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Abstract: The Yangtze River Basin is a resource axis represented by hydropower resources, bulk agri-
cultural products, and mining resources. However, with rapid socio-economy development, the bal-
ance between water, energy, and food elements in the region has become more fragile. As the core
element of the water-energy-food nexus, it is necessary to study water resources security and give
effective pre-warning of possible water safety problems from the perspective of water-energy-food
symbiosis. In this paper, we introduce the “symbiosis theory” to build a regional water-energy-food
nexus symbiosis framework. Then, we establish a Lotka–Volterra symbiotic evolution model to
calculate the symbiotic security index. Finally, we judge the water security state and pre-warning
level and analyze the causes of water security problems by the inverse decoupling of the indicator-
index. The results show that the spatial differentiation of water security in the Yangtze River Basin
is obvious from the perspective of water-energy-food symbiosis. The state of water security in the
middle and upper reaches of the Yangtze River Basin is better than that in the lower reaches. Specifi-
cally, the water resources security levels in the upstream hydropower energy enrichment regions are
generally low. By contrast, the water systems of some downstream socio-economically developed
provinces have certain risks. Therefore, each province needs to find out the key factors that hinder the
healthy development of the water resources system based on combining the evolution mechanism
and symbiotic state of water-energy-food so that water security can be managed in a targeted manner.

Keywords: Lotka–Volterra model; pre-warning measurement; water-energy-food symbiosis; wa-
ter resources security; Yangtze River Basin

1. Introduction

In the context of rapid global socio-economic development and population growth,
as important basic resources for human development and the key to socio-economic devel-
opment, there is an inexhaustible connection between water, energy, and food. Furthermore,
these three elements coordinate and restrict each other and have a fragile relationship,
and together they constitute a multivariable coupled mutual-fed dynamic system. How-
ever, excessive intervention in any field will affect or even destroy this fragile balance
between water, energy, and food, which will lead to serious consequences. As the core
element of the water-energy-food nexus, water is inseparable from energy and food pro-
duction. Specifically, water can provide support for the development of energy and food
industries, while the development and utilization of water resources needs support from
energy. Therefore, it is necessary to deeply study the important relationship and symbi-
otic evolution mechanism between water resources development and utilization, energy
production, and food planting to study water resources security from the perspective of
water-energy-food symbiosis and give effective pre-warning of possible safety problems of
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water resources so as to realize the sustainable development of water resources under the
background of water-energy-food symbiosis.

Regarding the research on water resources security, academic circles have launched
multi-angle research in recent years, mainly from the perspective of the quantity and quality
of water resources. In terms of water scarcity research, a global water scarcity assessment
has been proposed, which has studied the impact of socio-economic development on water
scarcity [1]. In terms of water quality research, the precautionary method and the com-
prehensive evaluation method of river basins are used in the research of water resources
quality and its influencing factors [2,3]. In addition, the research methods of water resources
security evaluation are mainly embodied in the construction of an evaluation indicator
system, the determination of indicator weights, and the design of evaluation models. More-
over, the research methods have a great influence on the results of water resources security
evaluation. Because water resources security is a comprehensive concept, it is restricted by
itself and by multiple factors related to the external environment such as society, economy,
and ecology. Using the “indicator system method” to establish a multi-level indicator
system to evaluate water resources security can overcome the one-sidedness of selecting a
few indicators to evaluate water resources security. At present, the water resources security
evaluation indicator system is mainly constructed from the perspectives of quantity-quality-
region-flow and driving force-pressure-state-influence-response (DPSIR) [4,5]. Evaluation
models mainly include the water footprint method, the new comprehensive evaluation
model, and the dynamic coupling coordination model [6–8]. In terms of water resources
pre-warning methods and models, methods based on logical curves and total pre-warning
indexes are applied [9]. Moreover, operational uncertainty has also been applied to the
design and optimization of water resources security pre-warning systems [10].

Since the concept of water-energy-food nexus was proposed and the importance of the
relationship between the three was clarified at the Bonn 2011 conference: The water, energy,
and food security nexus: green economic path [11], many scholars have combined the re-
search of water resources with energy and food, and the water-energy-food nexus has been
deeply studied in relation to different aspects, such as qualitative and quantitative ones.
These not only studied the internal relationship of the water-energy-food nexus, but also ex-
tended to the external relationship between society, economy, and ecology. In terms of qual-
itative research, many well-known nexus frameworks have also been proposed in the anal-
ysis of the connotation and operating mechanism of the water-energy-food nexus [12–14].
In terms of quantitative research, pressure-state-response (PSR) technology, the matter-
element model, step-by-step methodology, and the non-linear optimization model are
applied in the sustainability research of the water-energy-food nexus [15–18]: The structure
path analysis method and the data envelopment analysis method have been carried out
to study the input-output efficiency of water, energy, and food [19–21]; Technologies such
as remote sensing and integrated resource management are used in the research of safety
and risk control of the water-energy-food nexus system [22]; The system dynamics model
has been proposed for simulating the interaction between water, energy, and food [23,24];
The principle of synergy has also been widely used in the study of the water-energy-food
nexus [25–27]; In order to deal with the uncertainties in water-energy-food management,
some studies have proposed multi-stage fuzzy stochastic models [28–30].

