Semi-Rigid Erosion Control Techniques with Geotextiles Applied to Reservoir Margins in Hydroelectric Power Plants, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Sections with Techniques of Erosion Control
2.3. Geotextiles Used in the Erosion Control Techniques
2.4. Performance Evaluation of the Techniques
2.5. Geotextile Degradation Evaluation
3. Results and Discussion
3.1. Performance Matrix
3.2. Differential Bathymetry
3.3. Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lewis, L. Soil Bioengineering—An Alternative for Roadside Management; San Dimas Technology & Development Center: San Dimas, CA, USA, 2000. [Google Scholar]
- Simon, K.; Steinemann, A. Soil Bioengineering: Challenges for Planning and Engineering. J. Urban Plan. Dev. 2000, 126, 89–102. [Google Scholar] [CrossRef]
- Biedenharn, D.S.; Charles, M.E.; Watson, C.C. The WES Stream Investigation and Streambank Stabilization Handbook; US Army Engineer Waterways Experiment Station, U.S. Army Engineer: Vicksburg, MS, USA, 1997. [Google Scholar]
- Fischenich, J.C.; Allen, H. Stream Management; Wetlands Research & Technology Center, Environmental Laboratory, U.S. Army Engineer Research and Development Cente: Vicksburg, MS, USA, 2000. [Google Scholar]
- Martínez-Murillo, J.F.; Hueso-González, P.; Ruiz-Sinoga, J.D. Impact of low pressure grazing on the hydrological and sediment connectivity in hillslopes under contrasted Mediterranean climatic conditions (South of Spain). Land Degrad. Dev. 2018, 29, 1130–1140. [Google Scholar] [CrossRef]
- Martínez-Murillo, J.F.; Hueso-González, P.; Ruiz-Sinoga, J.D. Topsoil moisture mapping using geostatistical techniques under different Mediterranean climatic conditions. Sci. Total Environ. 2017, 595, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Theisen, M.S. The role of geosynthetics in erosion and sediment control: An overview. Geotext. Geomembr. 1992, 11, 535–550. [Google Scholar] [CrossRef]
- United States Army Corps of Engineers (USACE). Shoreline and Channel Erosion Protection: Overview of Alternatives. WRP Technical Note HS-RS-4.1; Wetlands Research & Technology Center, Environmental Laboratory, U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 1998. [Google Scholar]
- United States Department of Agriculture (USDA). Engineering Field Handbook Part 650 Engineering Field Handbook. In National Engineering Handbook; US Soil Conservation Service: Washington, DC, USA, 2016. [Google Scholar]
- Sanches Fernandes, L.F.; Sampaio Pinto, A.A.; Salgado Terencio, D.P.; Leal Pacheco, F.A.; Vitor Cortes, R.M. Combination of ecological engineering procedures applied to morphological stabilization of estuarine banks after dredging. Water 2020, 12, 391. [Google Scholar] [CrossRef] [Green Version]
- Annys, S.; Ghebreyohannes, T.; Nyssen, J. Impact of hydropower dam operation and management on downstream hydrogeomorphology in semi-arid environments (Tekeze, Northern Ethiopia). Water 2020, 12, 2237. [Google Scholar] [CrossRef]
- Oliveira, N.C.C. The great acceleration and hydroelectric dam building in Brazil. Varia Hist. 2018, 34, 315–346. [Google Scholar] [CrossRef] [Green Version]
- Empresa de Pesquisa Energética (EPE). Balanço Energético Nacional 2017: Ano base 2016; Rio de Janeiro: Empresa de Pesquisa Energética, Brazil, 2017. [Google Scholar]
- LAW, on the Protection of Native Forests; Brazilian Law 12651/2012.2012. Available online: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm (accessed on 8 February 2021).
