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Abstract: Significant deviations from standard Boltzmann scaling, which corresponds to normal or
Fickian diffusion, have been observed in the literature for water movement in porous media. However,
as demonstrated by various researchers, the widely used conventional Richards equation cannot
mimic anomalous diffusion and ignores the features of natural soils which are heterogeneous. Within
this framework, governing equations of transient water flow in porous media in fractional time and
multi-dimensional fractional soil space in anisotropic media were recently introduced by the authors
by coupling Brooks–Corey constitutive relationships with the fractional continuity and motion
equations. In this study, instead of utilizing Brooks–Corey relationships, empirical expressions,
obtained by least square fits through hydraulic measurements, were utilized to show the suitability
of the proposed fractional approach with other constitutive hydraulic relations in the literature.
Next, a finite difference numerical method was proposed to solve the fractional governing equations.
The applicability of the proposed fractional governing equations was investigated numerically
in comparison to their conventional counterparts. In practice, cumulative infiltration values are
observed to deviate from conventional infiltration approximation, or the wetting front through time
may not be consistent with the traditional estimates of Richards equation. In such cases, fractional
governing equations may be a better alternative for mimicking the physical process as they can
capture sub-, super-, and normal-diffusive soil water flow processes during infiltration.

Keywords: fractional governing equations; non-Boltzmann scaling; non-Fickian transport; anoma-
lous diffusion; sub-diffusion; super-diffusion

1. Introduction

Modeling soil water infiltration is realistically important for several applications in
hydrology, meteorology, and environmental sciences since it connects surface and subsur-
face flow and transport processes. Based on Darcy’s law [1] and mass conservation, flow
through unsaturated media is described by Richards equation [2] for the one-dimensional
water flow in the vertical direction as,

∂θ

∂t
=

∂

∂z

[
K(θ)

(
∂h
∂z

+ 1
)]

(1)

Meanwhile, the soil hydraulic head (h) is related to the elevation head (z) and soil
capillary pressure head (ψ) by h = ψ(θ) + z, where θ is the volumetric water content, K(θ)
is the unsaturated hydraulic conductivity of the soil, h(θ) is the hydraulic head, z is the
distance in vertical direction, and t is the time. In the last century, several researchers
contributed to the advancement of principles of the governing processes and predictive
tools for infiltration dynamics in soils [3–5]. Hydraulic functions (e.g., [6–9]), which relate
the hydraulic conductivity to the volumetric water content or to hydraulic head, are needed
to solve Equation (1).

Water 2021, 13, 511. https://doi.org/10.3390/w13040511 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-1052-4302
https://doi.org/10.3390/w13040511
https://doi.org/10.3390/w13040511
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13040511
https://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/13/4/511?type=check_update&version=1


Water 2021, 13, 511 2 of 14

Although Richards equation has been extensively used to predict and model the
transport of water, chemicals, and energy in soils, its usage is limited for heterogeneous
soils [10]. Field measurements [11] demonstrated that soils in natural conditions can be
highly heterogeneous and measurements of a transport property can be representative
only in the immediate vicinity of a measured location. Conventional methods, includ-
ing Richards approach, ignore the features of natural soils which undergo swelling and
shrinking changes and cannot mimic anomalous diffusion, as explored and confirmed by
various researchers [12,13]. There have been successful attempts to model the nonlinearity
of layered soils [14,15], to treat preferential flow in shrinking soils by a dual-permeability
approach [16,17], and to analyze the transient change of temperature and pressure between
two adjacent homogeneous media for a variety of rock types [18]. However, the physical
theory linking flow in soils and macropores (i.e., preferential flow, nonequilibrium flow, or
dual porosity flow) is inadequate, and observational methods are not sufficient to obtain
scale-dependent parameterization in field and hillslope scales [19].

