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Abstract: The acquisition of reliable and accurate data to assess environmental changes over large
spatial scales is one of the main limitations to determine the impact of eutrophication, and the
effectiveness of management strategies in coastal systems. Here, we used a continuous in situ
Chl-a fluorometry sensor and L8/OLI satellite data to develop an algorithm and map Chl-a spatial
distribution to assess the impact of freshwater diversions and associated high nutrient loading rates in
the Barataria Basin (BB) complex, a coastal system in the northern Gulf of Mexico. We collected water
quality samples at 24 sampling stations and high-frequency continuous fluorometry in situ [Chl-a]
data along a ~87 km transect from 2019–2020. Field [Chl-a] values were highly correlated (r = 0.86;
p < 0.0001) with continuous in situ [Chl-a] fluorometry values. These continuous in situ [Chl-a]
values were significantly related to a surface reflectance ratio ([B1 + B4]/B3) estimated using L8/OLI
data (exponential model; R2 = 0.46; RMSE = 4.8, p < 0.0001). The statistical model replicated [Chl-a]
spatial patterns across the BB complex. This work shows the utility of high-frequency continuous
Chl-a fluorometry sampling coupled with L8/OLI image analysis to increase the frequency and
number of field data sets to assess water quality conditions at large spatial scales in highly dynamic
deltaic regions.

Keywords: Chlorophyll a; fluorometry; Barataria Bay; Mississippi River; algae blooms; eutrophica-
tion; Mississippi delta

1. Introduction

Estuaries are coastal ecosystems characterized by a high biological diversity and pro-
ductivity across latitudes [1]. However, despite their ecological and economic importance,
estuaries are increasingly altered by anthropogenic impacts that modify biogeochemical
cycling and ecosystem services (e.g., fisheries, water quality; [2,3]). Currently, coastal eu-
trophication is a pervasive environmental problem that alters the complex functional and
structural properties of estuaries across fertility and salinity gradients [4–8]. Understanding
the relationship between eutrophication processes and estuarine functional attributes has
become a priority as managers seek to mitigate and regulate eutrophication at different
spatiotemporal scales.

One of the major limitations to improving water quality and mitigating negative
impacts caused by coastal eutrophication is the lack of data and information to evaluate
the frequency, duration, and spatial extent of nutrient enrichment impacts on ecosystem
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primary productivity. Although eutrophication assessment initiatives have been developed
since the 1950’s in the USA, the lack of extensive and intensive spatiotemporal data coverage
still limits the development of more comprehensive regional evaluations, particularly the
long term impacts of nitrogen (N) and phosphorous (P) loadings [9]. Since the 1990’s the
National Estuarine Eutrophication Assessment (NEEA; 1999, 2007) has determined, for
instance, the scale, scope and origin of nutrient enrichment conditions in 144 estuaries
in the conterminous U.S. [9,10]. Yet, in coastal regions there are still data gaps to fully
understand the environmental effects of increasing eutrophication mainly due to urban
and industrial development that have critically altered the hydrology and geomorphology
of watershed systems in a changing climate [11–13].

Nutrient enrichment in estuarine systems triggers a progression of eutrophic re-
sponses [14,15]. The most apparent is the significant increase of Chlorophyll a concen-
tration (hereafter Chl-a) and macroalgal blooms [14] that are directly correlated to high
N and P loading rates into estuarine and coastal waters [16,17]. Because phytoplankton
rapidly responds to nutrient availability (i.e., hourly/daily), Chl-a is considered a good
proxy to determine the eutrophic state of estuarine waters [18]. Indeed, since Chl-a is the
main source of phytoplankton’s in vivo fluorescence [19,20], this biophysical property has
promoted the development of remote sensing tools that use optical sensors to indirectly
evaluate in situ fluorometry and determine phytoplankton productivity and biomass at
large spatial scales (i.e., hundreds of km2; [18,19,21]). Yet, assessing rapid changes in Chl-a
at large spatial scales in both coastal and inland waters using remote sensing instruments
is still a challenge.

One of the major issues in the spatial extrapolation and interpolation of field data
is separating the contribution of in situ water column optical properties from the actual
optical signals (i.e., in vivo fluorescence/absorbance) of phytoplankton cells (i.e., “Case 2”
waters; [22,23]). Although in vivo fluorescence is well correlated to Chl-a concentrations,
there are interfering compounds or processes that can significantly affect this relationship.
It is known, for instance, that taxonomic composition, physiological/morphological mech-
anisms (e.g., light, trophic status, nutrient stress), and turbidity are factors affecting the
accuracy of Chl-a estimates via remote sensing [24–27]. Furthermore, in shallow systems,
bottom reflectance often interferes with the phytoplankton signal in the water column [28].

To reduce this uncertainty when assessing Chl-a values, spatiotemporal trends of
in situ fluorescence or absorbance measurements are needed to identify the relative con-
tribution of other environmental factors to explain the total variance when converting
fluorometric values to Chl-a values. To date, Chl-a datasets available for the calibration and
evaluation of Chl-a/fluorometric models are limited in frequency and in spatial extend [21].
In this study, we use high-resolution, spatially explicit in situ data to increase the accuracy
of Chl-a mapping in the Barataria Basin (USA; hereafter BB complex). The study site is
a dynamic trophic estuarine system where optical water column properties are largely
determined by the Mississippi River discharge fluctuations throughout the year [29,30].

We compiled data sets from a continuous water quality sampling system (i.e., SWAMMP-
R) and contemporaneous Landsat 8/OLI (L8/OLI) images to develop a Chl-a detection algo-
rithm for time series of L8/OLI images. Given the OLI sensor configurations of Landsat 8
(i.e., Operational Land Imager) that collect data from nine shortwave bands, it is possible to
pair and calibrate image data with continuous field in situ Chl-a fluorometry values collected
in estuarine and coastal waters at the pixel level. Specifically, the objectives of this study
were to (1) evaluate continuous in situ Chl-a fluorometry values acquired over a large spatial
scale that were coupled with L8/OLI images acquisition to increase the accuracy of statistical
models linking continuous fluorometric-based Chl-a values to L8/OLI surface reflectance
and (2) use these models to discern Chl-a spatial variability along salinity gradients in the BB
complex. We particularly focus on locations impacted by controlled freshwater diversions
aiming to enhance sediment inputs for wetland restoration and can introduce nutrients that
may promote algae blooms including toxic cyanobacteria species [31–34]. Further, freshwater
diversions could potentially trigger complex responses over extended coastal areas. These
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include the effects of increasing flooding duration, changes in relative elevation and accretion
rates in wetlands, and reduction in salinity due to freshwater inputs [31–35]. Because con-
trolled freshwater diversions can also increase N and P loading rates, we also determine the
potential impact on phytoplankton biomass at variable spatial scales defined by differences in
fertility gradients [35,36]. We hypothesize that the impact of freshwater water diversions on
the BB complex plankton biomass reflected in Chl-a values can be accurately and efficiently
assessed using a combination of calibrated statistical models and spatially intensive sampling
using the continuous flow-thru SWAMMP-R (Spatially explicit WAter Monitoring system to
inform Management Priorities and Risks) multiprobe. Understanding the spatiotemporal
patterns and the interactions among hydrology and primary production at a landscape level
in the BB complex will provide critical data and information to determine and quantify
the effects of freshwater diversions on this complex estuarine system undergoing extensive
wetland and hydrological restoration since the 1990′s [33]. This assessment is urgently
needed to gauge both the present BB complex eutrophication magnitude and future changes
as freshwater diversions are implemented in brackish and saline regions within the next
10 years [32,35,37,38].

