the insemination. Indeed, the male pleopod II endopodite’s
distal tip is one of the most variable characters across the species that has been used to
determine a morphological boundary or phylogenetic relatedness. According to the species
grouping by Baldari and Argano (1984) [44], C. fukudai has a strong morphological affinity
with C. abbotti Lang, 1961 and C. kiiensis Nunomura, 1973 in terms of sharing the overall
shape of pleopod I endopodite, which is out curved, covered by rows of setule medially,
and tapering distally. One of the most notable differences between those species is the
morphology of the endopodite’s distal tip, which is rounded/pointed without any projec-
tion in the latter two species. Based on this observation, we speculate that the geometric
variability in the PE’s distal tip is a significant morphological evidence accounting for the
divergence and reproductive isolation between C. fukudai and C. jangsaensis sp. nov.

With a reverse taxonomy concept [103], we employed a quantitative LBGM approach
using three morphological characters, pleon, sensilla, and pleopod II endopodite, to resolve
a C. fukudai species complex initially detected using molecular tools. These characters
showed significant size and shape variations across the geographically separated popula-
tions, of which the pleopod II endopodite displays a high taxonomic potential for yielding
the new species establishment. Our pioneering attempt consequently provided the first
insight into the fine-scale diversity challenging the subsequent cryptic species problem in
the microcerbrid taxonomy. Coxicerberus anfidicus Messana, Argano, and Baldari, 1978 com-
plex exhibiting the morphological inconsistency between specimens from Somalian and
Maledive populations [44], for instance, would be the next case study of cryptic diversity.
Finally, we expect the possible methodological application to the taxonomic impediment in
other interstitial fauna as the homogenous morphology resulted from convergent evolution
is a well-known phenomenon across the distant areas [104].

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-444
1/13/4/515/s1, Table S1: Specimens information examined in this study with accession numbers
as well as GPS addresses; Table S2: Accession numbers of sequences used in this study’s genetic
analyses; Table S3: Centroid size of character employed for Figure 3; File S1: TPS files containing
landmarks digitization of characters; File S2: Morpho J save files of the entire morphometric analyses.
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levels of disturbance between agricultural productions: An example in Croatian population of Pterostichus melas melas (Coleptera:
Carabidae). Zool. Anz. 2018, 276, 42–49. [CrossRef]

20. Rufino, M.M.; Gaspar, M.B.; Pereira, A.M.; Vasconcelos, P. Use of shape to distinguish Chamelea gallina and Chamelea striatula
(Bivalvia: Veneridae): Linear and geometric morphometric methods. J. Morphol. 2006, 267, 1433–1440. [CrossRef] [PubMed]

21. Konan, K.M.; Adépo-Gourène, A.B.; Ouattara, A.; Nyingy, W.D.; Gourène, G. Morphometric variation among male populations
of freshwater shrimp Macrobrachium vollenhovenii Herklots, 1851 from Côte d’Ivoire Rivers. Fish. Res. 2010, 103, 1–8. [CrossRef]

22. Silva, I.C.; Alves, M.J.; Paula, J.; Hawkins, S.J. Population differentiation of the shore crab Carcinus maenas (Brachyura: Portunidae)
on the southwest English coast based on genetic and morphometric analyses. Sci. Mar. 2010, 74, 435–444. [CrossRef]

23. Loy, A.; Bertelletti, M.; Costa, C.; Ferlin, L.; Cataudella, S. Shape changes and growth trajectories in the early stages of three
species of the genus Diplodus (Perciformes, Sparidae). J. Morphol. 2001, 250, 24–33. [CrossRef]

24. Rodríguez-Mendoza, R.; Muñoz, M.; Saborido-Rey, F. Ontogenetic allometry of the bluemouth, Helicolenus dactylopterus dacty-
lopterus (Teleostei: Scorpaenidae), in the Northeast Atlantic and Mediterranean based on geometric morphometrics. Hydrobiologia
2011, 670, 5–22. [CrossRef]