Current academic research on water resources security only focuses on evaluating the
security of a single resource: water resources. However, they rarely consider the symbiosis
and synergy between other resources and water resources. Additionally, the impact of this
symbiosis on water resources security is often overlooked. As a result, this static way of
thinking has a large lag, which is not conducive to timely and effective pre-warning of
water resources security. Therefore, energy and food, which are closely related to water
resources and have a certain impact on water resources security, need to be included in the
water resources security measurement and pre-warning system, and water resources secu-
rity should be considered from the perspective of water-energy-food symbiosis. In other
words, we should first use symbiosis theory and the system analysis method to analyze the
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interaction mechanism of water, energy, and food in the social, economic, and ecological
external environment. At present, the academic circle has not applied the symbiosis theory
to the research of the water-energy-food nexus. Symbiosis theory [31], the basic ecological
principle that describes the nutritional connection of living organisms, has been intro-
duced by researchers into the field of socio-economic research to describe social, economic,
and ecological relationships [32,33]. In addition, the water resources security measurement
method needs to be further improved. Additionally, the indicator system method and
the characteristic index method need to be further connected. It is not only necessary to
establish a scientific indicator system for water resources security measurement, but also
to study the comprehensive characteristic index that can reflect the connotation of wa-
ter resources and the symbiotic relationship between water, energy, and food. What is
more, the linkage relationship between the indicator system and the characteristic index
should be established to overcome their respective drawbacks and achieve complementary
advantages by the synthesis and integration of the two types of method.

According to the above analysis, we introduce the symbiosis theory into the water-
energy-food nexus and build a regional water-energy-food nexus symbiosis framework.
Based on this framework, a Lotka–Volterra symbiotic evolution model of the water-energy-
food symbiosis system is built, which is used to measure the water, energy, and food
security of the Yangtze River Basin to judge the water security state and pre-warning
level from the perspective of water-energy-food symbiosis. Finally, by indicator-index
reverse decoupling, water resources security issues are analyzed to provide support for
the management and regulation of water resources security in each region of the Yangtze
River Basin.

2. Methods

According to the technical conception of this article, the research method of this
article includes four main steps. First of all, we introduce the “symbiosis theory” to build
a regional water-energy-food nexus symbiosis framework, and we then measure and
evaluate the water resources security state comprehensively on the basis of considering the
symbiosis of water, energy, and food. Secondly, we construct a driving force-pressure-state-
influence-response (DPSIR) theoretical structure model to establish an indicator system
based on the qualitative analysis of the influence of social progress, economic development,
and the ecological environment on the water-energy-food symbiosis system’s structure
and interaction mechanism, and then use the criteria importance though intercriteria
correlation (CRITIC) method to determine the indicators’ weight and calculate the basic
characteristic index in the water-energy-food symbiosis system. Thirdly, we use the Lotka–
Volterra symbiotic evolution model to calculate the symbiotic security index including the
symbiotic stress index and the symbiotic index. Finally, we judge the water security state
and pre-warning level from the perspective of water-energy-food symbiosis based on the
calculation results of the symbiotic security index. The research method and technical route
of this study are shown in Figure 1.

