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Abstract: Despite the impact of flow cessation on aquatic ecology, the hydrology of intermittent
rivers has been largely overlooked. This has resulted in a lack of monitoring projects, and conse-
quently, datasets spanning a period of sufficient duration to characterise both hydrological extremes.
This report documents an investigation into the potential for statistical modelling to simulate the
spatiotemporal dynamics of flowing, ponded and dry hydrological states in an internationally rare
hydrological state dataset. The models presented predict unrecorded hydrological state data with
performance metrics exceeding 95%, providing insights into the relationship between ponding preva-
lence and the performance of statistical simulation of this ecologically important intermediate state
between drying and flowing conditions. This work demonstrates the potential for hydrological
intermittence to be simulated in areas where hydrological state data are often sparse, providing
opportunities for quality control and data infilling. This further understanding of the processes
driving intermittence will inform future water resource assessments and the influence of climate
change on hydrological intermittence.

Keywords: temporary streams; ephemeral streams; chalk streams; Chilterns; low flows; network
contraction; ordinal regression; cumulative logit model

1. Introduction

Temporary flow cessation is common, with more than 50% of the global river network
estimated to be intermittent [1]. Their dynamic hydrological behaviour, their prevalence
across a range of physical and chemical conditions, and spatiotemporal variability in their
habitat structure, mean that intermittent rivers and ephemeral streams (IRES) support
diverse biological communities [2–7]. Despite this ecological importance and the ecosystem
services they provide [8], they have been largely overlooked in governance and policy,
resulting in a lack of legislative protection [9–11].

Processes driving hydrological regime in IRES include those relating to climate, ge-
ology and land cover [12]. Identification of drivers—and quantification of the relative
sensitivity of the hydrological regime to each—is therefore an essential step towards the as-
sessment of a river’s response to hydrological extremes and to abstraction, land-use change
and climate change pressures [1,13]. Such evidence would further our understanding of
the ecological sensitivity of IRES and underpin the development of suitable management
strategies for their protection.

However, the extent of the monitored IRES network is constrained both spatially
and temporally, limiting the understanding that can be acquired from investigations into
these datasets alone. Simulation of the hydrological regime of these rivers enables in-
sights into the conditions beyond the monitored record, as well as inferences about the
factors driving intermittence. Physically based modelling of intermittent headwaters
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would require detailed understanding of the processes driving intermittence, but current
knowledge of temporary headwater streams is extremely limited [14]. Statistical mod-
elling, however, offers the potential to investigate these drivers and assess the impact of
disturbances to the hydrological regime. Previous research demonstrated the potential of
parametric approaches for wet/dry mapping [15], flow permanence simulation [16] and
estimating probability of intermittence [17]. Furthermore, neural networks and random
forest approaches have been demonstrated to be well suited for statistical simulation of
intermittence [18]. Other recent studies have also taken a random forest approach to
simulating intermittence [19–21], and some have compared approaches including neural
networks, regression trees and multivariate adaptive regression splines [18,22].

Effective monitoring of IRES requires observations both of flow magnitude and of
hydrological state, because the ponding conditions that exist as rivers transition between
aquatic and terrestrial states are key to their ecological diversity [7,23]. Ponded reaches
of IRES act as a refuge for many lotic species. This includes invertebrates which survive
drying phases in ponds until flow resumes, as well as invertebrates that complete life cycle
stages in ponds [24]. Ponds also act as refuge for some fish species which inhabit ponds
until flow resumes [25,26]. Furthermore, a number of provisioning, regulating and cultural
services have been attributed to temporary rivers, many of which apply to ponding phases,
such as the deposit of sediment as flow ceases, which in combination with the colonisation
of terrestrial plants binding sediment reduces erosion [27]. Modelling of ponding is rare,
however, because data scarcity makes the calibration and testing of models challenging [28].
No studies have been found with a statistical modelling approach to the reconstruction of
IRES dynamics in a hydrological state that includes ponding as well as flowing and dry
conditions.