25. Karanovic, I.; Lavtižar, V.; Djurakic, M. A complete survey of normal pores on a smooth shell ostracod (Crustacea): Landmark-
based versus outline geometric morphometrics. J. Morphol. 2017, 278, 1091–1104. [CrossRef]

26. Wrozyna, C.; Meyer, J.; Gross, M.; Ramos, M.I.F.; Piller, W.E. Definition of regional ostracod (Cytheridella) morphotypes by use of
landmark-based morphometrics. Freshw. Sci. 2018, 37, 573–592. [CrossRef]

27. Karanovic, T.; Djurakic, M.; Eberhard, S.M. Cryptic species or inadequate taxonomy? Implementation of 2D geometric mor-
phometrics based on integumental organs as landmarks for delimitation and description of copepod taxa. Syst. Biol. 2016, 65,
304–327. [CrossRef]

28. Karanovic, T.; Lee, S.; Lee, W. Instant taxonomy: Choosing adequate characters for species delimitation and description through
congruence between molecular data and quantitative shape analysis. Invertebr. Syst. 2018, 32, 551–580. [CrossRef]

29. Curatolo, T.; Calvaruso, C.; Galil, B.S.; Brutto, S.L. Geometric morphometry supports a taxonomic revision of the Mediterranean
Bathyporeia guilliamsoniana (Spence Bate, 1857) (Amphipoda, Bathyporeiidae). Crustaceana 2013, 86, 820–828. [CrossRef]

30. Zuykova, E.I.; Simonov, E.P.; Bochkarev, N.A. Comparative morphological and genetic analysis of populations and species of
the genus Daphnia OF Müller, 1785 (Crustacea; Daphniidae) from Lake Glubokoe and Lake Chany. Biol. Bull. 2017, 44, 277–289.
[CrossRef]

31. Hurtado, L.A.; Mateos, M.; Santamaria, C.A. Phylogeography of supralittoral rocky intertidal Ligia isopods in the Pacific region
from central California to central Mexico. PLoS ONE 2010, 5, e11633. [CrossRef] [PubMed]

32. Eberl, R.; Mateos, M.; Grosberg, R.K.; Santamaria, C.A.; Hurtado, L.A. Phylogeography of the supralittoral isopod Ligia occidentalis
around the Point Conception marine biogeographical boundary. J. Biogeogr. 2013, 40, 2361–2372. [CrossRef]

33. Santamaria, C.A.; Mateos, M.; Taiti, S.; DeWitt, T.J.; Hurtado, L.A. A complex evolutionary history in a remote archipelago:
Phylogeography and morphometrics of the Hawaiian endemic Ligia isopods. PLoS ONE 2013, 8, e85199. [CrossRef] [PubMed]

34. Santamaria, C.A.; Mateos, M.; DeWitt, T.J.; Hurtado, L.A. Constrained body shape among highly genetically divergent allopatric
lineages of the supralittoral isopod Ligia occidentalis (Oniscidea). Ecol. Evol. 2016, 6, 1537–1554. [CrossRef]

35. Wägele, J.W. On the origin of the Microcerberidae (Crustacea: Isopoda). J. Zool. Syst. Evol. Res. 1983, 21, 249–262. [CrossRef]
36. Karaman, S. Microcerberus stygius, der dritte Isopod aus dem Grundwasser von Skoplje, Jugoslavien. Zool. Anz. 1933, 102,

165–169.
37. World Marine, Freshwater and Terrestrial Isopod Crustaceans Database. Available online: http://www.marinespecies.org/

isopoda/ (accessed on 20 September 2020).
38. Wägele, J.W.; Voelz, N.J.; McArthur, J. Older than the Atlantic Ocean: Discovery of a fresh water Microcerberus (Isopoda) in North