Anomalous or non-Fickian transport of solutes in porous media was reported for
several field and laboratory applications (e.g., [20–24]), with Boltzmann scaling (x/tq

where q = 0.5) corresponding to normal, or Fickian diffusion being modeled by the con-
ventional Richards equation. Significant deviations from standard Boltzmann scaling
have been observed in the literature for horizontal and vertical water movement. For
horizontal water flow, Pachepsky et al. [25] reported that the mean values of the time
exponent q, 〈q〉 for Columbia silt loam and Hesperia sandy loam in Nielsen et al. [26] were
0.344 ≤ 〈q〉 ≤ 0.480, while those for Salkum silty clay loam in Rawlins and Gardner [27]
were 0.430≤ 〈q〉 ≤ 0.479, and those for Salkum silty clay loam in Ferguson and Gardner [28]
were 0.452 ≤ 〈q〉 ≤ 0.465. For vertical soil water flow, Voller [29] reported that the initial
advance of the wetting front of some cases in a set of 28 field infiltration measurements
taken by Logsdon [30] exhibited anomalous super-diffusion behavior. Nielsen et al. [26]
explained the mechanism of anomalous (i.e., non-Fickian) diffusion in unsaturated flows by
“jerky movements” of the wetting front due to the heterogeneous nature of the size, shape,
composition, and arrangement of soil particles that lead to continuous changes in the shape
of the air–water interface. Non-Newtonian behavior of the water due to impurities, large
pressure gradients at the water–air interface, partially open pores, and the fractal nature of
the soils are also considered to be the causes of the non-Fickian behavior of transport in the
soil medium [10,31,32].

Water movement in porous building materials, which deviates from the Fickian diffu-
sion mechanism, was reported by Kündtz and Lavallee [33] and El Abd and Milczarek [34].
Consistent with the earlier literature, both studies confirmed that the time exponent q
varies with the nature of the disordered porous media with fractal geometry. Kündtz
and Lavallee [33] assumed a modified Fick’s equation (i.e., taking volumetric moisture
flow as a function of the moisture gradient of power n, where n is a real number) and
proposed a nonlinear diffusion equation for partially saturated materials. El Abd and
Milczarek [34] followed the approach of Kündtz and Lavallee [33] and proposed that the
diffusivity coefficient must depend not only on the water content but also on time, as was
previously proposed [35,36].

Within this framework, several researchers attempted to improve soil water infiltration
modeling by utilizing fractional differentiation in order to model non-Fickian or anomalous
diffusion in soil water flow. For other possible approaches to model such anomalous
behavior, see Zhang et al. [24] and the references therein. A fractional differential model for
seepage flow in porous media was proposed and its approximate analytical solution by the
variational iteration method was constructed by He [37]. In order to model horizontal soil
water flow, Pachepsky et al. [25] utilized a fractional time derivative with an order equal
to or less than one, while Gerolymatou et al. [38] proposed a fractional integral form for
the Richards equation in fractional time, and Sun et al. [39] replaced the integer-order time
derivative of the water content by a fractal derivative by utilizing the concept of fractal
ruler in time. With respect to vertical soil water flow, Voller [29] proposed a fractional
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Green–Ampt infiltration model and expressed the spatial derivative in the hydraulic
flux as a Caputo fractional derivative of the head. Extending the work by Su [13], who
studied vertical infiltration into swelling soils by the fractional time derivative, Su [40]
presented mass–time and space–time fractional partial differential equations (fPDEs) of
water movement for swelling–shrinking soils and non-swelling soils and showed that the
fractional infiltration models better fit the field data of Talsma and van der Lelij [41] using
a fractional cumulative infiltration model. Su [40] utilized power functions in the fPDEs
for diffusivity and hydraulic conductivity which depend on the moisture content.

Recently, starting from Caputo fractional derivative approximation of a function, Kav-
vas et al. [42] derived the dimensionally consistent equations of continuity and motion for
transient soil water flow and soil water flux to obtain the governing equation for transient
soil water flow in fractional multidimensional space and fractional time. Closed forms
of the governing equations were then obtained from Brooks–Corey relationships [6]. The
classical diffusivity expression in the conventional Richards equation for soil water flow
depends only on the soil water content, i.e., D = D(θ). Kavvas et al. [42]’s theoretical
development not only considers the time-dependent diffusivity that was previously re-
ported [33,35,36] as D = E(θ) tm, but can also address diffusivity that may change in space
(see Equation (52) in [42]). Due to fractional powers of the space and time derivatives,
the proposed governing equations can capture nonlocal effects in time (time history of
the flow) and nonlocal effects in space (long-range dependence in the porous media). In
other words, the proposed fractional soil water flow equations have the capacity to account
for the effect of the initial conditions on the soil water flow for long periods, and for the
effect of the boundary conditions on the flow for long distances by changing the fractional
powers [42]. The nonlocality in time can be physically due to mass transfer between rela-
tively immobile and mobile phases, and interaction between segregated regions of high
and low permeability [40,43,44]. The nonlocality in space, on other hand, can be physically
due to high variation and long spatial autocorrelation of permeability, as is the case of
preferential flow paths [40,45,46]. Furthermore, the time and space fractional derivative
powers in fractional water movement account for the non-Fickian flow processes, in which
the time fractional derivative power corresponds to long time correlations leading to sub-
diffusive or slow processes, but the space fractional derivative power corresponds to long
space correlations leading to super-diffusive processes [40,47]. Lastly, when the powers of
fractional time and space derivatives go to unity, the governing equation simplifies to its
conventional counterparts.