2. Materials and Methods
2.1. Area Description

The Barataria Basin (i.e., BB complex) is considered one of the most productive estu-
arine systems in the northern Gulf of Mexico (nGOM) [39–42]. It is located between the
west bank of the Mississippi River (MR) and Bayou Lafourche in southeastern Louisiana,
USA (range: latitude, 29◦5′ to 30◦8′ N; longitude, 89◦21′ to 91◦3′ W) (Figure 1). This area
is part of the Mississippi River Delta Plain (MRDP) and characterized by high levels of
primary production due to high nutrient loading rates from the MR and agriculture/urban
areas in the upper basin. The MR is the longest river system in North America (7854 km;
including the Missouri river) and it ranks sixth and seventh globally in terms of water
(610 km3 yr−1) and sediment (210 Mt yr−1) discharge [43–45]. The BB complex has a
total area of approximately 6600 km2 with the highest elevations ranging from ~4–5 m
along natural levees and the lowest slightly above sea level in wetland areas [46]. Vegeta-
tion communities are well-defined in the basin from north to south with cypress-tupelo
swamp defined by Taxodium distichum and Nyssa aquatica and freshwater marsh charac-
terized by Panicum hemitomon, Eleocharis spp., and Sagittaria lancifolia at the upper basin;
an intermediate-brackish marsh dominated by Spartina patens and Distichilis spicata at the
middle basin; and saltwater marsh habitat dominated by Spartina alterniflora at the lower
basin [46–48]. The total land area in the BB complex comprises agriculture fields (765 km2),
urban areas (430 km2) and extensive wetlands (3587 km2) [49]. The major water bodies in
the BB complex include Lac des Allemands and Lake Cataouatche at the upper basin; Lake
Salvador, Bayou Perot, and Little Lake in the middle basin; and Barataria Bay proper at the
lower basin (Figure 1). Mean water depth in this region ranges from 1.5–2.0 m [50,51]. The
water residence time is variable among water bodies: 50–70 days in the middle of Lac des
Allemands; 100–120 days in Lake Cataouatche; 100 days in Lake Salvador; 8–15 days in
Bayou Perot; 10–30 days in Little Lake; and 1–4 days in Barataria Bay [52,53].

Water quality properties across the BB complex are determined by daily and seasonal
drivers including tidal fluctuations, atmospheric factors controlling meteorological events
(i.e., cold fronts, storms, and tropical cyclones), river discharge and anthropogenic activities.
The BB complex is a micro tidal system with mixed diurnal and semi-diurnal tides. The
daily tidal amplitude average is 0.32 m at the coast and 0.03 m at the upper basin; this
tidal range is significantly influenced by wind during the winter season when cold fronts
occur at 3–7 days duration while tidal oscillation is the main driver during the summer
season [49,54,55]. Cold fronts in coastal Louisiana are characterized by a strong wind
shear, an abrupt drop in atmospheric pressure, and a fast reduction in air temperature [56].
Although cold fronts are not as severe as tropical cyclones, wind direction/velocity control
water levels and circulation, sediment transport (e.g., fluxes, wetland accretion/erosion,
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sediment resuspension), and the exchange of organic matter and nutrients between the BB
complex and the GOM [38,56]. Because of the BB complex location in subtropical latitudes,
maritime tropical air masses maintain persistent warm and humid conditions along coastal
Louisiana [38,57]. Thus, mean annual temperature ranges from 19 ◦C (January) to 32 ◦C
(July) (mean: 20 ◦C) while the minimum average ranges from 7 ◦C (January) to 22 ◦C
(July) [38,57].
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Figure 1. The Barataria Basin complex (BB) showing major hydrological features along the upper, middle, and lower basins
and the array of sampling dataflow transects/discrete sampling stations. Water quality sampling started at the Bayou Verret
channel (“Gate station”) upstream of Lake Cataouatche and continued seaward to the “Quatre Bayou Pass station” located
~4.0 km from the Quatre Bayou Pass.

The main freshwater inputs into the basin are rainwater, surface runoff from surround-
ing areas, the Gulf Intracoastal Waterway, and the Davis Pond Freshwater Diversion (DPFD)
located in the upper basin with a maximum operational discharge of 250 m3 s−1 [53,54].
Although levees along the Mississippi River have reduced the hydrological connectivity
between the river and the adjacent wetlands, freshwater discharge from the Southwest Pass
is advected from the mouth into the estuary through tidal inlets. This exchange promotes
inputs of freshwater (c.a., ~200 m3 s−1; [58]), salinity, and nutrient concentrations at the
coastal boundary [59–61]. The Mississippi River discharge starts increasing in November,
and peaks between March and June to begin declining throughout July. Given the differ-
ences in regional coastal sediment transport and deposition due to shoreline erosion and
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inlet expansion, the total water exchange varies across the lower Barataria Bay’s four main
tidal inlets: Barataria Pass (66%), Quatre Bayou Pass (18%), Caminada Pass (13%), and Pass
Abel (3%) [58,62] (Figure 1).

Historically, the BB complex has been impacted by a combination of anthropogenic
(e.g., construction of levees, canal cutting, pond creating, nutrient enrichment) and natural
(e.g., sea level rise, cold fronts, hurricanes) disturbances [63]. One of the major impacts
occurred when the BB complex became isolated from the Mississippi River after the closure
of Bayou Lafourche in 1902 and the construction of extensive levees for flood control in the
1930s and 1940s; these major hydrological alterations resulted in a decrease of freshwater
and sediment inputs into the basin [51,64]. The lack of freshwater and sediment inputs,
along with increasing relative sea level rise, has driven sustained wetland loss since 1932.
Although the land loss rate has decreased from 1995 to 2016 due to natural (e.g., lack of
major storms since 2008, reduction of tectonic activity, geomorphology) and anthropogenic
(e.g., shift in rates of hydrocarbons production since 1974, and navigation activities) factors,
the BB complex is still undergoing wetland loss [65]. Overall, this land loss is presently the
highest in the Unites States (c.a., 25.9 km2 yr−1) [65–69]. In an attempt to mitigate wetland
loss, the DPFD, in service since 2002 [35] was constructed to reconnect the BB complex to
the Mississippi River and allow the reintroduction of river flow into the interdistributary
basin. The main DPFD management objective is to reduce saltwater intrusion, improve
commercial and recreational fisheries and prevent and mitigate wetland loss by sediment
reintroduction to allow marsh accretion [33,67] (Figure 1). However, despite the potential
benefits, some studies suggest that the DPFD diversion could produce negative effects
impacting the water quality in receiving lakes near to the diversions, and even promoting
eutrophication in the estuarine coastal areas [30,49,70].