Data scarcity on the hydrological state of IRES pertains to spatiotemporal extent
and resolution as well as to ponding, and existing studies have been limited in space to
gauging stations [16], or to spatially distributed sites for a limited period of a single or a
few years [18,21]. A UK. dataset across ten rivers in the East Chilterns [29] covers the full
range of hydrological conditions (being twenty years in temporal extent), at good spatial
resolution (approximately monthly) and across a range of flow regimes (especially given
the limited spatial extent). However, there remain gaps because collecting data of this
type is highly resource intensive. Modelling facilitates infilling of an extracted monthly
time series of flowing, ponded and dry state that is vital for understanding the long-
term behaviour of the rivers and quantifying their response to drivers and disturbances.
Furthermore, modelling offers the potential to extrapolate spatially and temporally, both
desirable given the cost of data collection. Thus, the spatial resolution and temporal extent
of the East Chilterns dataset provide a unique opportunity for IRES research, identifying
and quantifying the processes driving the hydrological state, as well as their relative
sensitivities to environmental change.

In this study, ordinal regression models were trained which simulated the spatiotem-
poral dynamics of flowing, ponded and dry states using environmental drivers for the first
time in the statistical modelling of IRES. The skill of the models in infilling gaps were tested
across both hydrological extremes on ten intermittent rivers in the UK. The aim was to
demonstrate the potential of statistical models for simulating a hydrological state, as well
as improve understanding of the processes driving intermittence through an investigation
into performance variation. This was achieved by investigating the following objectives:

• Determine how accurately hydrological intermittence in the East Chilterns rivers can
be simulated.

• Identify the factors that drive variation in hydrological state simulation performance.

2. Materials and Methods
2.1. Study Area

The study area is located in the Chiltern Hills of lowland southeast England (30–250 m
AOD–meters Above Ordnance Datum) with chalk bedrock partially overlain by superfi-
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cial deposits and predominantly arable and grassland landcover, with some woodland
(8–21%) and urban cover (3–21%). The climate is temperate oceanic with 600–750 mm
annual average rainfall (1961–1990) and typically no strong seasonality in monthly rainfall
accumulations, but fewer rainy days in the summer months (June–August) than in the
winter (December–February).

The ten study rivers form part of the Thames headwater network and are tributaries
of the Colne (Misbourne, Chess, Bulbourne, Gade and Ver) or the Lee (Mimram, Beane, Rib,
Ash and Stort) with stream lengths of 15 to 46 km (Figures 1 and 2). The Colne catchments
are a little higher and wetter than those of the Lee (30–250 m AOD and 700–750 mm;
30–200 m AOD and 600–650 mm, respectively) and the superficial deposits most extensive
in the east (75% in the Rib, Ash and Stort catchments). The hydrological regimes of the
Colne tributaries and also the Mimram are characteristic of chalk streams in the area,
heavily attenuated (mean Base Flow Index 0.88), and with flow typically increasing in
magnitude from October to March and decreasing from April to September. The Rib, Ash
and Stort have a greater responsive component (mean Base Flow Index 0.53). Daily flow
data for gauging stations on the study rivers and corresponding catchment descriptors are
openly available through the UK National River Flow Archive [30,31].
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Figure 1. Location of the hydrological state observation sites, river flow gauging stations and groundwater boreholes in
the Colne (Misbourne, Chess, Bulbourne, Gade and Ver) and Lee (Mimram, Beane, Rib, Ash and Stort) catchments, with
underlying superficial geology types.
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into 18–32 sites, according to the hydrological behaviour and access restrictions. These 
observations are considered as connected reaches, with boundaries equidistant from sites 
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Figure 2. The Gade (a), Misbourne (b), and Ash (c) in dry (i) and wet (ii) phases. Photo credit: Environment Agency
2016–2019.

2.2. Data
2.2.1. Hydrological State

Hydrologists from England’s regulatory authority, the Environment Agency, have
monitored the hydrological state of the ten study rivers since 1997 [29]. The spatial extent of
the surveys was designed to capture the hydrological state along the full intermittent reach
of each river. Survey extent begins in the most upstream non-dry observation and extends
to the downstream perennial reaches. This results in 8.1–34.4 km (38–99%) of the rivers
upstream of their respective confluences being surveyed. Survey extent is divided into 18–
32 sites, according to the hydrological behaviour and access restrictions. These observations
are considered as connected reaches, with boundaries equidistant from sites [29]. Reach
length varies from <0.1 km to 5.5 km, with a mean of 0.9 km.

Surveys were carried out approximately monthly, varying with hydrological condi-
tions and resource availability. For example, the higher density of observations during
and following the 2004–2006 drought, and the lower density in 2001–2004. The monitoring
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approach was reviewed and subsequently standardised in 2004. Therefore, the models
were trained on hydrological state data from 3 January 2004–30 April 2018.