America and erection of Coxicerberus, new genus. J. Crustacean Biol. 1995, 15, 733–745. [CrossRef]
39. Albuquerque, E.F.; Meurer, B.; Netto, G.D.C.G. Effects of temperature and salinity on the survival rates of Coxicerberus ramosae

(Albuquerque, 1978), an interstitial isopod of a Sandy Beach on the coast of Brazil. Braz. Arch. Biol. Technol. 2009, 52, 1179–1187.
[CrossRef]

40. Kim, J.; Malyutina, M.; Lee, W.; Karanovic, I. Incongruence between morphological and molecular diversity in Coxicerberus
fukudai (Ito, 1974) (Isopoda: Microcerberidea) from East Asia. J. Crustacean. Biol. 2018, 38, 315–328. [CrossRef]

41. Chappuis, P.A. Un nouvel isopode psammique du Maroc: Microcerberus remyi. Vie et Milieu 1953, 4, 659–663.
42. Lang, K. Contributions to the knowledge of the genus Microcerberus Karaman (Crustacea, Isopoda) with a description of a new

species from the central California coast. Ark. Zool. 1961, 13, 493–510.

http://doi.org/10.2307/2992387
http://doi.org/10.1016/S0378-1119(01)00867-8
http://doi.org/10.1111/j.1469-8137.2012.04312.x
http://doi.org/10.3390/sym7020843
http://doi.org/10.1016/j.jcz.2018.07.003
http://doi.org/10.1002/jmor.10489
http://www.ncbi.nlm.nih.gov/pubmed/17103393
http://doi.org/10.1016/j.fishres.2010.01.005
http://doi.org/10.3989/scimar.2010.74n3435
http://doi.org/10.1002/jmor.1056
http://doi.org/10.1007/s10750-011-0675-7
http://doi.org/10.1002/jmor.20696
http://doi.org/10.1086/699482
http://doi.org/10.1093/sysbio/syv088
http://doi.org/10.1071/IS17002
http://doi.org/10.1163/15685403-00003217
http://doi.org/10.1134/S106235901703013X
http://doi.org/10.1371/journal.pone.0011633
http://www.ncbi.nlm.nih.gov/pubmed/20657776
http://doi.org/10.1111/jbi.12168
http://doi.org/10.1371/journal.pone.0085199
http://www.ncbi.nlm.nih.gov/pubmed/24386463
http://doi.org/10.1002/ece3.1984
http://doi.org/10.1111/j.1439-0469.1983.tb00293.x
http://www.marinespecies.org/isopoda/
http://www.marinespecies.org/isopoda/
http://doi.org/10.2307/1548822
http://doi.org/10.1590/S1516-89132009000500015
http://doi.org/10.1093/jcbiol/ruy002


Water 2021, 13, 515 16 of 17

43. Messana, G.; Argano, R.; Baldari, F. Microcerberus (Crustacea Isopoda Microcerberidea) from the Indian Ocean. Monit. Zool. Ital.
Suppl. 1978, 10, 69–79. [CrossRef]

44. Baldari, F.; Argano, R. Description of a new species of Microcerberus from the South China Sea and a proposal for a revised
classification of the Microcerberoidea (Isopoda). Crustaceana 1984, 46, 113–126. [CrossRef]

45. Fish, S. The setae of Eurydice pulchra (Crustacea: Isopoda). J. Zool. 1972, 166, 163–177. [CrossRef]
46. Oshel, P.E.; Steele, V.J.; Steele, D.H. Comparative SEM morphology of amphipod microtrich sensilla. Crustaceana. Suppl. 1988, 13,

100–106.
47. Derby, C.D. Physiology of sensory neurons in morphologically identified cuticular sensilla of crustaceans. In Functional Morphology

of Feeding and Grooming in Crustacea, 1st ed.; Felgenhauer, B.E., Watling, L., Thistle, A.B., Eds.; CRC Press: Boca Raton, FL, USA,
1989; pp. 27–47.