Although Kavvas et al. [42] provided the theoretical derivation of the new generalized
governing equations of soil water flow and flux in fractional differential derivative frame-
work, it lacks a methodology to solve the proposed fractional governing equations and an
application that explores the significance of fractional powers and coefficients in the gov-
erning equations. Within this framework, the purposes of this study are threefold. Firstly,
instead of utilizing Brooks–Corey relationships, empirical expressions which were obtained
from least square fits through hydraulic measurements for soil water movements [48] were
utilized in this study to show the general applicability of the proposed fractional governing
equations of soil water flow and soil water flux with not only Brooks–Corey relationships
but also other constitutive hydraulic relations in the literature. Secondly, a numerical
solution methodology for the fractional vertical soil water flow was presented to solve the
developed theory in Kavvas et al. [42]. Lastly, the capabilities of the proposed fractional
differentiation approach for vertical soil water flow were investigated in comparison to
conventional governing equations. Sub-, super-, and normal-diffusive soil water flow
cases were explored numerically within the framework of Zaslavsky [47]’s definition of the
transport exponent.
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2. Methodology
2.1. Fractional Derivatives

Unlike integer order derivatives, the fractional derivative of a function depends on
its values over an interval [xa, x] and can therefore capture nonlocal effects. The fractional
derivative of a function g(x) for order 0 < β < 1 in Caputo sense is defined as follows [49]:

C
xaDβ

x g(x) =
1

Γ(1− α)

x∫
xa

g′(s)

(x− s)β
ds (2)

where Γ(.) is the gamma function. When the power β goes to unity, the Caputo derivative
of g(x) becomes the same as the integer order derivative [50]. Conventional governing
equations are based on integer order derivatives that are local. On other hand, local
derivatives within an interval [xa, x] contribute to the fractional derivative for that interval
with varying weights as defined in Equation (2), which makes the fractional derivative
nonlocal. Since the Caputo fractional derivative in Equation (2) can be written for both
space and time derivatives, nonlocality both in space and time can be obtained by changing
the fractional power β. A detailed review of the concepts of fractional calculus is provided
in [50,51]. The fractional differentiation in the Caputo framework was chosen in the
derivation of the governing equations of the fractional soil water flow and flux [42] since
physically interpretable initial and boundary conditions can be utilized in the Caputo
framework, unlike various other fractional differentiation frameworks.

2.2. Fractional Soil Water Flow

A generalized approach that can handle both Fickian and non-Fickian behavior
through a fractional differentiation framework for soil water infiltration modeling is
practical and quite conceivable. The spatial variability of heterogeneous soils can be
quantitatively characterized by fractal dimensions, which can capture the geometric com-
plexity of soils and characterize them with a few numbers [10]. Although the full dynamical
processes occurring in soils may not be described by the so-called fractal dimension, the
fractal geometry has great potential to be utilized in various ways in soil science [52].
Fractional powers (α and βi in Equation (3) below), in a similar manner to the role of
fractals in geometry, can be utilized in a fractional governing equation for the infiltration
process, by which one can represent nonlocal effects in time and space.

With this motivation, Kavvas et al. [42] developed the equations of continuity and
motion for transient soil water flow and soil water flux and combined them to deduce the
governing equation for transient soil water flow in multidimensional fractional soil space
and fractional time as:

Γ(2− α)
t1−α

∂αθ(x, t)
(∂t)α

= −
3

∑
i=1

Γ(2− βi)

xi
1−βi

(
∂

∂xi

)βi

(qi(x, t)) (3)

where the fractional soil water flux is:

qi(x, t) = −Ki(x, θ)
Γ(2− βi)

xi
1−βi

∂βi h( x, t)

(∂xi)
βi

(4)

Here, 0 < α, β1, β2, β3 < 1 are the fractional orders or powers of space and time
fractional derivatives, x = (x1 , x2, x3) is the spatial location, and Ki is the hydraulic con-
ductivity in the i-spatial direction (i = 1, 2, 3). When fractional orders of space and time
derivatives go to unity, the above fractional governing equation for soil water flow becomes
the conventional Richards equation.