- Koerner, K.F.; Oliveira, U.R.; Gonçalves, G. Efeito de estruturas de contenção à erosão costeira sobre a linha de costa: Balneário Hermenegildo, Rio Grande do Sul, Brasil. Integr. Coast. Zone Manag. 2013, 13, 457–471. [Google Scholar] [CrossRef]
- Simac, M.R.; Bathurst, R.J.; Fennessey, T.W. Case study of a hybrid gabion basket geosynthetic reinforced soil wall. Proc. Inst. Civ. Eng. Ground Improv. 1997, 1, 9–17. [Google Scholar] [CrossRef]
- Prambauer, M.; Wendeler, C.; Weitzenböck, J.; Burgstaller, C. Geotextiles and Geomembranes Biodegradable geotextiles—An overview of existing and potential materials. Geotext. Geomembr. 2019, 47, 48–59. [Google Scholar] [CrossRef]
- Vianna, V.F.; Fleury, M.P.; Menezes, G.B.; Coelho, A.T.; Bueno, C.; Lins da Silva, J.; Luz, M.P. Bioengineering Techniques Adopted for Controlling Riverbanks’ Superficial Erosion of the Simplício Hydroelectric Power Plant, Brazil. Sustainability 2020, 12, 7886. [Google Scholar] [CrossRef]
- Wiewel, B.V.; Lamoree, M. Geotextile composition, application and ecotoxicology—A review. J. Hazard. Mater 2016, 317, 640–655. [Google Scholar] [CrossRef]
- Silva, P.O. Avaliação da Efetividade dos Projetos de Recuperação de Mata Ciliar Contra a Atuação das Ondas nos Processos Erosivos das Margens do Reservatório Volta Grande (MG/SP). Master Thesis, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil, 2020. [Google Scholar]
- Larrabure, S.P. O fenômeno da segunda residência: O caso do rio Grande entre os estados de São Paulo e Minas Gerais. GEOUSP Espaço Tempo 2009, 26, 93–106. [Google Scholar] [CrossRef]
- Agência Nacional de Energia Elétrica—ANEEL. Resolução Normativa Nº 425, de 1º de Fevereiro de 2011. Available online: https://www.aneel.gov.br/documents/656877/14486448/bren2011425.pdf/7202b615-7335-48a2-bd44-ed68d9020e5a?version=1.0 (accessed on 8 February 2021).
- Marques, M.; de Andrade, F.O.; Vital, E.P.A.; Guetter, A.K. Método Rápido para a Determinação do Fetch Máximo. XX Simpósio Bras. Recur. Hídricos 2013, 9, 17–22. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Galvão, T.C.D.B.; Coelho, A.T.; De Menezes, G.B.; De Fonseca, Ê.M.B. Study of Erosion Control Techniques Applied to Hydroelectric Power Plants Reservoir Margins. Athens. J. Sci. 2018, 5, 329–342. [Google Scholar] [CrossRef]
- ASTM D 2487-17: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); ASTM International: West Conshohocken, PA, USA, 2017.
- Brazilian Association of Technical Standards. NBR 6458: Gravel Grains Retained on the 4,8 mm Mesh Sieve—Determination of the Bulk Specific Gravity, of the Apparent Specific Gravity and of Water Absorption; ABNT: Rio de Janeiro, Brazil, 2016; p. 14. [Google Scholar]
- Brazilian Association of Technical Standards. NBR 7181: Soil—Grain Size Analysis; ABNT: Rio de Janeiro, Brazil, 2016; p. 16. [Google Scholar]
- Brazilian Association of Technical Standards. NBR 6459: Soil—Liquid Limit Determination; ABNT: Rio de Janeiro, Brazil, 2016; p. 9. [Google Scholar]
- Brazilian Association of Technical Standards. NBR7180: Soil—Plasticity Limit Determination; ABNT: Rio de Janeiro, Brazil, 2016; p. 7. [Google Scholar]
- Heselden, J. Gabion. U.S. Patent No. 8,206,065, 26 June 2012. [Google Scholar]
- Brazilian Association of Technical Standards. ABNT NBR ISO 9863-1: Geossintéticos: Método de Ensaio Para Determinação da Massa Por Unidade de Área de Geotêxteis e Produtos Correlatos; ABNT: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- Brazilian Association of Technical Standards. ABNT NBR ISO 9864: Geossintéticos: Determinação da Espessura a Pressões Especificadas Parte 1: Camada Única; ABNT: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- ASTM D 5035: Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method); ASTM International: West Conshohocken, PA, USA, 2011.