48. Mauchline, J. The integumental sensilla and glands of pelagic Crustacea. J. Mar. Biol. Assoc. UK 1977, 57, 973–994. [CrossRef]
49. Elofsson, R.; Hessler, R.R. Sensory structures associated with the body cuticle of Hutchinsoniella macracantha (Cephalocarida). J.

Crustacean. Biol. 1994, 14, 454–462. [CrossRef]
50. Boundrias, M.A.; Pires, J. Unusual sensory setae of the raptorial Branchinecta gigas (Branchiopoda: Anostraca). Hydrobiologia 2002,

486, 19–27. [CrossRef]
51. Meisch, C.; Wouters, K. Valve surface structure of Candona neglecta Sars, 1887 (Crustacea, Ostracoda). Studia Quat. 2004, 21, 15–18.
52. Zimmer, A.R.; Araujo, P.B.; Buckup, G.B. Diversity and arrangement of the cuticular structures of Hyalella (Crustacea: Amphipoda:

Dogielinotidae) and their use in taxonomy. Zoologia 2009, 26, 127–142. [CrossRef]
53. Karanovic, T.; Kim, K. Suitability of cuticular pores and sensilla for harpacticoid copepod species delineation and phylogenetic

reconstruction. Arthropod. Struct. Dev. 2014, 43, 615–665. [CrossRef]
54. Khalaji-Pirbalouty, V. The morphology, arrangement, and ultrastructure of a new type of microtrich sensilla in marine isopods

(Crustacea, Isopoda). Zool. Stud. 2014, 53, 7. [CrossRef]
55. Wilson, G.D.F. Functional morphology and evolution of isopod genitalia. In Crustacean Sexual Biology, 1st ed.; Raymond, T.B., Joel,

W.M., Eds.; Columbia University Press: New York, NY, USA, 1991; pp. 228–245.
56. Masly, J.P. 170 years of “lock-and-key”: Genital morphology and reproductive isolation. Int. J. Evol. Biol. 2012, 247352, 1–10.

[CrossRef]
57. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.

[CrossRef]
58. GenBank. Nucleic Acids Research 36(Database):D25–D30. Available online: https://doi.org/10.1093/nar/gkm929 (accessed on

21 September 2020).
59. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability.

Mol. Biol. Evol. 2013, 30, 772–780. [CrossRef]
60. Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116.

[CrossRef]
61. Trifinopoulos, J.; Nguyen, L.T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood

analysis. Nucleic Acids Res. 2016, 44, W232–W235. [CrossRef] [PubMed]
62. Rohlf, F.J. The tps series of software. Hystrix 2015, 26. [CrossRef]
63. Bookstein, F.L. Morphometric Tools for Landmark Data: Geometry and Biology, 1st ed.; Cambridge University Press: Cambridge,

UK, 1991.
64. Rohlf, F.J. tpsDig Version 2.16; Department of Ecology and Evolution, State University of New York Stony Brook: New York, NY,

USA, 2010.
65. Klingenberg, C.P.; Barluenga, M.; Meyer, A. Shape analysis of symmetric structures: Quantifying variation among individuals

and asymmetry. Evolution 2002, 56, 1909–1920. [CrossRef] [PubMed]
66. Klingenberg, C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357.

[CrossRef] [PubMed]
67. Cardini, A. Lost in the other half: Improving accuracy in geometric morphometric analyses of one side of bilaterally symmetric

structures. Syst. Biol. 2016, 65, 1096–1106. [CrossRef]
68. Brusatte, S.L.; Sakamoto, M.; Montanari, S.; Harcourt-Smith, W.E.H. The evolution of cranial form and function in theropod

dinosaurs: Insights from geometric morphometrics. J. Evol. Biol. 2012, 25, 365–377. [CrossRef] [PubMed]
69. Mitteroecker, P.; Gunz, P.; Windhager, S.; Schaefer, K. A brief review of shape, form, and allometry in geometric morphometrics,

with applications to human facial morphology. Hystrix 2013, 24, 59–66. [CrossRef]
70. Spitzer, M.; Wildenhain, J.; Rappsilber, J.; Tyers, M. BoxPlotR: A web tool for generation of box plots. Nat. Methods 2014, 11, 121.