2.2. Field and Laboratory Methods
2.2.1. In-Situ Continuous Sampling

Continuous in situ Chl-a data (hereafter continuous in situ Chl-a) was collected
throughout the BB complex using the flow-thru SWAMMP-R multiprobe based on the
Dataflow flow-through sample acquisition platform [71–74]. The system (integrated by a
Eureka manta +35 water quality multiprobe, a Pro Oceanus CO2-Pro CV sonde, and a YSI
ProSolo ODO optical dissolved oxygen meter) consists of sensors connected in series to
measure temperature (◦C), specific conductance (mS cm−1), pH, dissolved oxygen (DO,
mg L−1), salinity (ppt), pCO2 (ppm), and in situ fluorometers for Chl-a (µg L−1) and Chro-
mophoric Dissolved Organic Matter (CDOMf; µg L−1). The Chl-a sensor is a Cyclops-7
fluorometer (Turner Designs) that detects Chl-a by using a light excitation wavelength at
460 nm (blue range) and a 685 nm fluorescence wavelength detection; the sensor is tested
and calibrated using a liquid dye standard solution (Rhodamine WT Dye 400 ppb; Turner
Designs) before field deployments. The CDOMf sensor is a Cyclops-7 fluorometer (Turner
Designs) that utilizes UV excitation for CDOM detection, encompassing a wide range of
CDOM types in coastal waters [26,75]. The system is mounted on a vessel, and while
navigating, it continuously records data at 5-second intervals by automatically withdraw-
ing water from the water column at a range from ~0.5 to 1.0 m depth. Each reading is
georeferenced using an integrated GPS unit [72].

The sampling routes encompass a variable number of upstream-downstream transects
that are selected a priori based on the spatial location of salinity gradients (Figure 1).
The freshwater endmember begins at the Bayou Verret channel (hereafter Gate) located
at ~5 km southeast from the DPFD, adjacent to the I-90 highway and before the flood
control structure gate (Figure 1, “Gate station”). The channel is hydrologically connected
to Lake Cataouatche. In a southeastern direction, the sampling transects cross both lakes
Cataouatche and Salvador and continue into Bayou Perot, Little Lake, and via Grand Bayou;
the transect ends in Barataria Bay close to the Quatre Bayou Pass (Figure 1, “Quatre Bayou
Pass station”). Depending on time, weather conditions and tidal stage, the transect in the
lower Barataria Bay is extended into two east-west transverse transects partially covering
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the central and lower estuarine regions in the wider bay area (Figure 1). The transect
sampling takes an average of 5.5 h to survey and is assumed to represent a “snapshot”
of environmental conditions within a tidal cycle for a particular date; the length of the
transect from upstream (“Gate station”) to downstream (“Quatre Bayou Pass station”) is
~87 km. The length of the transverse east-west transects is variable (above: ~33.5 km; below:
~32.3 km) (Figure 1). In this study, we analyzed Chl-a data obtained from the continuous in
situ Chl-a fluorometer sensor during the historic Mississippi River flood pulse (2019–2020)
on 9 July 2019, 13 September 2019, 14 December 2019, 22 February 2020, and 30 May 2020.

2.2.2. In-Situ Discrete Sampling

To evaluate the continuous in situ Chl-a fluorometer values and response accuracy,
we used regression analysis between those data sets and Chl-a concentrations determined
from discrete water samples (hereafter discrete in situ Chl-a) following the EPA-Method
445.0-2. Discrete water samples were collected at 0.5–1.0 m depth along the field transects
at sampling stations (N = 23–24) in summer (9 July 2019), fall (13 September 2019), winter
(14 December 2019) and spring (30 May 2020) to characterize spatiotemporal variations
in water bodies throughout the BB complex (Figure 1). Water samples were collected in
1 L HDPE amber Nalgene bottles, which were pre-rinsed with distilled and deionized
water at the laboratory and then with in situ water when the bottle was filled with water
exiting the flow-thru system. Samples were immediately stored at 4 ◦C and transported
to the laboratory for analysis in the same day of collection. Chl-a concentrations were
measured using a 90% acetone extraction during 18 h [76]. Total suspended solids (TSS)
was determined by filtering between 200–700 ml of each discrete water sample within 24 h
after sample collection; water was filtered using a pre-weighed, ash-free filter (47 mm,
0.7 µm, Whatman GF/F), then this filter plus sediment sample was dried for 24–48 h until
no change in weight for the determination of total weight by volume. Additional water
quality analyses (data not shown but see pCO2 and CDOM in supplemental Figure S1)
included dissolved inorganic nitrogen (DIN: NH4, NO2 + NO3), soluble reactive phospho-
rus (PO4), total alkalinity (TAlk), dissolved inorganic carbon (DIC) and particulate organic
carbon (POC).

2.2.3. Satellite Imagery Acquisition and Processing

Nearly cloud-free Level-1 L8/OLI satellite imagery were downloaded from the USGS
website (https://earthexplorer.usgs.gov/). L8/OLI images are geometrically corrected and
are projected in the UTM (Universal Transverse Mercator) map with the WGS 84 datum.
We used ENVI 5.3 (Exelis Visual Information Solutions, Boulder, CO, USA) and ArcGIS
10.5 (ESRI, Redlands, CA, USA) for image processing and to derive surface reflectance
data. Image processing included a radiometric calibration to convert digital numbers (DN)
from the satellite images into radiance values per pixel (units: µW/(cm2 × sr × nm) and
to perform the required atmospheric correction. The following formula [77] was used to
convert DN to radiance values:

Lλ = ML × Qcal + AL (1)

where Lλ is the spectral radiance (W/(m2 × sr × µm; top of the atmosphere radiance), ML is
the radiance multiplicative scaling factor for the selected band (RADIANCE_MULT_BAND_n
from the metadata), AL is the radiance additive scaling factor for the band (RADIANCE_ADD-
_BAND_n from the metadata), and Qcal is the pixel DN value.