2.1. Framework Construction and Theoretical Analysis

In this paper, the ecological symbiosis theory proposed by Lynn Margulis is ap-
plied to the construction of the water-energy-food symbiosis system framework. By this
method, it can be clearly reflected that development of each symbiosis unit of the water-
energy-food nexus is nested in the symbiotic environment. The specific structure is shown
in Figure 2. The water-energy-food symbiosis system is composed of three levels: mi-
crosystem, mesosystem, and macrosystem. Firstly, microsystem refers to the most direct
environment in which the symbiotic unit is located. The microsystems in this research
include water, energy, and food microsystem. The quantity, quality, structure, fragility, and
carrying capacity of the resources in these microsystems are all important conditions for
the stability and balance of the entire nexus symbiosis system. Secondly, the mesosystem
refers to the synthesis of the symbiotic relationship formed by the symbiotic units that exist
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in the macroscopic symbiotic environment in a certain way. In this study, there is a close
relationship between water, energy, and food. Specifically, energy production requires
water for cooling, and food production also needs water for irrigation; the production and
transportation of water and food need to be supported by energy; and food production
requires the input of water and energy, and part of the food can also be converted into
bioenergy. These close connections together form a stable water-energy-food mesosystem.
Strong and positive connections between microsystems are important foundations for the
optimization of the entire nexus symbiosis system’s development. Thirdly, macrosystem
refers to the total external symbiotic environment such as the social, economic, and natural
environment where all microsystems coexist. The adaptability of the microsystems to the
macrosystems and the sustainable security of the macrosystems themselves are important
guarantees for the stability and balance of the entire symbiosis system. The macrosystem is
the link and bridge for coordinating the water, energy, and food microsystem. Furthermore,
the macrosystem is the bridge for coordinating the water microsystem, energy microsys-
tem, and food microsystem. The more stable the outer systems are, the higher the level of
macrosystem security will be, and then the mesosystem formed by the symbiosis of water,
energy, and food will develop in the direction of healthy, stable, and safe interaction.
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F-W means that food acts on water, E-F means that energy acts on food, F-E means that food acts on energy.
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Based on the close connection between water, energy, and food, the relationship
between them is similar to the symbiosis and competition between populations. Specif-
ically, the symbiosis between water, energy, and food microsystem originates from the
distribution of water, energy, and food. Additionally, the symbiosis is manifested in the
tradeoffs and potential conflicts in the process of using and managing resources. Firstly,
in terms of a single resource, its allocation affects the relationship between the other two
resources. For example, water weights between energy and food in the following way:
The construction of a dam realizes the distribution of water in rivers between energy and
food production, which effectively increases energy supply. However, it poses a threat
to the river’s ecological environment and food production in the downstream area of
the dam [34–37]. Secondly, in terms of the two resources, there are tradeoffs between the
conversion, consumption, and transportation of the two resources, which conflicts with
future sustainable development. For instance, although the conversion between food and
bioenergy is conducive to environmental protection and increased energy supply, it poses
a threat to food security. Thirdly, in terms of the relationship between the mesosystem and
the macrosystem, the external symbiotic environment will directly worsen the symbiotic
relationship between water, energy, and food. For example, climate change will affect food
production, and urbanization will increase energy demand [38].

2.2. Assessment Indicator System

In this paper, we analyze the internal structure and operating mechanism of the
water-energy-food symbiosis system by constructing a water-energy-food symbiosis sys-
tem framework based on symbiosis theory. On this basis, we rationally integrate and
improve the existing pressure-state-response (PSR), drivers-pressure-engineering water
shortage-state-ecological basis-response (DPESBR), and other models according to the
specific characteristics and requirements of water, energy, and food security measure-
ment [39,40]. Then, this research establishes a water-energy-food symbiosis system DPSIR
structure model (hereinafter referred to as the WEF-DPSIR structure model), which includes
five subsystem structures: socioeconomic driving force subsystem (WEF-D), socioeconomic
pressure subsystem (WEF-P), microsystem situation subsystem (WEF-S), environmental
impact subsystem (WEF-I), and human social response subsystem (WEF-R). Afterward,
considering the principles of quantification, simplification, data availability, and consis-
tency of each indicator, we analyze assessment indicators in each subsystem to adjust
and optimize the indicators and form an overall DPSIR structure model. The specific
WEF-DPSIR structure and its substructures are shown in Figure 3.

In the WEF-DPSIR structural model, factors such as social progress, economic develop-
ment, technological innovation, and industrial structure optimization in the macrosystem
composed of society, economy, and ecology will generate driving forces. Under the action
of these driving forces, the macrosystem will produce certain pressures, such as social
pressure, economic pressure, and environmental pressure. Then, these pressures force
the basic state and symbiotic relationship state of the water-energy-food nexus to change.
The basic state includes water microsystem state, energy microsystem state, and food
microsystem state, reflecting the quantity, quality, structure, function, and carrying capacity
of the internal resources of the microsystem. What is more, the symbiotic relationship state
includes water-energy, water-food, and energy-food symbiotic relationships, reflecting
the degree of dependence of one microsystem on another. Then, changes in the state of
each microsystem have an impact on the natural environment in the macrosystem, such as
climate change, air pollution, and soil erosion. These impacts prompt humans to make
direct or indirect responses to alleviate the pressure on the macrosystem by improving the
state of the water-energy-food mesosystem.
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subsystem, WEF-I = environmental impact subsystem, WEF-R = human social response subsystem.

According to the water-energy-food symbiosis relationship and the WEF-DPSIR struc-
ture model, we extract elements from the socioeconomic driving force subsystem and
the socioeconomic pressure subsystem to construct an assessment indicator system for
measuring the social development level index, H, and the economic development level
index, I. Afterward, we extract elements from the microsystem state subsystem to construct
an assessment indicator system for measuring the water microsystem security index, W,
energy microsystem security index, E, and food microsystem security index, F. Then, we ex-
tract elements from the environmental impact subsystem and the human social response
subsystem to construct an assessment indicator system for measuring the ecological level
index, J. Finally, the water-energy-food symbiosis system assessment indicator system is
constructed by integrating six assessment indicator systems for measuring the above six
basic indexes, which is shown in Table 1.