[CrossRef] [PubMed]
71. Klingenberg, C.P.; McIntyre, G.S. Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating

asymmetry with Procrustes methods. Evolution 1998, 52, 1363–1375. [CrossRef] [PubMed]
72. Monteiro, L.R. Multivariate regression models and geometric morphometrics: The search for causal factors in the analysis of

shape. Syst Biol. 1999, 48, 192–199. [CrossRef]
73. Klingenberg, C.P. Size, shape, and form: Concepts of allometry in geometric morphometrics. Dev. Genes Evol. 2016, 226, 113–137.

[CrossRef]

http://doi.org/10.1080/03749444.1978.10736858
http://doi.org/10.1163/156854084X00612
http://doi.org/10.1111/j.1469-7998.1972.tb04083.x
http://doi.org/10.1017/S0025315400026060
http://doi.org/10.2307/1548992
http://doi.org/10.1023/A:1021317927643
http://doi.org/10.1590/S1984-46702009000100019
http://doi.org/10.1016/j.asd.2014.09.003
http://doi.org/10.1186/1810-522X-53-7
http://doi.org/10.1155/2012/247352
http://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/nar/gkm929
http://doi.org/10.1093/molbev/mst010
http://doi.org/10.1111/2041-210X.12410
http://doi.org/10.1093/nar/gkw256
http://www.ncbi.nlm.nih.gov/pubmed/27084950
http://doi.org/10.4404/hystrix-26.1-11264
http://doi.org/10.1111/j.0014-3820.2002.tb00117.x
http://www.ncbi.nlm.nih.gov/pubmed/12449478
http://doi.org/10.1111/j.1755-0998.2010.02924.x
http://www.ncbi.nlm.nih.gov/pubmed/21429143
http://doi.org/10.1093/sysbio/syw043
http://doi.org/10.1111/j.1420-9101.2011.02427.x
http://www.ncbi.nlm.nih.gov/pubmed/22111918
http://doi.org/10.4404/hystrix-24.1-6369
http://doi.org/10.1038/nmeth.2811
http://www.ncbi.nlm.nih.gov/pubmed/24481215
http://doi.org/10.1111/j.1558-5646.1998.tb02018.x
http://www.ncbi.nlm.nih.gov/pubmed/28565401
http://doi.org/10.1080/106351599260526
http://doi.org/10.1007/s00427-016-0539-2


Water 2021, 13, 515 17 of 17

74. Ponssa, M.L.; Candioti, M.F.V. Patterns of skull development in anurans: Size and shape relationship during postmetamorphic
cranial ontogeny in five species of the Leptodactylus fuscus Group (Anura: Leptodactylidae). Zoomorphology 2012, 131, 349–362.
[CrossRef]

75. Good, P. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses, 2nd ed.; Springer: Berlin, Germany, 2013.
76. Klingenberg, C.P.; Monteiro, L.R. Distances and directions in multidimensional shape spaces: Implications for morphometric

applications. Syst. Biol. 2005, 54, 678–688. [CrossRef]
77. Timm, N.H. Applied Multivariate Analysis, 1st ed.; Springer: Berlin, Germany, 2002.
78. Gould, S.J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 1966, 41, 587–638. [CrossRef]
79. Karaman, S.L. Über eine neue Microcerberus-art aus dem Küstengrundwasser der Adria. Fragm. Balc. 1955, 141–148.
80. Pennak, R.W. A new micro-isopod from a Mexican marine beach. Trans. Am. Microsc. Soc. 1958, 77, 298–303. [CrossRef]
81. Ito, T. A new species of marine interstitial isopod of the genus Microcerberus from Hokkaido. J. Fac. Sci. Hokkaido Univ. Ser. VI.