Atmospheric effects were removed by using the FLAASH (Fast Line-of-sight Atmo-
spheric Analysis of Spectral Hypercubus) atmospheric correction module included in
ENVI 5.3. This atmospheric correction accounts for factors that can affect the radiation
detected by the satellite sensor (i.e., sky light, atmospheric sun glint, and radiance reflected
by white caps; [77]) when retrieving surface reflectance (Rt) data. Previous studies have

https://earthexplorer.usgs.gov/
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demonstrated that FLAASH is effective to determine the surface reflectance produced by
water constituents [21,77–79]. The equation [77] to calculate surface reflectance (Rt) is:

Rt = 1 − ρe / A (L − B × (ρe/1−ρeS) − La) (2)

where L is the spectral radiance at-sensor pixel, ρe is an average surface reflectance for the
pixel and its surroundings, S is the atmospheric spherical albedo, A and B are coefficients
that depend on atmospheric and geometric conditions but not on the surface, and La is the
atmospheric back scattered radiance. The selected model parameters included both the
atmospheric US-Standard and the maritime aerosol models to correct the L8/OLI images.
Additionally, multispectral settings were readjusted for L8/OLI images, including the
adjustment for open water areas based on the proximity to the water-dominated areas.
The FLAASH output is the apparent reflectance data where pixel values ranging from 0
to 10,000 represent a corresponding range from 0–100% reflectance. In some cases, pixel
values are outside this range as result of extremely dark/shadow areas or noise; thus, the
Band Math Tool from the ENVI toolbox [80] was used to rescale the pixel’s values to a
floating-point format (i.e., range 0–1).

2.2.4. Remote Sensing-based Algorithms to Estimate Chl-a Concentrations

Most of the remote sensing algorithms for Chl-a determination are based on the optical
properties (i.e., sunlight absorption patterns) of algal pigment structure and quantity [21].
These empirical models were developed using regression analyses to correlate reflectance
data to in situ Chl-a concentrations. Despite the simplicity of this approach, results from
this statistical analysis are highly informative about water quality conditions when using
Chl-a as indicator of eutrophication or levels of nutrient enrichment and potential nutrient
sources. However, one of the criticisms (and limitations) is that these empirical algorithms
are calibrated and validated based on a small number of in situ samples (c.a., ~20 sam-
ples) [21,81,82]. In this study, we used Level-1 Landsat 8/OLI images (path 22, rows 39 and
40) captured on 21 February 2020 and continuous in situ Chl-a fluorometry data collected
approximately 20 h apart (22 February 2020; N = 1441 data observations) to increase the
sample size (>1000 sampling points). Due to cloud coverage at the Barataria Bay coastal
boundary, the transverse transects were not considered for the model’s calculation and
validation (Figure S2). Similarly, due to geomorphological features (e.g., narrow man-
made channel distribution, dredging), constructed structures (e.g., levees and gates), and
hydrological variability (e.g., channel width and water depth) linked to major ecological
differences (i.e., extensive floating mats of the water hyacinth (Eichhornia crassipes) and tree
canopies), we excluded the Gate transect section for the model forecasting when compared
to the main water bodies. Thus, for the algorithm development we used continuous in
situ Chl-a data collected along salinity gradients from the most northern area of Lake
Cataouatche (0.16 ± 0.01 ppt) to lower Barataria Bay (6.8 ± 5.3 ppt) (Figure S2).

L8/OLI bands were combined into different spectral bands followed by applying
linear, polynomial, and exponential regression models to calculate a three bands ratio
algorithm to characterize the relationship between the surface reflectance (Rt) data and
the continuous in situ Chl-a (i.e., SWAMMP-R acquisition) concentrations. We used the
continuous in situ Chl-a data and the best correlated Rt bands ratio combination to fit
and test the model (Figure 2). After sequentially selecting the best correlated Rt bands
ratio combination, the dataset was evaluated for noise and outliers due to sensor response
and boat speed using studentized residuals criterion in JMP Pro 15.1.0 software [83]. This
revised dataset (N = 1332) was then separated into two subsets containing half (N = 666)
of the total observations for the corresponding model calibration and validation steps. To
test the model predictive capabilities, we used regression analysis, analysis of variance
(α = 0.05), Nash-Sutcliffe efficiency coefficient (NSE), and cumulative sum test (CUSUM). To
evaluate the model predictive power, the NSE coefficient determines the residual variance
compared to the observed data variance [84,85], while the CUSUM analysis helps to
identify and interpret patterns in complex spatial and temporal series data [86]. Once
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the model validation was completed, we used the selected model equation to map Chl-a
concentrations across the BB complex spatial domain (Figure 2).
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Figure 2. Flow chart summarizing the methods used in the algorithm calculations. SWAMMP-R: Spatially explicit WAter
Monitoring system to inform Management Priorities and Risks; L8/OLI: Landsat 8/OLI satellite; Chl-a: chlorophyll a; Rt ratio
(B1 + B4)/B3: remote sensing reflectance ratio between band 1, band 4 and band 3; R2: coefficient of determination; RMSE:
root mean square error; BB complex: Barataria Basin. The blue-dotted line frame shows the wavelength (nm) vs absorption
relationship used to estimate the Rt ratio value; the spectral signature was obtained using a Chl-a value = 1 µg L−1 [87].

3. Results
3.1. Discrete and Continuous Chl-a Data Statistical Summary

The average in situ Chl-a concentration (±SD) obtained from discrete water samples
collected during the Mississippi River flood pulse (2019–2020) was 18.5 ± 15.2 SD µg L−1.
The lowest Chl-a value (3.97 µg L−1) was measured at Bayou Perot during Winter and the
highest (102.92 µg L−1) along the lower Barataria Bay transect in Spring 2020 during the
MR peak discharge (Figure 3A). No significant seasonal patterns were observed throughout
the BB complex. However, the presence of a spatially discrete phytoplankton bloom was
observed in the lower Barataria Bay during Spring 2020 near the Quatre Bayou Pass-
station (Figure 3A). The average TSS concentration during the Mississippi River flood
pulse (2019–2020) was 27.2 ± 20.5 SD mg L−1; minimum values were observed in Lake
Salvador (<1 mg L−1) during summer 2019 and a maximum concentration in the east
central Barataria Bay transect (79 mg L−1) during fall 2019 (Figures 1 and 3B).
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Figure 3. Box plots of (A) seasonal discrete Chl-a concentration obtained by 90% acetone extraction
method (EPA 445.0-2) and (B) Total suspended solids (TSS) values during the Mississippi River flood
pulse in 2019–2020. Dashed line indicates the average in situ [Chl-a] and [TSS] during the sampling
period. Blue [Chl-a] and brown [TSS] diamonds are the seasonal averages per transect section:
summer (9 July 2019), fall (13 September 2019), winter (14 December 2019) and spring (30 May 2020).
N.D. = no data.