The hydrological state observed was assigned one of eight categories according to
predefined descriptions and photographic examples, which was reduced to three eco-
logically relevant states: dry, ponded and flowing [29,32]. A monthly hydrological state
dataset was extracted to facilitate the quantification of intermittence variation with time.
Each month was assigned with the hydrological state observed. In cases of two or more
observations within a single month, the observation nearest to the middle of the month
was used. If the intervals were equal, the observation that provided a more consistent gap
between neighbouring month observations was used. This resulted in an average of 11.3%
of months between 3 January 2004 and 30 April 2018 missing an observation, ranging from
4.7% in the Gade to 18.8% in the Beane.

2.2.2. Explanatory Data

Three environmental drivers, river flow, groundwater level and rainfall, were sourced
from the Environment Agency and explored as model covariates. In addition, month of
simulation, distance upstream of confluence and state from the preceding and following
months were also used as covariates (Table 1). Monthly mean river flows were calcu-
lated from daily time series measured at a gauging station within the catchment (Table 2).
Monthly mean groundwater level was calculated from available observations in each
month (Table 2). Lumped catchment [33] average precipitation (areal rainfall) and percola-
tion (modelled effective precipitation) for each month was derived from daily totals for the
Colne and Lee catchments, respectively [34]. Frequencies of both precipitation and perco-
lation were the proportions of non-zero days within each month. Where categorical and
continuous data were missing, the modal class and mean over the study period (3 January
2004–30 April 2018), respectively, were used to infill observations corresponding to the site.

Table 1. Covariates used to simulate hydrological state.

Factor Description

Flow Mean flow in the month of the hydrological
state being simulated (m3s−1)

Groundwater Mean level of water table in the month of the
hydrological state being simulated (m AOD)

Precipitation

Mean precipitation in the month of the
hydrological state being simulated (mm)

Proportion of days with >0 mm precipitation in
the month of the hydrological state being

simulated

Mean percolation in the month of the
hydrological state being simulated (mm)

Proportion of days with >0 mm percolation in
the month of the hydrological state being

simulated

Seasonality Categorical month of hydrological state being
simulated

Site Distance downstream to the confluence (km)

State Hydrological state (flowing, ponded, dry) in
the previous and following months
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Table 2. River and associated flow and groundwater data source.

River
Flow Gauging Station Borehole

Name National Grid
Reference Name National Grid

Reference

Misbourne Little Missenden SU9342198458 Woodlands Park SP8846703308
Chess Rickmansworth TQ0657394809 Wayside SP9477001065

Bulbourne Two Waters TL0550405809 Dudswell SP9659009682
Gade Bury Mill TL0532607648 Dagnall OBH SP9960015540
Ver Redbourn TL1091611904 River Hill Dip TL0798015060

Mimram Whitwell TL1841021210 Lilley Bottom
Dip TL1569022760

Beane Hartham Park TL3250313143 Watton at Stone TL2910220042

Rib Wadesmill TL3599017444 Lower Farm
Buckland TL3457033890

Ash Wareside
Mardock TL3936014840 Much Hadham TL4261218286

Stort Stansted Springs TL5003924731 Berden Hall TL4669429548

2.3. Methods

Cumulative logit models (CLMs) [35], an ordinal regression approach, were selected
for simulation of hydrological state at the observation sites due to the inherent ordering of
the response variable (flowing, ponded and dry). This was performed using the Ordinal
package in R [36].

The probability the ith response, Yi, i = 1, . . . , N, is smaller than or equal to category,
j, j = 1, . . . , J, given the set of ith covariates, xi:

Pr(Yi ≤ j |xi) (1)

Then the cumulative logits are defined as:

logit[Pr(Yi ≤ j |xi )] = log
Pr(Yi ≤ j |xi)

1− Pr(Yi ≤ j |xi)
, j = 1, . . . , J (2)

The CLMs assume that:

logit[Pr(Yi ≤ j |xi )] = θj − xi
T β, j = 1, . . . , J (3)

This model satisfies the proportional odds property.

2.3.1. Partial Proportional Odds

The above proportional odds model does not allow the regression coefficients, β,
to vary with the response category. Therefore, this model assumes that the effect of the
covariates is not dependent on the response category, and thus a unit increase in any
covariate would have an equal effect on the probability of an observation being in each of
the response categories.