2.3. Symbiotic Security Index Calculation
2.3.1. Basic Characteristic Index Calculation

Based on the standardization of relevant data, we adopt a CRITIC weighting method
that comprehensively determines the objective weight of indicators based on the conflict
between contrast intensity and assessment indicators to determine indicator weights [41].
The main steps are listed as follows.

Step 1: Perform dimensionless standardization on the original matrix, Y = (y ij

)
m×n

,

to eliminate the influence of the dimension and its unit.
Step 2: Calculate the contrast intensity of the evaluation indicators. The calculation for-

mula of the standard deviation of the j-th index is as follows: Sj =
√

∑n
i=1(x ij−xj)/(n− 1).

In the formula, xj= 1/n ∑n
i=1 xij.
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Step 3: Calculate the conflict between the evaluation indicators. The calculation
formula of the correlation coefficient is as follows: Rj = ∑n

i=1(1− r ij

)
. In the formula,

rij represents the correlation coefficient between evaluation indicators i and j.
Step 4: Calculate the information amount of the evaluation indicator. The calculation

formula is as follows: Ci= Sj ∑n
t=1(1− r rj) = Sj∗Rj. In the formula, ∑n

t=1(1− r rj

)
is the

conflicting quantitative index between the j-th indicator and the other indicators.
Step 5: Calculate the objective weight, ωj. The calculation formula is as follows:

ωj= Cj/ ∑m
j=1 Ci.

Table 1. Assessment indicator system of the water-energy-food symbiosis system.

Objective Index Criterion Indicator Attribute 1

Water-Energy-Food
Symbiotic Security

H

Social Driving Force Population Density H1 Negative
Urbanization Rate H2 Positive

Social Pressure
Domestic Water per Capita H3 Negative

Electricity Consumption per Capita H4 Negative
Food Consumption per Capita H5 Negative

I
Economic Driving Force

GDP Per Capita I1 Positive
Ratio of Tertiary Industry Production Value

to GDP I2 Positive

The Ratio of R&D Expenditure To GDP I3 Positive

Economic Pressure
Water Consumption per Unit GDP I4 Negative

Energy Consumption per Unit GDP I5 Negative

W Water State

Water Production Modulus W1 Positive
Water Resources Development and

Utilization Rate W2 Negative

Proportion of Water Quality Sections Above
Class III W3 Positive

Water Production Coefficient W4 Positive
Water Conservancy Project Storage

Capacity W5 Positive

E Energy State

Primary Energy Production E1 Positive
Power Generation Installed Capacity E2 Positive

Energy Self-Sufficiency Rate E3 Positive
Energy Market Liquidity E4 Positive

Energy Industry Investment E5 Positive

F Food State

Food Yield Index F1 Positive
Food Disaster Resistance Index F2 Positive

Food Sown Area F3 Positive
Effective Irrigation Index F4 Positive

Total Power of Agricultural Machinery F5 Positive

J

Impact on Environment Wastewater Discharge per Unit GDP J1 Negative
Waste Gas Emission per Unit GDP J2 Negative

Human Social Response

Afforestation Area J3 Positive
Ratio of Environmental Pollution Control to

GDP J4 Positive

Soil Erosion Control Area J5 Positive
1 The attribute indicates the nature of the indicator’s influence on the evaluation object. The positive indicator indicates that the larger the
value of the evaluation index, the higher the safety level; the negative indicator indicates that the smaller the value of the evaluation index,
the lower the safety level.

Then, six basic characteristic indexes of the water-energy-food symbiosis system are
calculated: water microsystem security level index, W(t), energy microsystem security
level index, E(t), food microsystem security level index, F(t), social development level
index, H(t), economic development level index, I(t), and ecological level index, J(t).
Among them, W(t), E(t) and F(t) reflect the internal security and stability of each mi-
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crosystem. In addition, the symbiotic environment index, SEI(t), for the macrosystem
reflects the security of the macrosystem on which water microsystem, energy microsystem,
and food microsystem co-exist and depend. Additionally, SEI(t) is an index to measure the
degree of adaptation and interactive effect between the mesosystem and the macrosystem,
which is calculated by the social development level index, H(t), the economic development
level index, I(t), and the ecological level index, J(t).

The final comprehensive assessment value of the six basic indexes is calculated by
using the standardized values of related indexes and the weight of each index in the assess-
ment indicator system of water-energy-food symbiosis system. The calculation formula,
which is a general formula that can be used to calculate the six basic indexes, is as follows:

Zi =
n

∑
j=1

(wkXij) (1)

where Z represents the social development level index, H, economic development level
index, I, water microsystem security index, W, energy microsystem security index, E,
food microsystem security index, F, and ecological level index J; wk is the weight of
each index and Xij is the value of the j-th index of the i-th region after non-dimensional
standardization.