There was a significant correlation coefficient (r = 0.86) and coefficient of determination
(R2 = 0.74; p < 0.0001) between the discrete in situ Chl-a values and the continuous in situ
Chl-a (SWAMMP-R) values indicating that the continuous in situ Chl-a values directly
measured through fluorometry techniques are robust estimations of Chl-a concentrations;
thus, these values are suitable to interpolate values across the BB complex (Figure 4).



Water 2021, 13, 512 10 of 23

Water 2021, 13, x FOR PEER REVIEW 10 of 24 
 

 

a] and [TSS] during the sampling period. Blue [Chl-a] and brown [TSS] diamonds are the 
seasonal averages per transect section: summer (9 July 2019), fall (13 September 2019), 
winter (14 December 2019) and spring (30 May 2020). N.D. = no data. 

There was a significant correlation coefficient (r = 0.86) and coefficient of determina-
tion (R2 = 0.74; p < 0.0001) between the discrete in situ Chl-a values and the continuous in 
situ Chl-a (SWAMMP-R) values indicating that the continuous in situ Chl-a values directly 
measured through fluorometry techniques are robust estimations of Chl-a concentrations; 
thus, these values are suitable to interpolate values across the BB complex (Figure 4). 

 
Figure 4. Linear regression parameters and coefficient of determination (R2) between continuous 
in situ Chl-a data and [Chl-a] extracts using 84 discrete samples collected throughout the Barataria 
Basin complex in the period of 2019–2020. The solid line is the best linear fit; the grey band along 
the regression line shows the 95% confidence interval. Summer: 9 July 2019; fall: 13 September 
2019; winter: 14 December 2019; spring: 30 May 2020. 

A regression analysis between TSS and Chl-a revealed seasonal patterns where Chl-
a was a major constituent of particulate matter load during the summer (9 July 2019) and 
spring (30 May 2020) seasons (Figure 5). 

Figure 4. Linear regression parameters and coefficient of determination (R2) between continuous
in situ Chl-a data and [Chl-a] extracts using 84 discrete samples collected throughout the Barataria
Basin complex in the period of 2019–2020. The solid line is the best linear fit; the grey band along
the regression line shows the 95% confidence interval. Summer: 9 July 2019; fall: 13 September 2019;
winter: 14 December 2019; spring: 30 May 2020.

A regression analysis between TSS and Chl-a revealed seasonal patterns where Chl-a
was a major constituent of particulate matter load during the summer (9 July 2019) and
spring (30 May 2020) seasons (Figure 5).
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During the 2019–2020 MR flood pulse the continuous in situ Chl-a data also showed
consistent spatial patterns, where consistently higher Chl-a concentrations occurred at the
upper basin (low salinity; 0.20 ± 0.03 SD ppt) and lower Chl-a values at the lower basin
(higher salinity; 10.4 ± 5.9 SD ppt). Also, seasonal phytoplankton blooms were character-
ized during winter (14 December 2019) and spring (30 May 2020) when maximum continu-
ous in situ Chl-a values were 82.4 µg L−1 in Little Lake (mean: 17.8 ± 14.1 SD µg L−1) and
52.8 µg L−1 in Barataria Bay (mean: 14.2 ± 12.5 SD µg L−1) (Figure 6).
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Figure 6. Spatial distribution of continuous in situ Chl-a concentration measurements in the BB
complex for the period 2019–2020. Surveyed using the SWAMMP-R (see methods). Sampling dates:
summer 2019: 9 July 2019; fall 2019: 13 September 2019; winter 2019: 14 December 2019; winter 2020:
22 February 2020; spring 2020: 30 May 2020.

3.2. Determining the Best Band Ratio and Algorithm Development Application

Linear, polynomial, and exponential regression analyses were performed using a total
of 1441 observations of continuous in situ Chl-a collected on 22 February 2020 and different
ratio combinations of Rt L8/OLI bands derived from the L8/OLI satellite image acquired
on 21 February 2020 (Figure 2). The best relationship between these two variables was
observed using the continuous in situ Chl-a values and the ratio between the Rt bands 1,
4 and 3 (i.e., Rt Ratio (B1 + B4)/B3; Table 1). Band 1 is centered at 443 nm corresponding
to the first Chl-a strong absorption peak; band 4 is centered at 655 nm (low point of the
second Chl-a absorption peak) while band 3 is centered at 562 nm within the green range
corresponding to the minimum Chl-a absorption ([87]; Figure 2). Indeed, Rt bands 1, 4
and 3 are commonly used for spectral estimates of Chl-a as these bio-physical properties
strongly shape its contribution to surface reflectance [81,87].

Prior to the model calibration and validation, the full dataset (N = 1441) was evaluated
for noise and outliers due to sensor response and boat speed using a studentized residuals
criterion in JMP Pro 15.0.0 software (SAS Institute, Cary, NC, USA) (Figure 2). After
removing outliers, the dataset (N = 1332) was divided into two subsets for model calibration
(N = 666) and validation (N = 666). Overall, the proportional relationship between these
two variables was best characterized using an exponential model between the continuous
in situ Chl-a values and the ratio (Rt [B1 + B4]/B3), expressed as:

[Chl-a] = 14027.14 × e(−3.36×[(B1 + B4)/B3]) (3)
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Although more complex polynomial regression models were significant (Table 1),
they were biased (data not shown) towards the lower and middle Chl-a values (~50% of
the total observations; Figure 7). This bias was compounded by the spectral signature of
the Gate transect data (N = 68 observations), which showed major differences in water
optical properties as result of hydrology and ecological processes when compared with
the rest of the water bodies in the BB complex (Figure S1). Thus, these transect values,
representing ~5% of the total number of continuous in situ Chl-a values (N = 1441) collected
on 22 February 2020 were excluded in the regression analysis (see Section 4).

Table 1. Linear, polynomial, and exponential band regression results between continuous in situ Chl-a and L8/OLI surface
reflectance data (Rt). Modeling was performed using 1441 sampling points distributed throughout the BB complex along
salinity gradients collected on 22 February 2020 (see methods). R2, coefficient of determination; RMSE, root mean square
error. All values are significant at p < 0.0001, except when p ≤ 0.0002 (*). Bold text and numbers indicate the selected model
used for spatial analysis and mapping (see Figure 8).