Whether that assumption was violated was assessed for each covariate individually
by training partial proportional odds models, allowing the associated regression coefficient,
β, to vary by state, j:

logit[Pr(Yi ≤ j |xi )] = θj − xi
T β j (4)

Differences between the proportional odds and partial proportional odds models were
assessed using likelihood ratio tests. By default, proportional odds models were used to
simulate hydrological state. However, if non-proportional odds were detected (defined
as a significant difference, p < 0.05, between proportional odds and partial proportional
odds models), partial proportional odds models were used to simulate hydrological state.
This meant that coefficients for covariates that exhibited non-proportional odds could vary
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with state, accounting for variability in their relationship with hydrological state. Whilst
this increased the number of parameters that must be estimated, and therefore uncertainty,
model performance was improved by better capturing the inherent variability of these
dynamic rivers.

2.3.2. Parameter Estimation

The values of θ and β were estimated using Maximum Likelihood Estimation. The op-
timal set of covariates was estimated using five-fold cross validation. This means that the
data is split evenly into five partitions. Four partitions were then used to train the model,
and the remaining partition used to validate the model. This was performed iteratively
five times until all five partitions had been used for validation. This enabled the models to
be trained on the full dataset. Akaike’s Information Criterion (AIC) scores were averaged
across cross-validation scores, and the covariate set with the minimum resulting average
AIC for all possible combinations (a total of 2,097,151 combinations) was selected for the
final model, for each river. Thus, a total of 10,485,755 models were fitted to each river for
validation.

Due to the considerable number of models trained, automated covariate selection
was performed. All possible combinations of covariates were fitted, and the resulting AIC
scores compared. The model with the lowest AIC was used.

2.3.3. Evaluation Metrics

The goodness-of-fit of each model was evaluated using five metrics to account for
frequency imbalance in the response class:

Probability of Detection = POD =
a

a + c
, (5)

Probability of False Detection = POFD =
b

b + d
, (6)

Precision = p =
a

a + b
, (7)

F1 score = F1 = 2
p× POD
p + POD

, (8)

Correct Classification Rate = CCR =
a + d

N
, (9)

where N is the sample size, and a, b, c, d are the number of true positives, true negatives,
false positives and false negatives, respectively. The positive class was set to the predicted
category, and all other categories assigned the negative class.

Individual metrics, Mi, i = 1, . . . , N were averaged according to the number of
observations within each river:

W =
∑N

i=1 Mi ni

∑N
i=1 ni

, (10)

where ni is the number of observations available for river i.

2.3.4. Data Visualisation

Data was visualised in a series of heatmaps displaying the observed, simulated and
infilled record. Observed heatmaps display observed data when available, and columns
of “missing” data when unavailable, whereas the simulated heatmaps display simulated
hydrological state for all months. Infilled heatmaps display observed hydrological state
when available, and simulations when observations were unavailable. Reaches were
displayed as spatially contiguous due to the high spatial resolution of the data, evidenced in
the tick-marks demonstrating the location of each observation site along the observed reach.

Model performance was also demonstrated in monthly time series indicating whether
flowing, ponded and dry observations were simulated correctly, and when and where each
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state was observed was also presented (Figures 5, 7 and 9). Base Flow Index (BFI) at the
linked flow gauging stations sourced from the UK National River Flow Archive [31] was
also plotted against the evaluation metrics described in Section 2.3.3.

3. Results
3.1. Overall Performance

CLMs were able to accurately simulate the hydrological regime in the ten chalk streams
explored here. Weighted f-scores range from 0.759–0.955, with six out of ten chalk streams
achieving scores above 0.935 (Table 3). Of these six chalk streams, the Mimram and the
Colne tributaries were the most westerly streams in this dataset.

Table 3. Cumulative logit model performance metrics for each river. POD—Probability of Detection,
POFD—Probability of False Detection, CCR—Correct Classification Rate. The rivers are ordered west
to east.

POD POFD f-Score CCR

Misbourne 0.961 0.088 0.942 0.942
Chess 0.968 0.083 0.954 0.954

Bulbourne 0.958 0.116 0.935 0.935
Gade 0.973 0.093 0.955 0.955
Ver 0.964 0.093 0.944 0.949

Mimram 0.954 0.183 0.941 0.939
Beane * 0.852 0.168 0.848 0.909

Rib * 0.775 0.203 0.759 0.849
Ash * 0.780 0.170 0.768 0.857
Stort * 0.908 0.288 0.855 0.861

* Partial proportional odds cumulative logit models.

This spatial pattern is replicated in both the associated Probability of Detection
(POD) scores, and Correct Classification Rates (CCRs), which range from 0.775–0.973,
and 0.849–0.955, respectively (Table 3). The highest POD scores were associated with the
Mimram and Colne tributaries. This is consistent with the CCRs, which ranged from
0.935–0.955 in the aforementioned rivers, and from 0.849–0.909 in the most easterly rivers—
Rib, Ash and Stort.