2.3.2. Lotka–Volterra Symbiotic Evolution Model

Similar to the general symbiosis system, the water-energy-food symbiosis system has
the characteristics of multi-agent, interrelation, and resource restriction. First, the water-
energy-food symbiosis system has multiple subjects, that is, water, energy, and food form
different “populations”. Second, there are interrelationships and interactions between the
various subjects in the water-energy-food symbiosis system, that is, there is competition,
predation, cooperation, and other interrelationships between water, energy, and food.
Moreover, the external social-economic-ecology becomes the carrier of competition. Third,
the number and influence of different subjects in the water-energy-food symbiosis system
are inconsistent, which will also make them tradeoffs and potential conflicts in the process
of resource use and management, thereby forming a “quasi-ecological” process in the social-
economic-ecological external environment. In principle, the “quasi-ecological” process
conforms to the Lotka–Volterra symbiotic evolution model, which is a differential equation
dynamic system model of the interspecific symbiotic relationship between two species
populations constructed by the American ecologist A.J. Lotka and the Italian mathematician
V. Volterra [42].

Based on the above analysis, we establish the Lotka–Volterra symbiotic evolution
model of the water-energy-food symbiosis system (hereinafter referred to as the “WEF
L-V symbiotic evolution model”). Specifically, focusing on the pre-warning target wa-
ter microsystem, water security is measured from two different perspectives, namely,
water-energy symbiosis and water-food symbiosis. Then, we establish a water-energy
symbiotic evolution model (see Equation (2)) and a water-food symbiotic evolution model
(see Equation (3)):

dW(t)
dt = f1(W, E) = rW(t)W(t) SEI(t)−W(t)+SWE(t)E(t)

SEI(t)
dE(t)

dt = f2(W, E) = rE(t)E(t) SEI(t)−E(t)+SEW (t)W(t)
SEI(t)

(2)


dW(t)

dt = f1(W, F) = rW(t)W(t) SEI(t)−W(t)+SWF(t)F(t)
SEI(t)

dF(t)
dt = f2(W, F) = rF(t)F(t) SEI(t)−F(t)+SFW (t)W(t)

SEI(t)

(3)

where rW(t), rE(t), and rF(t) are the security and stability growth rates of the water
microsystem, energy microsystem, and food microsystem in the t-th year, respectively;
SWE(t) is the stress index of the water microsystem under the symbiotic effect of the energy
microsystem; SWF(t) is the stress index of the water microsystem under the symbiotic
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effect of the food microsystem; SEW(t) is the stress index of the energy microsystem
under the symbiotic effect of the water microsystem; and SFW(t) is the stress index of
the food microsystem under the symbiotic effect of the water microsystem. A positive
symbiotic stress index indicates promotion, whereas a negative symbiotic stress index
indicates inhibition.

2.3.3. Symbiotic Stress Index Calculation

In the water-energy-food symbiosis system, the living conditions of the water mi-
crosystem, the energy microsystem, and the food microsystem are the macrosystem that
includes the social, economic, and ecological environment. The three microsystems have
the characteristics of resource competition and, at the same time, there are mutual forces
among the three microsystems. The symbiotic stress index is used to reflect the coordination
of the interaction between the water, energy, and food microsystems, which is an indicator
to measure the resource allocation and utilization efficiency in the conversion process of
water-energy, water-food, and energy-food. In order to solve the symbiotic stress indexes,
SWE(t), SWF(t), SEW(t), and SFW(t), between any pair in the water-energy-food nexus,
the continuous variables W(t), E(t), and F(t) in Equations (2) and (3) need to be discretized
at t=k into Equations (4) and (5): W(k + 1)−W(k) = W(k)−W(k−1)

W(k−1) W(k) SEI(k)−W(k)+SWE(k)E(k)
SEI(k)

E(k + 1)− E(k) = E(k)−E(k−1)
E(k−1) E(k) SEI(k)−E(k)+SEW (k)W(k)

SEI(k)

(4)

 W(k + 1)−W(k) = W(k)−W(k−1)
W(k−1) W(k) SEI(k)−W(k)+SWF(k)F(k)

SEI(k)

F(k + 1)− F(k) = F(k)−F(k−1)
F(k−1) F(k) SEI(k)−F(k)+SFW (k)W(k)

SEI(k)

(5)

Then, symbiotic stress indexes are calculated accord to Equations (6)–(9) transformed
from Equations (4) and (5).