Bands Ratios
Average Spectrum
Wavelength (nm)

Linear Quadratic Cubic Quartic Exponential

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

B3/B1 560/443 0.23 5.75 0.27 5.59 0.32 5.42 0.37 5.20 0.26 5.66
B5/B2 865/480 0.17 5.99 0.19 5.91 0.21 5.84 0.23 5.75 0.19 5.93
B5/B3 865/560 0.15 6.03 0.19 5.89 0.21 5.84 0.24 5.73 0.18 5.96
B5/B4 865/655 0.12 6.17 0.17 5.99 0.19 5.92 0.20 5.86 0.14 6.09
B4/B2 655/480 0.01 6.53 * 0.01 6.53 * 0.03 6.47 0.04 6.43 0.01 6.53
B3/B2 560/480 0.05 6.39 0.09 6.25 0.09 6.25 0.11 6.21 0.06 6.37
B2/B1 480/443 0.16 6.03 0.18 5.93 0.19 5.93 0.19 5.93 0.18 5.96
B4/B1 655/443 0.02 6.48 0.04 6.43 0.05 6.41 0.08 6.30 0.03 6.47
B4/B3 655/560 0.29 5.53 0.32 5.42 0.33 5.40 0.33 5.37 0.31 5.44
B5/B1 865/443 0.12 6.17 0.16 6.02 0.19 5.92 0.19 5.92 0.13 6.11
B2/B3 480/560 0.04 6.42 0.08 6.29 0.10 6.24 0.10 6.24 0.05 6.40
B1/B2 443/480 0.14 6.08 0.17 5.97 0.19 5.92 0.19 5.93 0.17 5.99
B1/B3 443/560 0.19 5.89 0.29 5.53 0.29 5.52 0.35 5.32 0.25 5.68

(B1 + B4)/B3 (443 + 655)/560 0.39 5.12 0.50 4.66 0.50 4.63 0.54 4.47 0.46 4.80
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Figure 7. (A) Exponential model between the continuous in situ Chl-a and the Rt ratio (B1 + B4)/B3. (B) Continuous in situ
Chl-a distribution frequency. The bold red solid line shows the exponential model fit. The model was constructed based on
a total of 666 observations sampled on 22 February 2020 in the BB complex. Gate observations were not considered in the
model calculation (see Sections 2 and 4).



Water 2021, 13, 512 13 of 23

3.3. Algorithm Validation

The exponential model was statistically significant and able to predict Chl-a concen-
trations along the BB complex transect sections (r = 0.77). A total of 666 observations were
used to validate the model predictive power (R2 = 0.61; RMSE = 3.44; NSE = 0.61; p < 0.0001;
Figure 8).
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The Chl-a concentration was not significantly different (α = 0.05) between the continu-
ous in situ Chl-a and the models predicted Chl-a for the entire BB complex (F(1, 1330) = 0.02,
p = 0.89; Figure 9).

The selected model was able to replicate the frequency distribution of the validation
dataset, where ~50% of the Chl-a observations are between 5–15 µg L−1, and its predicted
values were similar to the continuous in situ Chl-a values across the entire salinity gradient
(Figure 10).

Chl-a concentrations were highly variable along the BB complex transects on 22nd
February 2020; the highest average continuous in situ Chl-a value was recorded in Lake
Cataouatche (26.60 ± 5.17 µg L−1; Figure 6). Although the CUSUM test did not completely
replicate the Chl-a patterns along salinity gradients, it confirmed the distinctive increase of
Chl-a concentrations and presence of outliers in Lake Cataouatche (Figure 10). These spatial
patterns are controlled by hydrological differences, freshwater inputs, water residence time,
tidal exchange [53] among well-defined subsystems within the BB complex [52,53]. These
hydrological differences control nutrient availability and transport among BB complex sub-
basins, promoting high Chl-a concentrations (≥60 µg L−1) in Lac des Allemands and Lake
Cataouatche where the Chl-a maximum zones can be detected as plumes (Figure 11A–C).
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Figure 10. Chl-a values (green line, left vertical axis) and cumulative sum (CUSUM; red line, right vertical axis) of Chl-a
values. (A) continuous in situ Chl-a (B) exponential model predictions of Chl-a. CUSUM values with positive slope indicate
that [Chl-a] values were above the spatial series average, and vice versa. (C) Chl-a distribution frequency for (C1) continuous
in situ Chl-a and (C2) exponential model predicted Chl-a.
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and C1 are processed images showing Chl-a spatial distribution in Lac des Allemands and Lake Cataouatche (see Figure 
1 for lake locations in the BB complex). 

4. Discussion 
Our study demonstrated the value of using high frequency (SWAMMP-R) in situ Chl-

a fluorometry-based measurements paired with Landsat 8/OLI to characterize spatially-
explicit Chl-a distribution at large spatial scales throughout the BB complex. The regres-
sion model using the Rt ratio ([B1 + B4]/B3) was able to characterize Chl-a spatial patterns 
in water bodies with variable environmental conditions (i.e., depth, hydrology, and fresh-
water inputs). CUSUM analysis of continuous in situ Chl-a revealed Chl-a trends along 

Figure 11. Landsat 8/OLI satellite image 21 February 2020. (A) Spatial distribution of Chl-a estimated using the exponential
model between continuous in situ Chl-a and the Rt ratio (B1 + B4)/B3 in the BB complex. Dotted lines indicate the
delimitation between the upper, middle, and lower basins. (B) and (C) are Landsat 8/OLI satellite images natural color,
while B1 and C1 are processed images showing Chl-a spatial distribution in Lac des Allemands and Lake Cataouatche (see
Figure 1 for lake locations in the BB complex).

4. Discussion

Our study demonstrated the value of using high frequency (SWAMMP-R) in situ Chl-a
fluorometry-based measurements paired with Landsat 8/OLI to characterize spatially-
explicit Chl-a distribution at large spatial scales throughout the BB complex. The regression
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model using the Rt ratio ([B1 + B4]/B3) was able to characterize Chl-a spatial patterns in
water bodies with variable environmental conditions (i.e., depth, hydrology, and freshwater
inputs). CUSUM analysis of continuous in situ Chl-a revealed Chl-a trends along salinity
gradients with the highest average value observed in Lake Cataouatche (26.0 ± 5.3 µg L−1)
in the upper basin where mean salinity was 0.16 ± 0.01 ppt. The lower continuous in situ
Chl-a values were registered throughout the middle basin in Little Lake (9.3 ± 1.6 µg L−1;
mean salinity: 0.20 ± 0.06 ppt) and the lower basin in Barataria Bay (12.8 ± 2.7 µg L−1;
mean salinity: 6.8 ± 5.3 ppt).

The exponential model generated Chl-a concentration patterns comparable to the
continuous in situ Chl-a across the BB complex, predicting higher Chl-a concentrations in
Lake Cataouatche (22.8 ± 6.6 µg L−1), followed by lower values throughout the middle
basin at Lake Salvador (11.6 ± 1.8 µg L−1), Bayou Perot (11.8 ± 2.3 µg L−1), and Little Lake
(9.7 ± 1.9 µg L−1) and the lower basin at Barataria Bay (10.9 ± 2.1 µg L−1). The selected
model also confirms that the highest Chl-a concentrations occur in the upper basin at Lac
des Allemands (Figure 11B), which has been reported as a highly productive area during
the last ~40 years due to major nutrient loading rates resulting from agriculture practices
and urban development [29,30,47,49,88].