For convenience in the rest of the manuscript, we have replaced x3 with z for the
vertical dimension, β3 with β as the fractional power for space, q3 with q as the fractional
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soil water flux, and K3 with K as the hydraulic conductivity in the vertical direction. Then,
the fractional governing equation for the vertical direction is simplified to:

Γ(2− α)
t1−α

∂αθ(z, t)
(∂t)α

= −Γ(2− β)
z1−β

(
∂

∂z

)β

(q(z, t)) (5)

and

q(z, t) = −K(z, θ)
Γ(2− β)

z1−β
∂βh(z, t)

(∂z)β
(6)

Kavvas et al. [42] then obtained the closed form of the above equations by introducing
the Brooks–Corey relationships [6]. In this study, instead of Brooks–Corey relationships,
empirical expressions, obtained by least square fits through hydraulic measurements for
Yolo light clay and sand (as provided in Haverkamp et al. [48]) were used. Further details
are provided in the Numerical Applications section.

2.3. Numerical Solution

Following Murio [53], the first-order approximation of Caputo’s fractional time deriva-
tive of a function f can be approximated by

Dα
t fn

i = σα,k

n

∑
j=1

w(α)
j

(
fn−j+1
i − fn−j

i

)
(7)

where the time interval [0, T] is divided into N subintervals of equal increment dt = T/N
using the nodes tn where n = 0, 1, 2, . . . , N, and fn

i = f(zi, tn), σα,k = 1
Γ(1−α)

1
(1−α)

1
dtα ,

and w(α)
j = j1−α − (j− 1)1−α.

Dividing the space interval [0, a] into M subintervals of equal increments dz = a/M
using the nodes zj where j = 0, 1, 2, . . . , M, the Caputo fractional space derivative at a > 0
can be approximated in second order by [54](

Dβ
x f(z)

)
(a) ≈ dz1−β

Γ(3−β)

{[
(M− 1)2−β − (M + β− 2)M1−β

]
f′(0) + f′(a)

+
M−1
∑

j=1

[
(M− j + 1)2−β − 2(M− j)2−β + (M− j− 1)2−β

]
f′
(
zj
)
}

(8)

where 0 < β ≤1 is the fractional order of the space derivative and f′
(
zj
)

is the first-order
derivative at zj. Utilizing Equation (5), the fractional soil water flow equation given by
Equation (5) can be written as

θn+1
i = θn

i −
n+1

∑
j=2

w(α)
j

(
θ

n−j+2
i − θn−j+1

i

)
− (tn

i )
1−α(

zn
i
)1−β

Γ(2− β)
Γ(2− α)σα,k

∂βqn
i

∂zβ
(9)

where qn
i = q(zi, tn) and q(z, t) = −K(z, θ) Γ(2−β)

z1−β
∂βh(z,t)
(∂z)β

. The space fractional derivatives

∂βqn
i

∂zβ and ∂βhn
i

(∂z)β
can be calculated by Equation (8).

3. Numerical Applications

Haverkamp et al. [48] compared an implicit numerical solution of Richards equation
with Philip’s quasi-analytical solution [5,55] for soil water movements in Yolo light clay
and sand (Figure 4 and Table 3 in [48]). Here, we utilize the same infiltration problems to
estimate the water front through time to be able to compare the solutions of the conventional
Richards approach with the numerical solution of the case β = α = 1 of the proposed
fractional vertical soil water flow equations. In other words, Table 3 in Haverkamp et al. [48]
is actually used to provide a baseline for the numerical solution of the case β = α= 1 of the
proposed fractional vertical soil water flow equations. After verifying that the proposed
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fractional model works for the standard Richards equation by setting β = α = 1, fractional
powers are altered to investigate the corresponding anomalous diffusion behavior within
the framework of Zaslavsky [47]’s definition of the transport exponent, which depends on
the powers of the space and time fractional derivatives of the governing diffusion equation.