Probability of False Detection (POFD) scores did not exhibit as clear a pattern, ranging
from 0.083–0.288 (Table 3). The Colne tributaries had the lowest associated POFD scores of
0.083–0.116, with a POFD score of 0.083 associated with the Chess. However, the Mimram
had a POFD score of 0.183, higher than those of the Ash and Beane, 0.170, and 0.168,
respectively.

Figure 3 suggests that this apparent spatial pattern may be related to the BFI of
each river. Models trained on rivers with relatively high BFI exhibited relatively high
performance.

The proportion of ponding observations within each dataset ranged from 2.81–16.78%.
The Colne tributaries and Mimram had the lowest proportion of ponding observations
(2.81–4.50%). This suggests the performance of the CLMs may be related to the proportion
of ponding observations within the data. This is supported by state-specific POD across all
10 rivers: flowing = 0.964, ponded = 0.265, dry = 0.829.

The same spatial pattern was evident in the validity of the proportional odds assump-
tion. No violations were found in the Colne tributaries or the Mimram, whilst further
east, violations were found on the Beane, Rib, Ash and Stort. These four rivers were those
with the highest proportions of ponded observations (13.2%, 14.2%, 16.8%, and 11.1%,
respectively). The variables that violated the proportional odds assumption varied between
these rivers (Table 4). According to the likelihood ratio tests, the assumption was violated
for flow and hydrological state in both the previous and following months on all four of
them, whilst there were violations for distance to confluence on the Ash and the Stort,
and across all explanatory variables on the Beane. This means that the coefficients on these
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variables had been allowed to vary with hydrological state and suggests variability in their
relationship with hydrological state.
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Table 4. Coefficients that were identified (x) as significant predictors of hydrological state in their respective models.
* denotes non-proportional odds variables.

River Misbourne Chess Bulbourne Gade Ver Mimram Beane Rib Ash Stort

Flow average X X X X X X * X * X * X *
Average water table height X X X X X X X * X X X

Average precipitation X X * X X
Precipitation frequency X X X X X

Average percolation X X X X X*
Percolation frequency X X X X * X X X
Distance upstream of

confluence X X X X X X X * X X * X *

Month X X X X X * X
Previous month state X X X X X X X * X * X * X *

Following month state X X X X X X X * X * X * X *

Water table height, distance upstream of confluence and previous and following
month state variables were used to train all 10 models. However, not all explanatory
variables were used in each model (Table 4). Precipitation average, precipitation frequency
and percolation average were used in 4–5 models each. At least one rainfall explanatory
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variable was used in nine models. The Mimram model did not use a rainfall variable
to simulate hydrological state, instead using water table height, distance upstream of
confluence, month and previous and following state.

Three catchments were selected for further inspection of model performance: one
river with highly attenuated hydrological regime (Gade), one more responsive (Ash) and
one featuring spatial fragmentation of flow (Misbourne).

3.2. Gade

The Gade observation record was 69.1%, 3.0% and 27.9% flowing, ponded and dry
observations, respectively. This was well approximated by the model simulations, which
were 70.1%, 0.0% and 29.0% flowing, ponded and dry, respectively. The Gade model simu-
lated hydrological state with the highest associated f-score (0.955) and POD (0.973) (Table 1)
using mean flow, mean water table height, mean precipitation, mean percolation, distance
upstream of confluence, previous and following month state (Table 3). Figures 4 and 5
demonstrate the accurate simulation of the flowing/non-flowing division across the full
time series. The timing of drying and rewetting is accurately reconstructed, and the extent
of dry reaches is simulated well within the model. Despite the lack of ponded simulation,
the infrequency of ponded observations (2.97% of observations were ponded) meant that
this had minimal impact on the ability of this model to accurately reconstruct dry/wet
dynamics, source migration and stream profile (Figures 4 and 5).