Zool. 1974, 19, 338–348.
82. Ito, T. A new species of marine interstitial isopod of the genus Microcerberus from the Bonin Island. Annot. Zool. Jpn. 1975, 48,

119–128.
83. Martin, C.H. Strong assortative mating by diet, color, size, and morphology but limited progress toward sympatric speciation in a

classic example: Cameroon crater lake cichlids. Evolution 2013, 67, 2114–2123. [CrossRef]
84. Swaileh, K.M.; Adelung, D. Effect of body size and season on the concentrations of Cu, Cd, Pb and Zn in Diastylis rathkei

(kröyer)(Crustacea: Cumacea) from Kiel Bay, Western Baltic. Mar. Pollut. Bull. 1995, 31, 103–107. [CrossRef]
85. Panov, V.E.; McQueen, D.J. Effects of temperature on individual growth rate and body size of a freshwater amphipod. Can. J.

Zool. 1998, 76, 1107–1116. [CrossRef]
86. Hanamura, Y.; Siow, R.; Chee, P.E.; Kassim, F.M. Seasonality and biological characteristics of the shallow-water mysid Mesopodopsis

orientalis (Crustacea: Mysida) on a tropical sandy beach, Malaysia. Plankton. Benthos. Res. 2009, 4, 53–61. [CrossRef]
87. Hart, R.C.; Bychek, E.A. Body size in freshwater planktonic crustaceans: An overview of extrinsic determinants and modifying

influences of biotic interactions. Hydrobiologia 2011, 668, 61–108. [CrossRef]
88. Puri, H.S. Normal pores and the phylogeny of Ostracoda. Geosci. Man. 1974, 6, 137–151.
89. Mauchline, J. Taxonomic value of pore pattern in the integument of calanoid copepods (Crustacea). J. Zool. 1988, 214, 697–749.

[CrossRef]
90. Tsukagoshi, A. Ontogenetic change of distributional patterns of pore systems in Cythere species and its phylogenetic significance.

Lethaia 1990, 23, 225–241. [CrossRef]
91. Olesen, J. External morphology and phylogenetic significance of the dorsal/neck organ in the Conchostraca and the head pores

of the cladoceran family Chydoridae (Crustacea, Branchiopoda). Hydrobiologia 1996, 330, 213–226. [CrossRef]
92. Haller, B.C.; Hendry, A.P. Solving the paradox of stasis: Squashed stabilizing selection and the limits of detection. Evolution 2014,

68, 483–500. [CrossRef] [PubMed]
93. Wägele, J.W. On a new Microcerberus from the Red Sea and the relationship of the Microcerberidea to the Anthuridea (Crustacea,

Isopoda). Zool. Scr. 1982, 11, 281–286. [CrossRef]
94. Platvoet, D. Slide-line organ in gammarid (Crustacea: Amphipoda). Beaufortia 1985, 35, 129–133. Available online: http:

//www.repository.naturalis.nl/record/505044 (accessed on 10 January 2021).
95. Brandt, A. Morphology and ultrastructure of the sensory spine, a presumed mechanoreceptor of Sphaeroma hookeri (Crustacea,

Isopoda), and remarks on similar spines in other peracarids. J. Morphol. 1988, 198, 219–229. [CrossRef] [PubMed]
96. Escobar, E.; Oseguera, L.; Nin, G.H.V.; Alcocer, J. The external micro-anatomy of the cephalon of the asellotan isopod Craseriella

anops. Hydrobiologia 2002, 467, 57–62. [CrossRef]
97. Karanovic, T.; Bláha, M. Taming extreme morphological variability through coupling of molecular phylogeny and quantitative

phenotype analysis as a new avenue for taxonomy. Sci. Rep. 2019, 9, 1–15. [CrossRef] [PubMed]
98. Holdich, D.M. Reproduction, growth and bionomics of Dynamene bidentata (Crustacea: Isopoda). J. Zool. 1968, 156, 137–153.