Due to the low correlation (R2 = 0.02; p = 0.15) between TSS and Chl-a concentration
(N = 84 samples), we propose that the BB complex became an optically complex system
[Case 2 water; [81]] during the MR flood in 2019–2020. When this relationship was analyzed
by season, we detected a positive correlation between TSS and Chl-a in spring and summer,
but a negative trend in winter (Figure 5). These results suggest that Chl-a becomes the major
constituent driving water color during summer and spring when nutrient concentrations,
temperature and solar irradiance are high coinciding with the peak water column produc-
tivity [30,49,89,90]. Moreover, observations from both the discrete sample assays and field
high-frequency fluorometry allow us to differentiate the optical properties among different
water masses. We noted the most conspicuous difference in the water column along the
Gate transect section, where mats of floating vegetation covered the channel surface due to
the interaction of high nutrient concentrations and wind direction/velocity causing rapid
plant growth and vegetation biomass accumulation. One significant difference between
water masses among the Gate channel and the rest of the transects across the BB complex
was the high pCO2 concentrations in the water column (Figure S1). During the 22 February
2020 field sampling, high pCO2 values in the Gate channel area ranged from 1459.6 to
4095.6 ppm, in contrast to the lower range (423.4–520.4) measured in the Barataria Bay
transect (Figure S1). This high pCO2 concentration reflects the high respiratory activity
occurring in the narrow channel due to the decomposition of live and dead plant material
(organic matter) accumulated in the channel bottom and the water column. Water oxygen
concentration >3 mg L−1 facilitates organic matter decomposition, releasing organic de-
rived substances to the water column that influence the optical characteristics (i.e., surface
reflectance) captured by the Landsat 8/OLI satellite in the Gate transect (Figure 7). This
type of channel (i.e., narrow and running across wetland areas) is common throughout the
BB complex, not only as result of natural sediment deposition patterns, but also as result
of dredging for oil and gas exploration and navigation activities, particularly in the last
50 years [66].

Our analysis showed that within each season and during river flooding conditions, the
average continuous in situ Chl-a concentrations are higher at the upper basin in the Gate
transect (Figure 6; 26.8 ± 14.1 µg L−1) and Lake Cataouatche (Figure 6; 21.8 ± 11.5 µg L−1)
while salinity increases in the middle of Lake Salvador (Figure 6; 7.7 ± 3.8 µg L−1) and the
lower Barataria Bay basins (Figure 6; 13.7 ± 6.2 µg L−1). We attribute this spatial pattern to
both the direct effect of the MR flood pulse, when high concentrations of inorganic nutrients
enter through the DPFD into the northern region of Lake Cataouatche and the higher
water residence time (>100 days; [53]) in these systems that promote high phytoplankton
productivity [91]. This production pattern is similar in Lac des Allemands where the
residence time is also high (50–70 days; [52,53]), and where there is also a constant input
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of inorganic nutrients due to runoff from surrounding sugar cane farms [49,88]. The local
plume distributions of both TSS and Chl-a are clearly demarcated in both lakes as freshwater
input enters in pulses, highlighting the relative importance of nutrient inputs for controlling
water column primary productivity at local scales (Figure 11A–C). On the marine end-
member of the salinity gradient downstream, the MR plume also enters the lower basin
through tidal inlets as showed in previous studies [30,60]. This direct riverine input enters
into the lower Barataria Bay during the peak of the MR discharge in combination with
water currents running parallel to the adjacent continental shelf, causing an increase in
Chl-a in Barataria Bay as underscored by water with high inorganic nutrient concentrations
during the period from 1992 to 2016 (e.g., NO3 + NO2, 12.0 ± 15.2 µM) [49,92].

The interaction among the MS river discharge seasonality, differences in water resi-
dence time, and biological processes across the BB complex can influence Chl-a concen-
tration and phytoplankton productivity. This interaction is apparent in the upper basin
when nutrient loading is low during the summer [93]. Water residence time increases
during the summer when the Mississippi River is at its lowest level reducing nutrient
inputs into the estuary [52]. Sampling of inorganic nutrients along the transect (data not
shown) indicates that water bodies in the BB complex might be nutrient limited during the
summer when temperature increases, and peak phytoplankton productivity occurs. Simi-
larly, low nitrogen concentrations have been associated with denitrification rates in benthic
sediments thus promoting nitrogen limitation during the summer when denitrification
rates are the highest [94,95]. Low Chl-a concentration in the upper and middle basins can
also be attributed to consumption by benthic organisms where the presence of Rangia clam
populations (Rangia cuneata) is extensive. Shallow water column depth and high water
residence time facilitates the availability of organic matter, including phytoplankton, to
benthic communities [52,96].

The observed salinity and predicted Chl-a gradients revealed well defined subsystems
within the BB complex as underscored by other studies (i.e., [53]). These subsystem
boundaries are supported by the high Chl-a spatial variability we documented within
Lake Cataouatche when compared with Chl-a values in the middle and lower basins.
Although all BB complex sections captured by our SWAMMP-R transects represent a
hydrological continuum, these Chl-a patterns reveal the spatially and temporally local
effects of freshwater inputs, residence time, geomorphology, and weather (i.e., precipitation,
cold fronts, and major storms) as reflected by the year-round patchiness in Chl-a spatial
distribution in Lake Cataouatche (Figures 6 and 11B1,C1). This irregular and patchy Chl-a
distribution is difficult to capture using only discrete sampling techniques along transects
as shown by our results and previous studies [49,88].