SWE(k) =

[
W(k+1)−W(k)

W(k)
W(k−1)

W(k)−W(k−1) − 1
]
SEI(k) + W(k)

E(k)
(6)

SWF(k) =

[
W(k+1)−W(k)

W(k)
W(k−1)

W(k)−W(k−1) − 1
]
SEI(k) + W(k)

F(k)
(7)

SEW(k) =

[
E(k+1)−E(k)

E(k)
E(k−1)

E(k)−E(k−1) − 1
]
SEI(k) + E(k)

W(k)
(8)

SFW(k) =

[
F(k+1)−F(k)

F(k)
F(k−1)

F(k)−F(k−1) − 1
]
SEI(k) + F(k)

W(k)
(9)

2.3.4. Symbiotic Index Calculation

In order to quantitatively measure the security of the water-energy-food symbiosis
system, we use the symbiotic stress index to study and construct the symbiotic index
between the water microsystem and the energy (or food) microsystem. Among them,
the symbiotic index, S1(k), between the water microsystem and the energy microsystem is
calculated according to Equation (10):

S1(k) =
SWE(k) + SEW(k)√

S2
WE(k) + S2

EW(k)
(10)
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Furthermore, the symbiotic index, S2(k), between the water microsystem and the food
microsystem is calculated according to Equation (11):

S2(k) =
SWF(k) + SFW(k)√

S2
WF(k) + S2

FW(k)
(11)

When SWE(k) and SEW(k) are not equal to 0, the symbiotic index, S1(k), reflects
the pros and cons of the symbiotic relationship between water microsystem and energy
microsystem. When SWF(k) and SFW(k) are not equal to 0, the symbiotic index, S2(k),
reflects the pros and cons of the symbiotic relationship between water microsystem and
food microsystem. At this time, all indexes have clear economic significance.

In this paper, the symbiotic stress indexes, SWE(t), SWF(t), SEW(t), and SFW(t),
and the symbiotic indexes, S1(k) and S2(k), are collectively called the symbiotic secu-
rity index for judging water security state and pre-warning level.

2.4. Judgement of Water Security State and Pre-Warning Level

In the water-energy-food symbiosis system, the water microsystem and the energy
(or food) microsystem are interrelated and interact with each other directly or indirectly
by occupying a common social-economic-ecological environment macrosystem, so as to
realize the coupling symbiosis. For the entire water-energy-food symbiosis system, once a
microsystem’s development oppresses or hinders the development of another microsystem,
it causes that other microsystem to be damaged or even decline. As a result, it will be
difficult for the entire system to achieve a balanced development, which also makes it
impossible to achieve mutually beneficial and symbiotic development between the water
microsystem and the energy (or food) microsystem. Under the guidance of this idea,
the model of symbiotic coordination relationship between water microsystem and energy
or food microsystem is designed on the basis of symbiotic stress indexes SWE(t), SWF(t),
SEW(t), and SFW(t). We can then judge whether the water-energy-food symbiosis system
will move toward a benign interaction and a common coordinated development direction
and judge the pattern of the symbiotic relationship between the water microsystem and the
energy (or food) microsystem according to the positive or negative symbiotic stress index.
The model of symbiotic coordination relationship between water microsystem and energy
or food microsystem is shown in Figure 4.
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Due to the high complexity of the water-energy-food symbiosis system involved in
water security, we cannot quantitatively judge the pros and cons of a symbiosis relationship
with a single symbiotic security index, and we need to introduce another symbiotic security
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index, symbiotic index Si(k), to comprehensively judge the water security state of the basin
from the perspective of water-energy-food symbiosis (see Figure 5 for details). According to
Equations (10) and (11), combined with the arithmetic mean and geometric mean inequality,
the value range of the symbiotic index Si(k) is

[
−
√

2,
√

2
]
. Moreover, the larger the value

of Si(k), the better the symbiotic state will be, and then the symbiotic relationship will tend
towards a mutually beneficial symbiotic state; the smaller the value of Si(k), the worse the
symbiotic state will be, and then the symbiotic relationship will tend towards a competition
state. When Si(k)= 1, the symbiotic relationship is in a favorable symbiotic state. At this
time, the contour of the symbiotic index Si(k)= 1 is the threshold line of symbiotic security,
which is the threshold for entering the symbiotic green security zone; when Si(k)= 0,
the symbiotic units are in a state of unprofitability. At this time, the contour of symbiotic
index Si(k)= 0 is the bottom line of symbiotic security, which is the threshold for entering
the safe zone. According to the model of symbiotic coordination relationship between
water microsystem and energy or food microsystem, the pattern that is only beneficial to the
water microsystem will become the pattern that is only beneficial to the water microsystem
strongly after entering the safe zone ( Si(k) ∈ (0,

√
2
)

, that is, SWN(k)+SNW(k) ≥ 0).
The pattern that is only harmful to the water microsystem will become the pattern that is
only harmful to the water microsystem weakly after entering the safe zone. The pattern that
is only beneficial to the water microsystem will become the pattern that is only beneficial
to the water microsystem weakly after entering the risk zone (Si(k) ∈ [−

√
2 , 0), that is,

SWN(k)+SNW(k) ≤ 0). The pattern that is only harmful to the water microsystem will
become the pattern that is only harmful to the water microsystem strongly after entering
the risk zone. What is more, whether the pattern that is only beneficial to the water
microsystem is strong or weak depends on the size relationship between the positive
effect of the other microsystem on the water microsystem and the negative effect of the
water microsystem on the other microsystem. It is strong if the former is greater than
the latter, otherwise it is weak. Similarly, whether the pattern that is only harmful to the
water microsystem is strong or weak depends on the size relationship between the positive
effect of the water microsystem on the other microsystem and the negative effect of the
other microsystem on the water microsystem. It is weak if the former is greater than the
latter, otherwise it is strong. What’s more, the judgment criteria of water security state
and pre-warning level from the perspective of water-energy symbiosis and water-food
symbiosis is shown in Table 2.
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TOP = transition orange pre-warning, TYP = transition yellow pre-warning, TBP = transition blue
pre-warning.
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Table 2. The judgment criteria of water security state and pre-warning level from the perspective of water-energy symbiosis
and water-food symbiosis.