[CrossRef]
99. Jones, M.B.; Naylor, E. Breeding and bionomics of the British members of the Jaera albifrons group of species (Isopoda: Asellota). J.

Zool. 1971, 165, 183–199. [CrossRef]
100. Heath, D.J.; Khazaeli, A.A. Population dynamics of the estuarine isopod Sphaeroma rugicauda. Estuar. Coast. Shelf. Sci. 1985, 20,

105–116. [CrossRef]
101. Steele, D.H.; Steele, V.J. The biology of Jaera spp. (Crustacea, Isopoda) in the northwestern Atlantic. 1. Jaera ischiosetosa. Can. J.

Zool. 1972, 50, 205–211. [CrossRef]
102. Sota, T.; Kubota, K. Genital lock-and-key as a selective agent against hybridization. Evolution 1998, 52, 1507–1513. [CrossRef]
103. Markmann, M.; Tautz, D. Reverse taxonomy: An approach towards determining the diversity of meiobenthic organisms based on

ribosomal RNA signature sequences. Philos. Trans. R. Soc. B 2005, 360, 1917–1924. [CrossRef] [PubMed]
104. Cerca, J.; Purschke, G.; Struck, T.H. Marine connectivity dynamics: Clarifying cosmopolitan distributions of marine interstitial

invertebrates and the meiofauna paradox. Mar. Biol. 2018, 165, 1–21. [CrossRef]

http://doi.org/10.1007/s00435-012-0164-1
http://doi.org/10.1080/10635150590947258
http://doi.org/10.1111/j.1469-185X.1966.tb01624.x
http://doi.org/10.2307/3223693
http://doi.org/10.1111/evo.12090
http://doi.org/10.1016/0025-326X(94)00258-B
http://doi.org/10.1139/z98-025
http://doi.org/10.3800/pbr.4.53
http://doi.org/10.1007/s10750-010-0400-y
http://doi.org/10.1111/j.1469-7998.1988.tb03768.x
http://doi.org/10.1111/j.1502-3931.1990.tb01450.x
http://doi.org/10.1007/BF00024209
http://doi.org/10.1111/evo.12275
http://www.ncbi.nlm.nih.gov/pubmed/24102172
http://doi.org/10.1111/j.1463-6409.1982.tb00539.x
http://www.repository.naturalis.nl/record/505044
http://www.repository.naturalis.nl/record/505044
http://doi.org/10.1002/jmor.1051980208
http://www.ncbi.nlm.nih.gov/pubmed/29884015
http://doi.org/10.1023/A:1014976329076
http://doi.org/10.1038/s41598-019-38875-2
http://www.ncbi.nlm.nih.gov/pubmed/30787369
http://doi.org/10.1111/j.1469-7998.1968.tb05925.x
http://doi.org/10.1111/j.1469-7998.1971.tb02181.x
http://doi.org/10.1016/0272-7714(85)90120-9
http://doi.org/10.1139/z72-030
http://doi.org/10.1111/j.1558-5646.1998.tb02033.x
http://doi.org/10.1098/rstb.2005.1723
http://www.ncbi.nlm.nih.gov/pubmed/16214749
http://doi.org/10.1007/s00227-018-3383-2

	Introduction 
	Materials and Methods 
	Sample Collection 
	Genetic and SEM Analyses 
	Morphological Data Acquisition 
	Geometric Morphometric Analyses 

	Results 
	Confirmation of Genetic Indentity 
	Testing Variations in Size and Shape 
	Allometry and Size-Corrected Shape Variation 
	Lineage Differentiation and Morphological Distances 
	Taxonomy 

	Discussion 
	References