The ecological responses at local/regional scales to extreme weather and climate
patterns (e.g., precipitation, wind velocity and strength, tropical storms) in estuaries and
lagoons along coastal Louisiana are not well understood, particularly under current climate
variability. For instance, in August 2016, a stationary low pressure system caused more
than 50 cm of cumulative precipitation in a three-day period affecting coastal areas in
South Louisiana including record flooding levels inland [97]. This event was associated to
the lowest average annual salinity recorded in 2016 during a span of 22 years (1994–2016)
in the BB complex (Figure S3; [49]. Recently, the 2020 hurricane season was a record for
coastal Louisiana with four major storm landfalls in one season (i.e., tropical storms and
hurricanes). For example, hurricane Delta, (category-2) at the time of landfall in Creole, LA
and ~335 km from the BB complex, caused a storm surge (1–1.5 m) triggering ocean water
intrusion into the lower BB complex. A salinity survey using the SWAMMP-R system
and performed on 18 October 2020, nine days after Delta’s landfall showed saltwater
intrusion up to Lake Cataouatche where salinity increased three times the annual average
when compared to measurements in previous years (Figure S4A,B); this increase in salinity
underscores the regulatory pulsing control of these climate events on water quality in the
BB complex.
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The development of robust quantitative relationships between in situ measurements of
environmental and ecological parameters and remotely sensed earth surface observations
is especially useful for very dynamic ecosystems and landscapes, places characterized by
high variation across broad ranges of temporal and spatial scales. Our exponential model
(Equation (3)) reflects this complex environmental signature across the distinctive water
bodies that form part of the BB complex. This strategy for the developing of empirical
models has been widely used for specific conditions, regions and even for large scale
ocean color descriptions including hypertrophic water systems (West Lake-Vietnam; [21]),
highly turbid lakes and coastal waters (Dnieper river, Changjiang estuary; [98,99]), fresh-
water lakes (Great Lakes; [100]), coastal water areas (Florida shelf; [101]), and open ocean
waters [102,103].

In open ocean waters, satellite images have been used to retrieve water quality data
since the late 1970′s when the Coastal Zone Color Scanner satellite (CZCS) was launched
in 1978 [81]. The main limitation for the development of robust algorithms, particularly
for coastal areas (e.g., [92]), is the lack or reduced number of in situ observations to train
and validate these quantitative models. While previous studies have demonstrated the
potential use of Landsat 8/OLI hyperspectral data to determine Chl-a, few direct field
measurements (N < 25) are available to validate satellite algorithms in large study areas
(e.g., 97 km2) [104]. We addressed this limitation by increasing the number of in situ
Chl-a values (N = 1332) used in model calibration and validation by acquiring continuous
in situ Chl-a field fluorometry measurements across the BB complex (open water area
~1903 km2; [52]).

The development of new technologies and improvement of existing instrumentation
open wide possibilities for monitoring water quality at large spatial and temporal scales,
while also allowing the characterization of hydrological and biochemical processes at local
scales. We anticipate enhanced understanding of critical ecosystem processes like primary
productivity and biomass (i.e., Chl-a), that are driven by pulsing events such as cold
fronts, river discharge, and storm surges after hurricane passage on primary productivity
and biomass (i.e., Chl-a). In this study we showed that linking Landsat 8/OLI sensor
observations, with a high frequency environmental sampling approach is a powerful
strategy to develop effective and robust algorithms for the assessment of both water quality
and optical properties. This is especially useful in spatially large-scale and highly dynamic
estuarine systems (i.e., “Case 2” waters; [22,23,92]) like those found in the Mississippi
River delta plain, where intricate physical and ecological dynamics cannot be captured by
discrete sampling alone.

5. Conclusions

Our results demonstrated that the use of Landsat 8/OLI images provided reliable
results to characterize the spatiotemporal Chl-a patterns in the Barataria Bay complex, a
hydrologically delta-dominated coastal ecosystem. An exponential model was validated to
evaluate Chl-a seasonal and spatial distribution using an intense acquisition of fluorometry
measurements and a reflectance Rt ratio ([B1 + B4]/B3) from Landsat 8/OLI imagery/data.
These results are supported by contemporary and historical data, especially the effects
of local environmental variables controlling Chl-a spatial distribution and magnitude.
Model interpolation and predictions showed that higher phytoplankton concentrations
(i.e., Chl-a) are extensive and persistent in the upper basin, partially due to significant
nutrient loadings from extensive agricultural lands and from the MR discharge through the
seasonal and pulsing DPFD delivery. Our findings complement previous studies in which
salinity is used as a proxy to characterize well-defined subsystems within the BB complex,
and where despite the hydrological connectivity, distinctive biochemical processes, and
productivity patterns define each subsystem. To further expand the validation of Chl-a
spatiotemporal patterns using our proposed algorithm, we recommend the analysis of
historical and new Landsat 8/OLI data to assess past, current, and future ecological and
hydrodynamic changes. This is particularly pressing from a management perspective,
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since this deltaic estuarine system is undergoing large-scale hydrological restoration as it
experiences increasing rates of relative sea level rise and wetland loss as a result of human
disturbances, hurricane impacts, and climate change [105,106].

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
441/13/4/512/s1, Figure S1. (A) Mean ± SD of surface water chromophoric dissolved organic
carbon [CDOMf] and [pCO2] and (B) Frequency distribution of CDOMf and pCO2 concentrations in
different transect sections along a salinity gradient throughout the Barataria Basin complex sampled
on summer: 9 July 2019; fall: 13 September 2019; winter: 14 December 2019; spring: 30 May 2020
(see Section 2). The frequency distributions (B) underscore unique ecological properties (e.g., water
column carbon storage and production) in the gate transect (see Figure 1 for location); Figure S2. Field
sampling transects (bold black line) used to collect continuous in situ Chl-a data for the development
of a Landsat 8/OLI-based algorithm to predict Chl-a values throughout the Barataria Basin complex.
Transect sections encompass Bayou Verret channel, Lake Cataouatche, Lake Salvador, Bayou Perot,
Little Lake, and Barataria Bay. The Davis Pond freshwater diversion (DPFD) control structure
is located in the upper watershed next to the Mississippi River; Figure S3. Interpolated average
interannual spatial distribution of salinity in the BB complex for the period 1994–2016. Surveyed
using discrete samples across a 129 km transect from station #1, located 1 km offshore from the
Barataria Pass to the station #37 at Bayou Chevreuil [see 49]. Discrete samping stations are showed
along the X-axis (latitudinal distance). Original data available through the Gulf of Mexico Research
Initiative Information & Data Cooperative (GRIIDC at https://data.gulfresearchinitiative.org/data/
R4.x264.000:0018). According to the National Integrated Drought Information System (NIDIS), in
2000 Louisiana experienced from severe to exceptional dry conditions across the state [107]; while
in 2016, a stationary low-pressure system caused more than 50 cm of cumulative precipitation in
a three-day period producing record flooding levels [97]; Figure S4. Spatial distribution of salinity
in the BB complex for the period 2019–2020. (A) North to south transect from Gate to Barataria
Bay next to the Quatre Bayou Pass station. Notice distances are approximated. (B) Transverse
transects including the central and lower Barataria Bay sections. Surveyed using the SWAMMP-R
(see Section 2 and Figure 1). Sampling dates: summer 2019: 9 July 2019; fall 2019: 13 September 2019;
winter 2019: 14 December 2019; winter 2020: 22 February 2020; spring 2020: 30 May 2020; fall 2020:
18 October 2020. Fall 2020 salinity profile was surveyed 9 days after the category-2 hurricane Delta
made landfall in Southwest Louisiana. Notice that the lower East direction transect was sampled
only in Summer 2019.
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