SWE/WF (k) S1/2 (k) W-E/W-F
Symbiotic Relationship Security State Pre-Warning Level

(0, +∞)
[
1,
√

2
]

mutualism healthy GS

(0, +∞) [0, 1] only beneficial to water strongly sub-healthy BP
(0, +∞) [−1, 0] only beneficial to water weakly at risk YP
(−∞, 0)

(
−
√

2, −1
)

competition high-risk OP

(−∞, 0) (−1, 0) only harmful to water strongly in danger RP
(−∞, 0) [0, 1/3] only harmful to water weakly low recovery TOP
(−∞, 0) [1/3, 2/3] only harmful to water weakly middle recovery TYP
(−∞, 0) [2/3, 1] only harmful to water weakly high recovery TBP

3. Results
3.1. Study Area

The Yangtze River Basin refers to the vast area through which the mainstream and
tributaries of the Yangtze River flow. Furthermore, it spans three major economic zones
of eastern, central, and western China. The basin covers an area of about 1.8 million km2,
accounting for 18.8% of China’s land area (data from Yangtze River Water Conservancy
Net at http://www.cjw.gov.cn/zjzx/lypgk/ (accessed on 1 December 2020)). In addition,
the Yangtze River Basin is a resource axis represented by bulk agricultural products, mining
resources, and hydropower resources [43]. In terms of water resources, the Yangtze River
Basin is a strategic water source area for China’s water resources allocation, whose water
resources are relatively abundant. The average water resources of the Yangtze River Basin
for many years has been 995.9 billion m3, and the annual water supply of the Yangtze River
exceeds 200 billion m3. However, the distribution of time and space is uneven, and the
water supply projection is insufficient. What is more, there are many problems in the
development and utilization of water resources: The contradiction of water demand and
supply in some areas is prominent; engineering, resource, and water quality shortages
coexist; water use efficiency is not high and water resources use methods are extensive;
and the overall water quality compliance rate of the basin is low. In terms of energy,
the Yangtze River Basin is the main base for implementing the energy strategy and the key
area for the development of new energy in China, which is rich in hydropower and mineral
resources. Among them, the theoretical reserves of water resources in the Yangtze River
Basin reach 300,500 MW, and the annual power generation is 2.67 trillion kWh, accounting
for about 40% of the total in China. In terms of agriculture, the areas along the Yangtze
River have had superior agricultural resources since ancient times, which are China’s
important food production bases with concentrated arable land, sufficient irrigation water,
and fertile land. Specifically, the arable land area is 462 million mu and the grain output is
1.63 tons, accounting for 32.5% of the national grain output.

In this research, we study the water security pattern in the Yangtze River Basin from
the perspective of water-energy-food symbiosis, taking into account the social, economic,
and ecological environment of water resources development in the Yangtze River Basin.
Therefore, the scope of the study area is based on the Yangtze River Basin, including
11 provinces or municipalities: Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hu-
nan, Chongqing, Sichuan, Guizhou, and Yunnan (see Figure 6 for details). Among them,
Shanghai, Jiangsu, Zhejiang, and Anhui belong to the lower reaches of the Yangtze River
Basin; Jiangxi, Hubei, and Hunan belong to the middle reaches of the Yangtze River Basin;
and Chongqing, Sichuan, Guizhou, and Yunnan belong to the upper reaches of the Yangtze
River Basin.

http://www.cjw.gov.cn/zjzx/lypgk/
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3.2. Data Resource

Most of the data in this study come from the “China Statistical Yearbook” (2016–2018)
and the statistical yearbooks of various provinces and municipalities. Some data for the
water microsystem refer to the “China Environmental Statistical Yearbook” (2016–2018),
the “China Soil and Water Conservation Bulletin” (2016–2018), and the water resources bul-
letins and environmental status bulletins of various provinces and municipalities. Some data
of energy microsystem refer to the “China Energy Statistical Yearbook” (2016–2018). Some data
for the food microsystem refer to the “China Rural Statistical Yearbook” (2016–2018) and some
data for the natural environment refer to the “China Statistical Yearbook on Environment”
(2016–2018).