- LAW, National Dam Safety Policy; Brazilian Law 12334/2010. Available online: http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12334.htm (accessed on 8 February 2021).
- Brasington, J.; Langham, J.; Rumsby, B. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 2003, 53, 299–316. [Google Scholar] [CrossRef]
- Li, M.Z.; King, E.L. Multibeam bathymetric investigations of the morphology of sand ridges and associated bedforms and their relation to storm processes, Sable Island Bank, Scotian Shelf. Mar. Geol. 2007, 243, 200–228. [Google Scholar] [CrossRef]
- Bures, L.; Sychova, P.; Maca, P.; Roub, R.; Marval, S. River Bathymetry Model Based on Floodplain Topography. Water 2019, 11, 1287. [Google Scholar] [CrossRef] [Green Version]
- Latapy, A.; Héquette, A.; Pouvreau, N.; Weber, N.; Robin-Chanteloup, J.B. Mesoscale morphological changes of nearshore sand banks since the early 19th century, and their influence on coastal dynamics, Northern France. J. Mar. Sci. Eng. 2019, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Cao, M.; Ma, A.; Dou, X.; Wen, Y. An Analysis of the Periodic Evolution of the Jingjiang Sandbank in the Tidal Reach of the Yangtze River. Water 2020, 12, 1652. [Google Scholar] [CrossRef]
- Dias, D.S.; Crespi, M.S.; Ribeiro, C.A.; Kobelnik, M. Evaluation of the thermal decomposition of blends prepared with poly(3-hydroxybutyrate) (PHB) and recyclable ethylene poly-terephthalate (RPET). J. Therm. Anal. Calorim. 2020, 1–11. [Google Scholar] [CrossRef]
- Valentin, C.A.; Silva, J.L.; Kobelnik, M.; Ribeiro, C.A. Thermoanalytical and dynamic mechanical analysis of commercial geomembranes used for fluid retention of leaching in sanitary landfills. J. Therm. Anal. Calorim. 2018, 136, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, F.L.; Kobelnik, M.; Valentin, C.A.; Lins da Silva, J.; Lopes, M.L.C. Study of exhumed HDPE geomembrane applied in an industrial water pond: Physical and thermoanalytical characterisations. Results Mater. 2020, 8, 100131. [Google Scholar] [CrossRef]
- Lavoie, F.L.; Valentin, C.A.; Kobelnik, M.; Lins da Silva, J.; Lopes, M.L.C. HDPE Geomembranes for environmental protection: Two case studies. Sustainability 2020, 12, 8682. [Google Scholar] [CrossRef]
Characteristic | Value | Standard | |
---|---|---|---|
UE Porto Colômbia | UE Volta Grande | ||
Specific gravity of soil solids (ρs) | 2.896 g/cm³ | 2.865 g/cm3 | NBR 6458 [27] |
Soil classification | Sandy silt (ML) | Sandy silt (ML) | NBR 7181 [28] |
ASTM D 2487-17 [26] | |||
Liquid limit (LL) | 43% | 47% | NBR 6459 [29] |
Plastic limit (PL) | 34% | 38% | NBR 7180 [30] |
Plasticity index (PI) | 9% | 9% | - |
Erosion Control Technique | Section Installed | |
---|---|---|
PC | VG | |
Geogrid Mattress | PC1 | VG2 |
Gabion and Gabion Mattress | PC2, PC3 | VG1, VG3 |