3.3. Misbourne

Flowing, ponded and dry states comprised 64.6%, 3.7% and 31.7% of the Misbourne
observation record, respectively. The simulation dataset had similar proportions with
66.4%, 0.0% and 33.6% flowing, ponded and dry simulations, respectively. The Misbourne
is also one of the westerly chalk streams, however, its hydrological regime (Figure 6)
contrasts with that of the Gade. Whereas the Gade typically exhibits a clear division
between flowing and non-flowing reaches, the Misbourne often has contiguous dry reaches
downstream of flowing reaches. However, despite this behaviour, the CLM trained on
the Misbourne was able to accurately simulate the hydrological regime, with comparable
performance to the Gade CLM. The Misbourne CLM had a weighted f-score of 0.942 and
demonstrated ability to simulate the division between where flowing reaches end and
drying reaches begin (Figures 6 and 7). Whilst 3.71% of Misbourne observations were
ponded, the CLM did not make any ponded estimations of state (Figures 6 and 7). However,
the spatial extent, duration and timing of non-flowing reaches were accurately simulated
by the CLM.

3.4. Ash

Flowing, ponded and dry states comprised 59.9%, 16.8% and 23.3% of the Ash obser-
vation record, respectively. The simulation dataset consisted of 65.1%, 11.4% and 23.5%
flowing, ponded and dry simulations, respectively. The Ash is more easterly than both the
Gade and Misbourne, lying between the Rib and Stort. This is reflected in the flashiness
observed in Figure 8, resulting, in part, due to the clay and glacial drift deposits increasing
the drainage densities in these areas. Similarly, the BFI on the Ash at Mardock is 0.53,
whereas the Gade at Bury Mill has a BFI of 0.93 [30].

Likelihood ratio tests suggested the Ash data violated the proportional odds assump-
tion. Accordingly, a partial proportional odds CLM was trained, using flow average, water
table height average, precipitation frequency, percolation average, percolation frequency,
distance upstream of confluence and previous and following month states to simulate hy-
drological state. Specifically, flow average, distance upstream of confluence, and previous
and following month hydrological state violated the proportional odds assumption and
therefore the coefficients for these variables were allowed to vary between states.

The model simulated hydrological state with a weighted average f-score of 0.77.
This is, in part, due to challenges estimating ponding. The Ash had the highest proportion
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of ponding observations, with 16.78% of states observed to be ponded. This resulted in
11.36% of Ash hydrological state estimations being ponded. This under-estimation of the
prominence of ponding is compounded by challenges surrounding its timing, reducing
the performance of the Ash model (Figures 8 and 9). However, grouping ponding and
flowing observations into a ‘wet’ category increased the weighted f-scores from 0.77 to
0.86, demonstrating the ability of this model to simulate wetting and drying dynamics in
the Ash.
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assumed to be consistent along observed reaches due to the high spatial resolution of the data.
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when and where the states were observed on the Misbourne. Hydrological state is assumed to be consistent along observed
reaches due to the high spatial resolution of the data.
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Figure 8. Monthly time series of observed (a), simulated (b), and infilled (c) hydrological state on the Ash, where infilled
states are observations where available and simulations where observations are unavailable. Hydrological state is assumed
to be consistent along observed reaches due to the high spatial resolution of the data.



Water 2021, 13, 493 16 of 22
Water 2021, 13, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 9. Monthly time series indicating whether flowing (a), ponded (b), and dry (c) states were simulated correctly and 
when and where the states were observed on the Ash. Hydrological state is assumed to be consistent along observed 
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Figure 9. Monthly time series indicating whether flowing (a), ponded (b), and dry (c) states were simulated correctly and
when and where the states were observed on the Ash. Hydrological state is assumed to be consistent along observed reaches
due to the high spatial resolution of the data.
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4. Discussion
4.1. Controls on Model Performance

Variations in the complexity of catchments in the Chilterns partially determine model
performance. Whilst the evaluation of the CLMs demonstrated their generally strong per-
formance in simulating hydrological state, the performance of models generally decreases
with distance east. This is likely driven by variations in the complexity in hydrological
regime. Easterly rivers exhibit higher spatial fragmentation [37] and more frequent tran-
sitioning between states-upstream/downstream compared to groundwater-dominated
catchments in the west. Furthermore, whilst observed in all rivers, seasonal network con-
traction and expansion is more evident on the flashier rivers [29]. Due to the uncertainty
associated with estimating parameters, rivers that are dependent on fewer, simpler factors
(i.e., groundwater-fed catchments in the west) often have less uncertainty, and thus higher
model performance.