The first example problem for infiltration through Yolo light clay is an experiment
that was used by Philip [5,55], for which the hydraulic conductivity and water content
relationships are:

K = Ks
124.6

124.6 + |h|1.77 (10)

θ =
739(θs − θr)

739 + (ln|h|)4 + θr for h < −1 cm (11)

θ = θs for h ≥ −1 cm (12)

Ks = 4.428.10−2 cm/h, and θs = 0.495, θr = 0.124 where the subscript s refers to saturation
and r refers to residual. The initial and boundary conditions for the first problem are:

θ = 0.2376 for t < 0, z ≥ 0 (13)

θ = 0.4950 for t ≥ 0, z = 0 (14)

θ = 0.2376 for t ≥ 0, z ≥ 500 cm (15)

For the second problem, i.e., the infiltration through sand, the hydraulic conductivity
and water content relationships, as provided in Haverkamp et al. [48] are:

K = Ks
1.175 × 106

1.175 × 106 + |h|4.74 (16)

θ =
1.611 × 106(θs − θr)

1.611 × 106 + |h|3.96 + θr for h < −1 cm (17)

θ = θs for h ≥ −1 cm (18)

where Ks = 34 cm/h, θs = 0.287, θr = 0.075. These relationships are based on experimental
measurements [56,57]. The initial and boundary conditions for the second problem are:

θ = 0.10 for t < 0, z ≥ 0 (19)

q = 13.69
cm
h

for t ≥ 0, z = 0 (20)

θ = 0.10 for t ≥ 0, z ≥ 200 cm (21)

4. Results and Discussion

Utilizing the numerical examples for infiltration through the Yolo light clay and
sand [48], one of the purposes of this study was to explore the capabilities of fractional
governing equations to simulate vertical soil water flow compared to their integer order
conventional counterparts. When the fractional powers of space and time derivatives of
the fractional vertical soil water equation become one, the solution should converge to the
conventional Richards equation (Equation (1)). Figure 1 depicts the comparison between
the water content profiles of the Philip solution [5,55], h-implicit solution [48], and the
proposed fractional governing equations when space and time fractional derivative powers
are unity, i.e., β = α = 1. The fractional approach, within this framework, when solved
numerically by the scheme in Equation (9), produces results that are quite similar to the
conventional solutions of Richards equation for the infiltration problems through Yolo
light clay and sand. When compared with the Philip solution, the correlation coefficient
and Nash–Sutcliffe efficiency values were 0.9996 and 0.9991 for Yolo light clay, and 0.9998,
and 0.9995 for sand. When compared with the h-implicit solution [48], the correlation
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coefficient and Nash–Sutcliffe efficiency values were 0.9998 and 0.9993 for Yolo light clay,
and 0.9999 and 0.9995 for sand, respectively.
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We now explore the effects of the space and time fractional derivative powers on
the vertical water movement as proposed in Equation (5) above. Comparisons among
water content profiles when space and time fractional derivative powers are fractional are
depicted in Figure 2 for Yolo light clay and in Figure 3 for sand. The transport exponent µ
quantifies the competing time and space fractional derivative powers or the competing sub-
and super-diffusivity [47]: µ < 1 is for sub-diffusion, µ = 1 for classical or normal diffusion,
and µ > 1 is for super-diffusion. The transport exponent is defined as µ = 2β/α where
β is the power of time derivative and α is the total power of the space derivative for the
diffusive term [47]. To be consistent with our notations, β in [47] is replaced with α, and α
in [47] is replaced with 2β so that the transport exponent becomes µ = 2α/2β = α/β in our
notation.

For the case when the power of the time fractional derivative is one (α = 1), the wetting
front moves down faster as the power of the space fractional derivative decreases from 1
(β < 1 in Figure 2a for Yolo light clay and Figure 3a for sand). The wetting front for the
lower moisture content moves down even faster than that of the higher moisture content.
In light of the above transport exponent definition, the cases (when β < 1) in Figure 2a for
Yolo light clay and Figure 3a for sand correspond to super-diffusion since the transport
exponent, µ, is greater than 1 (µ > 1) since α = 1, β < 1. This finding is consistent with [40],
who stated that the space fractional derivatives cause super-diffusion, mainly by the flow
processes in the media with higher velocity flow paths of long spatial correlation.

For the case of when the power of the space fractional derivative is one (β = 1), the
wetting front slows down as the power of the time fractional derivative decreases from
1 (Figure 2b for Yolo light clay and Figure 3b for sand). The wetting front for the higher
moisture content slows down even more than that of the lower moisture content. These
cases (when α < 1) in Figure 2b for Yolo light clay and Figure 3b for sand correspond to
sub-diffusion since the transport exponent, µ, is less than 1 (µ < 1) since α < 1, β = 1. This
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finding is also consistent with [40], who stated that the time fractional derivatives result in
sub-diffusion, mainly by partitioning of water parcels on sticky porous surfaces.