Properties and Test Method | |||
---|---|---|---|
Sample | Mass per Unit Area (g/m2) | Thickness (mm) | Tensile Strength per Unit/Machine Direction (kN/m) |
ABNT NBR ISO 9864 [32] | ABNT NBR ISO 9863-1 [33] | ASTM D5035 [34] | |
Unexposed PC1 | 572.58 | 2.74 | 5.41 |
Unexposed PC2 | 571.79 | 3.39 | 7.70 |
Unexposed PC3 | 419.25 | 2.46 | 4.08 |
Unexposed VG1 | 191.08 | 1.85 | 1.64 |
Exposed VG1 | 147.25 | 1.39 | 0.90 |
Unexposed VG2 | 129.75 | 1.37 | 0.55 |
Exposed VG2 | 248.92 | 1.56 | 0.67 |
Unexposed VG3 | 174.25 | 1.62 | 1.94 |
Variable | Weight | |
---|---|---|
V1 (Erosive spots/toe integrity on reservoir bank) | 0 | High |
1 | Intermediate | |
2 | Low | |
3 | Inexistent | |
V2 (Vegetative cover growth) | 0 | Bare (<30%) |
1 | Low vegetative cover (30 to ≤ 50%) | |
2 | Average vegetative cover (>50–≤ 70%) | |
3 | High vegetative cover (>70–100%) | |
V3 (Final Structural Integrity) | 0 | Serious damage (> 30% of the total) |
1 | Average damage (10–30% of the total) | |
2 | Low level of damage (<10% of the total) | |
3 | No damage | |
V4 (Need for maintenance) | 0 | High (>than 5 times) |
1 | Average (3 to 5 times) | |
2 | Low (1–2 times) | |
3 | No need | |
V5 (Landscape Integration/aesthetics) | 0 | No integration with local landscape |
1 | Integration with local landscape after 2 years | |
2 | Integration with local landscape after 4 years | |
3 | Integration since the startup | |
V6 (Regrowth Native vegetation top of the section) | 0 | Absence of native flora |
1 | Presence of 1–3 native species | |
2 | Presence of 3–5 species | |
3 | Presence of more than 5 native species |
Profile | Bathymetric Difference (m) | Section | Bathymetric Difference (m) |
---|---|---|---|
Profile 1 PC1 | −0.66 to 0.42 | PC1 | −0.66 to 0.46 |
Profile 2 PC1 | −0.07 to 0.46 | ||
Profile 1 PC2 | −1.12 to −0.02 | PC2 | −1.12 to 0.34 |
Profile 2 PC2 | −0.67 to 0.34 | ||
Profile 1 PC3 | −0.19 to 0.11 | PC3 | −0.19 to 0.15 |
Profile 2 PC3 | −0.17 to 0.15 | ||
Profile 1 VG1 | −0.43 to 0.62 | VG1 | −0.46 to 0.97 |
Profile 2 VG1 | −0.30 to 0.97 | ||
Profile 3 VG1 | −0.46 to 0.84 | ||
Profile 1 VG2 | −0.03 to 0.65 | VG2 | −0.13 to 1.15 |
Profile 2 VG2 | −0.13 to 1.15 | ||
Profile 1 VG3 | 0.03 to 0.86 | VG3 | 0.03 to 0.86 |
Profile 2 VG3 | 0.04 to 0.51 |
Sample | TG (Synthetic Air) | TG (Nitrogen) | DSC (Melting) | DSC (Crystallization) | ||||
---|---|---|---|---|---|---|---|---|
Unexposed PC1 | 230–269 °C | 269–454 °C | --- | 233–269 °C | 269–454 °C | 454–560 °C | 252 °C | 209 °C |
1.38% | 60.05% | --- | 1.19% | 52.67% | 9.08% | |||
Residue | residue | |||||||
38.57% | 37.06% | |||||||
Unexposed PC2 | 233–269 °C | 269–438 °C | 438–477 °C | 233–269 °C | 269–461 °C | 461–580 °C | 252 °C | 209 °C |
0.95% | 20.94% | 9.80% | 0.45% | 23.60% | 6.13 °C | |||