BFI estimates the influence of stored water on the hydrological regime of a river [30].
The positive relationships between model performance and BFI (Figure 3) suggest that
model performance is dependent on the influence of groundwater on hydrological regime,
with model performance being better in rivers that are more influenced by groundwater
(high BFI). However, whilst all 10 catchments are underlain by chalk, the permeability of
superficial hydrogeology varies between rivers, resulting in spatial fragmentation vari-
ation [29]. The eastern rivers (Beane, Rib, Ash and Stort) are more frequently underlain
by superficial deposits and have higher spatial variation in their distribution. Further-
more, intra-river variation in superficial deposit distribution likely generates higher spatial
fragmentation, which is more challenging to simulate. Despite the non-uniform distri-
bution of superficial deposits, the models herein account for intra-river site variation
linearly with distance from the confluence. Improved accountancy of intra-river geological
variation within models may increase model performance in rivers that exhibit localised
hydrogeology. Previous research found associations between hydrological intermittence
and a range of catchment characteristics, including catchment area, altitude, geology,
land cover [17,19,38,39], and total precipitation and forest cover [19,20]. However, recent
research performed in France did not identify either catchment area or altitude as drivers
of flow intermittence [18]. This underlines the challenges in determining the drivers of
hydrological intermittence observed in the chalk streams presented herein.

4.2. Influence of Modelling Approach

The modelling approach may also influence how well inter- and intra-river variation
has been accounted for by alternative modelling approaches, including random forest [21],
and both random forests and neural networks [18]. Each of these approaches offers
ability to characterise non-linear relationships, meaning they are well-suited to simulating
complex systems, particularly appropriate when estimating the relationships driving
intermittence across a wide range of environmental conditions, such as those in France
and Queensland. Disadvantages of these approaches are the need to tune a relatively
high number of parameters, particularly challenging when data availability is limited.
The decision to fit models to each river in this study constrained the data availability but
allowed relationships to be river-specific without accounting for the relationships driving
variation between rivers. The advantages of CLMs (reduced parameterisation required for
model fitting) outweighed the limitations and resulted in the strong performance observed.

4.3. Suitability for Infilling

A key aim of this research was to develop capability for infilling hydrological state
datasets. Broadly speaking, the strong performance of the models (Table 3) demonstrates
the potential of this approach in applications requiring infilling of datasets. The mean
f-score across the 10 study rivers was 0.89, and as high as 0.955 on the most accurately
simulated rivers. In addition to high values of performance metrics, visual inspection of
observed and simulated heatmaps (Figures 4, 6 and 8) suggests appropriate reconstruction
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of the spatial and temporal dynamics of hydrological intermittence, including source mi-
gration and partitioning between flowing and non-flowing. Nevertheless, in rare instances,
the methodology applied herein encounters some challenges. For example, the unique
hydrology and hydrogeology of the downstream drying section of the Misbourne (Figure 6)
presents some challenges for reconstructing data. The importance of hydrological state
at time step (t − 1) for simulating state at time step t in the Misbourne CLM, and the use
of modal state of that site in place of missing data at (t − 1), produces some seemingly
erroneous values for hydrological state (e.g., ponding amongst a considerable amount
of flowing data; Figure 6). Potential solutions to this include using the most recent hy-
drological state as a simple approximation for missing data, or an increased reliance on
upstream/downstream sites. Nevertheless, this rare example should not detract from the
general success of the methodology in reconstructing the hydrological state, and within
an operational context such erroneous data could easily be identified and quality checked.
Complete data are necessary for a wide range of applications, including those concerning
the duration of flowing and dry phases, an important influence on ecological responses
to drying and rewetting dynamics [40,41], and gaps in the observation record present
challenges when they coincide with points of interest in time, such as an invertebrate
survey [42]. The methodology presented herein provides clear potential to address such
concerns.

4.4. Challenges and Limitations

The variability in superficial deposit, and thus permeability, and distribution is re-
flected in localised ponding [29]. Ponding is an ecologically important intermediate state in
the drying and rewetting of sites. The ability for the models to simulate ponding dynamics
varied between rivers. Generally, ponding simulation was more accurate in rivers with
higher proportions of ponding observations (e.g., the Ash). Elsewhere, limited occurrence
of ponding in observed data presented challenges in the calibration of models for simula-
tion. Data scarcity poses challenges for accurately characterising the relationships that drive
hydrological state dynamics. Limited data on ponding has also proved challenging for
validation of state estimation in other studies, for example [28]. Nevertheless, in many of
the study catchments (e.g., the Misbourne), the relative infrequency of ponding compared
to dry and flowing states means that ponding was never simulated in some instances, but
with few observations to compare against, the CLMs performed strongly under evaluation.
In cases where accurate simulation of ponding is a priority, the use of an alternative cost
function that weights ponding simulation accuracy more heavily may improve ponding
simulation.