When the powers of time and space fractional derivatives are equal and decrease from
one, the effects of time and space fractional powers, as discussed above, are superimposed
(Figure 2c for Yolo light clay and Figure 3c for sand). The transport exponent µ = α/β
becomes one, showing overall normal diffusion in theory. However, as the time and
space fractional powers decrease from 1, the movement of the wetting front for the higher
moisture content slows down and that of the wetting front for the lower moisture content
moves down faster.
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For the case when the power of the time fractional derivative is 0.7 (α = 0.7), the
wetting front moves down faster as the power of the space fractional derivative decreases
from 1 (β < 1 in Figure 2d for Yolo light clay). The wetting front for the lower moisture
content moves down even faster than that of the higher moisture content. On other hand,
for the case when the power of the space fractional derivative is 0.7 (β = 0.7), the wetting
front slows down as the power of the time fractional derivative decreases from 1 (Figure 3d
for sand). The wetting front for the higher moisture content slows down even more than
that of the lower moisture content.
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After investigating water content profiles through time, we now examine the per-
formances of cumulative infiltration approximations by a conventional approach and a
fractional approach. As opposed to Philip [58]’s approximate description of the cumulative
infiltration for conventional vertical infiltration into rigid media

I = At + St0.5 (22)

where A is the final infiltration rate and S is the sorptivity. On other hand, Su [40] conjec-
tured a cumulative infiltration model for water movement in soils as

I = At + Stα/(2λ−1) (23)

where 0 < α ≤2 is the order of the time fractional derivative, and 0 < λ ≤ 2 is the order of
the mass (for swelling soils) or the space (for non-swelling soils) fractional derivative of the
diffusion term. When Equation (23) was fitted to the field data of cumulative infiltration
versus time as reported by Figure 1 in [41], parameters α, λ, A, and S were determined
by Su [40] as α = 0.3445, λ = 1.9523, A = 1.30 mm/day, and S = 48.64 mm/dayα/(2λ−1).
Compared to Equation (22) for the conventional vertical infiltration (see Figure 1b in [13]),
Equation (23) provides a considerably better fit to the field data of [41], confirming the
superior performance of fractional cumulative infiltration models. The transport exponent
for field data of [41], µ = 0.353, corresponds to sub-diffusion [40].

Lastly, the cumulative infiltration values were calculated using the fractional model
for eight different time instances for Yolo light clay (t = 105, 2.5 × 105, 5 × 105, 106,
1.5 × 106, 2 × 106, 2.5 × 106, 3 × 106 s) and for sand (t = 0.1, 0.2, 0.3, . . . , 0.8 h) when
α = β = 0.9, 0.8, 0.7. The conventional and fractional cumulative infiltration approximations
in Equations (22) and (23) require the estimation of two parameters, the final infiltration
rate A, and the sorptivity S. Using the cumulative infiltration estimates of the first and
last time instances, A and S can be calculated for the two models and the performance
of both models can be evaluated based on the cumulative infiltration approximations
for the remaining six time instances. Tables 1 and 2 provide the percent difference be-
tween the approximated and simulated cumulative infiltration values (I(simulated) −
I(approximated))/I(simulated) for Yolo light clay and sand, respectively. Since the param-
eters A and S are estimated based on the first and last time instances, approximations
at these times are same as the simulated values, i.e., the percent difference values are
0. The percent difference values are less than 2.5% for Yolo light clay and 0.5% for sand
when the fractional cumulative infiltration approximation (Equation (23)) is used. The
percent difference values are less than 8% for Yolo light clay and 3% for sand when the
conventional cumulative infiltration approximation (Equation (22)) is used. Hence, the
fractional cumulative infiltration approximation (Equation (23)) performed better than the
conventional cumulative infiltration model (Equation (22)) when the powers of time and
space fractional derivatives are fractional.

Table 1. Comparison of simulated cumulative infiltration with two approximations: The fractional
model (Equation (23)), and the conventional model (Equation (22)) by Philip [58] for Yolo light clay.