Residue | Residue | |||||||
68.31% | 69.82% | |||||||
Unexposed PC3 | 223–265 °C | 265–488 °C | --- | 220–260 °C | 260–456 °C | 456–590 °C | 252 °C | 209 °C |
0.85% | 75.05% | --- | 1.07% | 48.49% | 11.27% | |||
Residue | Residue | |||||||
24.10% | 39.17% | |||||||
Exposed VG1 | 227–270 °C | 270–511 °C | --- | 220–260 °C | 260–580 °C | --- | 252 °C | 209 °C |
1.36% | 79.88% | --- | 0.41% | 80.16% | --- | |||
Residue | Residue | |||||||
18.76% | 19.53% | |||||||
Exposed VG2 | 195–242 °C | 242–429 °C | 429–500 °C | 205–260 °C | --- | 2604–589 °C | 252 °C | 207 °C |
2.71% | 49.15% | 22.36% | 1.92% | --- | 48.08% | |||
Residue | Residue | |||||||
25.78% | 50.00% | |||||||
Unexposed VG1 | 225–255 °C | 255–505 °C | --- | 220–260 °C | 260–574 °C | --- | 253 °C | 211 °C |
0.57% | 99.03 | --- | 0.40% | 81.53% | --- | |||
Residue | Residue | |||||||
0.40% | 18.07% | |||||||
Unexposed VG2 | 212–260 °C | 260–454 °C | 454–510 °C | --- | 315–580 °C | --- | 250 °C | 205 °C |
0.80% | 75.78% | 5.06% | --- | 85.15% | --- | |||
Residue | Residue | |||||||
18.36% | 14.85% | |||||||
Unexposed VG3 | 197–245 °C | 245–442 °C | 442–489 °C | 333–586 °C | --- | --- | 253 °C | 208 °C |
2.36% | 72.92% | 23.91% | 87.73% | --- | --- | |||
Residue | Residue | |||||||
0.81% | 12.27% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparicio Ardila, M.A.; dos Santos Junior, R.D.; Kobelnik, M.; Aparecido Valentin, C.; Silva Schliewe, M.; Teixeira Coelho, A.; Lins da Silva, J.; Pereira da Luz, M. Semi-Rigid Erosion Control Techniques with Geotextiles Applied to Reservoir Margins in Hydroelectric Power Plants, Brazil. Water 2021, 13, 500. https://doi.org/10.3390/w13040500
Aparicio Ardila MA, dos Santos Junior RD, Kobelnik M, Aparecido Valentin C, Silva Schliewe M, Teixeira Coelho A, Lins da Silva J, Pereira da Luz M. Semi-Rigid Erosion Control Techniques with Geotextiles Applied to Reservoir Margins in Hydroelectric Power Plants, Brazil. Water. 2021; 13(4):500. https://doi.org/10.3390/w13040500
Chicago/Turabian StyleAparicio Ardila, Maria Alejandra, Ricardo D. dos Santos Junior, Marcelo Kobelnik, Clever Aparecido Valentin, Marlon Silva Schliewe, Arnaldo Teixeira Coelho, Jefferson Lins da Silva, and Marta Pereira da Luz. 2021. "Semi-Rigid Erosion Control Techniques with Geotextiles Applied to Reservoir Margins in Hydroelectric Power Plants, Brazil" Water 13, no. 4: 500. https://doi.org/10.3390/w13040500
APA StyleAparicio Ardila, M. A., dos Santos Junior, R. D., Kobelnik, M., Aparecido Valentin, C., Silva Schliewe, M., Teixeira Coelho, A., Lins da Silva, J., & Pereira da Luz, M. (2021). Semi-Rigid Erosion Control Techniques with Geotextiles Applied to Reservoir Margins in Hydroelectric Power Plants, Brazil. Water, 13(4), 500. https://doi.org/10.3390/w13040500