Whilst the lack of ponded observations posed considerable challenges for simulating
this state on most rivers, this was not the only factor limiting performance on the Ash.
The proportions of flowing, ponded and dry states observed on the Ash were 0.6, 0.17
and 0.23, respectively. However, the model was able to simulate dry more accurately than
ponded observations (Figures 8 and 9). The onset and termination of hydrological states
also posed a challenge for simulation. This is most evident in Figures 5 and 7, where
despite the timing of hydrological states being well approximated, the majority of incorrect
classifications occur at the beginning or ending of a period of consistent hydrological state.
Therefore, the performance of these models is limited on flashier rivers due to rapidly
changing hydrological states. This is likely in part driven by the relatively high weighting
of lagged hydrological state variables, due to this generally being an accurate predictor of
hydrological state. However, the complexity of the relationships driving state onset and
termination also likely limits the performance. Therefore, improved understanding and
accounting for these relationships in partnership with constrained weighting of lagged
state variables or alternative evaluation metrics may further improve the performance of
these models.

A particular challenge for simulating hydrological state is ensuring consistency of
qualitative observations where thresholds between categories may not be clear. However,
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consistency and accuracy of observations is ensured by a defined protocol followed by
trained hydrologists. This was further accounted for by only training models on obser-
vations taken since 2004, following the review and standardisation of the monitoring
approach.

Despite this subsetting of the dataset, such an extensive period of record (2004–2018) is
rare for hydrological state data compared to previous studies, for example [18,21], although
these studies benefit from a wider spatial extent than the dataset used herein. Whilst they
would need to be re-trained for the specific application, the modelling approach presented
herein could be applied within other intermittent river contexts internationally in order to
accurately simulate the hydrological regime, providing there is sufficient data availability.
As such, this study provides a valuable addition to existing demonstrations of the potential
for statistical models to simulate hydrological intermittence [15–22].

4.5. Potential for Future Applications

Extensions to this research would facilitate investigations into the potential impacts
of climate, hydrogeology and land cover on these systems. Specifically, accurate recon-
struction of hydrological state dynamics also suggests that temporal extrapolation beyond
the observational record is possible. However, this is dependent on the relationships
driving the intermittence exhibiting stationarity. Selecting covariate sets according to mini-
mum AIC may result in overfitting, and therefore reduced extrapolation potential. As the
temporal extent of the dataset grows, and/or with the incorporation of data from other
sources, such as citizen science initiatives [43], further investigation into the suitability
of the models for extrapolation would evaluate, and potentially improve, the potential
of this methodology for temporal extrapolation. This includes analysing the impact of
adding random effects to the models, which would demonstrate the potential to accurately
extrapolate these results both spatially and temporally. If satisfied, temporal extrapola-
tion would enable further research into the nature of potential climate change impacts on
intermittent rivers, which previous research demonstrates has the potential to influence
the hydrological regime of intermittent rivers [44–46]. Furthermore, accurate temporal
extrapolation would facilitate operational management with wide utility in forecasting,
drought tracking, and assessing the influence of abstraction pressures on the future of these
valuable ecosystems.

5. Conclusions

The understanding of intermittent rivers, and the processes driving them, is limited
despite their widespread prevalence and importance. However, statistical simulation of
the hydrological regime of these rivers by estimating the relationships driving hydrological
state provides ample opportunity for developing this understanding further and improving
their protection and appreciation. As demonstrated here, it is possible to simulate hydro-
logical state with unprecedented performance using CLMs. This not only provides insight
into what occurred in the record when observations are unavailable, but also enabled
further investigation into the processes driving spatial variation in performance. The clear
distinction in performance between rivers in the east and west, as well as the association
between BFI and performance, demonstrates a critical relationship between groundwater
influence and the ability to simulate the hydrological regime in an intermittent river.

This work enables further understanding to be garnered from future research. In its
simplest form, this includes linking data with newly available infills, however, this should
be expanded into further investigations into how climate change and projected abstraction
pressures may influence intermittent rivers in the future. As well as temporal extrapolation,
there is potential in improving the understanding of intermittent rivers that do not have
as extensive of a record. Infilled datasets may be used to improve the accuracy of metric
estimation and calculate metrics that are dependent on complete data, such as duration
of flowing and dry phases. However, it would also enable the tracking of hydrological
state when observations are not possible. This work presents a key step in improving
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the characterisation of intermittent streams, understanding how they interact with the
surrounding environment and the protection of these key ecosystems.
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