Percent Difference (Equation (23)) Percent Difference (Equation (22))

α=β= α=β=

t (s) t (day) 0.9 0.8 0.7 0.9 0.8 0.7
100,000 1.16 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
250,000 2.89 0.468% 0.373% −0.394% −5.874% −5.468% −5.262%
500,000 5.79 0.237% 0.581% 1.013% −7.983% −7.089% −5.376%

1,000,000 11.57 −0.013% 1.610% 2.283% −7.107% −5.071% −3.366%
1,500,000 17.36 0.004% 1.735% 1.791% −5.101% −3.138% −2.408%
2,000,000 23.15 0.033% 1.104% 1.370% −3.172% −2.009% −1.332%
2,500,000 28.94 0.070% 0.508% 0.803% −1.435% −0.976% −0.494%
3,000,000 34.72 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
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Table 2. Comparison of simulated cumulative infiltration with two approximations: The fractional
model (Equation (23)), and the conventional model (Equation (22)) by Philip [58] for sand.

Percent Difference (Equation (23)) Percent Difference (Equation (22))

α=β= α=β=

t (h) 0.9 0.8 0.7 0.9 0.8 0.7
0.1 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
0.2 −0.400% 0.121% −0.297% −2.610% −2.006% −2.111%
0.3 −0.435% 0.148% −0.396% −2.834% −2.194% −2.416%
0.4 −0.203% 0.249% −0.206% −2.270% −1.794% −1.981%
0.5 −0.068% 0.125% −0.148% −1.647% −1.453% −1.525%
0.6 −0.037% −0.175% −0.162% −1.084% −1.232% −1.087%
0.7 −0.008% −0.234% −0.115% −0.522% −0.757% −0.575%
0.8 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%

In practice, as in the case of [41], the observed cumulative infiltration values can
deviate from the conventional cumulative infiltration approximation (Equation (22)), or the
wetting front through time may not be consistent with the traditional estimates of Richards
equation. In such cases the fractional governing equations may be a better alternative
to mimic the physical process, and the fractional approximation (Equation (23)) can be a
better alternative for the estimation of the cumulative infiltration.

5. Conclusions

In this study, empirical expressions obtained by least square fits through hydraulic
measurements for soil water movements (Haverkamp et al. [48]) were utilized to show the
general applicability of the proposed fractional governing equations of soil water flow and
soil water flux [42] with not only Brooks–Corey relationships but also other constitutive
hydraulic relations in the literature. A numerical solution methodology for the fractional
vertical soil water flow was presented to solve the fractional governing equations of vertical
soil water flow. Finally, the modeling capabilities of the fractional governing equations of
vertical soil water flow were investigated numerically for infiltration problems through
Yolo light clay and sand. It was demonstrated for both flow media that when the powers
of space and time fractional derivatives are one, the fractional approach provides solutions
that are same as the conventional Richards equation approach. Furthermore, the numerical
investigation demonstrated that:

(a) When the power of the time fractional derivative is one, the wetting front moves
down faster (super-diffusive behavior) as the power of the space fractional derivative
decreases from 1. The wetting front for the lower moisture content moves down even
faster than that corresponding to the higher moisture content.

(b) When the power of the space fractional derivative is one, the wetting front slows
down (sub-diffusive behavior) as the power of the time fractional derivative decreases
from one. Additionally, the wetting front for the higher moisture content slows down
even more than that of the lower moisture content.

(c) When the powers of time and space fractional derivatives are equal, the effects of time
and space fractional powers are superimposed. The transport exponent µ becomes
one, showing overall normal diffusion in theory. However, as the time and space
fractional powers decrease from one to zero, the wetting front for the higher moisture
content slows down (sub-diffusive behavior) while the wetting front for the lower
moisture content moves down faster (super-diffusive behavior). To our knowledge,
this combined sub- and super-diffusive behavior with a resultant normal diffusion has
been reported for the first time and should be investigated further in future studies.

(d) The fractional cumulative infiltration approximation (Equation (23)) performs better
than the conventional cumulative infiltration model (Equation (22)) when the powers
of time and space fractional derivatives are fractional.
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To conclude, as in the case of [41], the observed cumulative infiltration values in
practice can deviate from the conventional cumulative infiltration approximation. In such
cases where the wetting front through time may not be consistent with the traditional
estimates of the Richards equation, the fractional governing equations may be a better
alternative to mimic the physical process of vertical soil water flow, and the fractional
approximation can be a better alternative for the estimation of the cumulative infiltration.
Although the numerical study herein provides helpful insights to the capabilities of the
proposed fractional approach in terms of the fractional powers of the space and time
derivatives, further research is needed to combine experimental and field studies with the
proposed theory of fractional soil water movement.
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