3.3. Calculation Results of Basic Characteristic Index

According to the above-mentioned water-energy-food symbiosis system assessment
indicator system based on the DPSIR model, the CRITIC method is used to give weight
to each selected index. To conserve space, the weight results calculated by the CRITIC
method are shown in Figure 7. We then used Equation (1) to calculate the water microsys-
tem security index, energy microsystem security index, food microsystem security index,
and symbiotic environment index for each province. Among them, the symbiotic envi-
ronment index consists of the social development index, economic development index,
and ecological index. The specific values of each basic characteristic index for each province
are shown in Figure 8.

3.4. Calculation Results of Symbiotic Security Index

On the basis of the above research, the six basic characteristic index values of 11 provin-
ces or municipalities in the Yangtze River Basin are substituted into the above-mentioned
related formulas for the calculation of symbiotic stress indexes and symbiotic indexes,
including SWE(t), SWF(t), SEW(t), SFW(t), S1(k), and S2(k). The calculation results are
shown in Tables 3 and 4.
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Table 3. Results of symbiotic security index from the perspective of water-energy symbiosis.

Regions SWE (K) SEW (K) S1 (K) Security State Pre-Warning Level

Shanghai 28.3346 −0.8757 0.9686 sub-healthy BP
Jiangsu −1.7486 −2.1125 −1.4080 high-risk OP

Zhejiang 5.2386 15.7371 1.2647 healthy GS
Anhui −0.6729 1.1959 0.3811 low recovery TOP
Jiangxi 0.3938 −1.1814 −0.6324 at risk YP
Hubei 0.6350 −0.1971 0.6587 sub-healthy BP
Hunan 1.7807 0.4805 1.2260 healthy GS

Chongqing 2.2673 −0.6502 0.6856 sub-healthy BP
Sichuan −51.0395 −0.0978 −1.0019 high-risk OP
Guizhou 14.9177 1.4878 1.0943 healthy GS
Yunnan 3.6501 1.2105 1.2639 healthy GS

Table 4. Results of symbiotic security index from the perspective of water-food symbiosis.

Regions SWF (K) SFW (K) S2 (K) Security State Pre-Warning Level

Shanghai 9.0816 −9.6591 −0.0436 at risk YP
Jiangsu −1.0085 0.6128 −0.3354 in danger RP

Zhejiang 4.7826 3.2051 1.3874 healthy GS
Anhui −0.5342 0.6347 0.1211 low recovery TOP
Jiangxi 0.4307 −0.7468 −0.3667 at risk YP
Hubei 0.5445 0.1940 1.2776 healthy GS
Hunan 0.9943 −0.3031 0.6649 sub-healthy BP

Chongqing 4.1377 −0.9262 0.7574 sub-healthy BP
Sichuan −83.9029 −0.6971 −1.0083 high-risk OP
Guizhou 46.4745 −0.2496 0.9946 sub-healthy BP
Yunnan 8.0129 −0.3139 0.9601 sub-healthy BP
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3.5. Evaluation Results of Water Security State and Pre-Warning Levels

According to the judgment criteria of the water security situation and pre-warning
levels from the perspective of water-energy-food symbiosis, the water security levels and
pre-warning levels of 11 provinces or municipalities in the Yangtze River Basin are defined.
The specific results are shown in Tables 3 and 4. The spatial distribution of water security
is as follows (see Figure 9 for details): Firstly, the state of water security in the lower
reaches of the Yangtze River Basin is complicated. From the perspective of water-energy-
food symbiosis, water security of Zhejiang is the best and is in a state of green security;
Shanghai’s water microsystem is positively affected by the symbiotic stress of energy and
food systems; Anhui’s water security is in low recovery state; and the state of water security
in Jiangsu Province is the worst. From the perspective of water-food symbiosis, the water
security state of Jiangsu Province is in a danger state. Secondly, the water microsystems of
all three provinces in the middle reaches of the Yangtze River are all positively affected by
the symbiotic stress of energy and food systems, and the overall water security is relatively
good. Among them, the water security state of Jiangxi Province is classed as at risk, and the
water resources security level of Hubei and Hunan are healthy or sub-healthy. Thirdly,
in the upper reaches of the Yangtze River Basin, Chongqing, Guizhou, and Yunnan have
good states of water security; their pre-warning levels of water security are healthy or
sub-healthy. However, Sichuan Province has a poorer state of water security. Sichuan’s
water security state is classed as at risk, and its pre-warning level is yellow. In summary,
the state of water security in the middle and upper reaches of the Yangtze River Basin is
better than that in the lower reaches.
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4. Discussion

In this section, we conduct a further analysis of the region’s water security state
and security pre-warning level, discuss the reasons for the emergence of pre-warning,
and carry out accurate pre-warning and effective regulation of water security in various
provinces and municipalities by using an indicator retrospective method. According to
the judgment criteria of water security state and pre-warning level from the perspective
of water-energy-food symbiosis, this section discusses the issues from the following six
perspectives: green security area analysis, blue pre-warning area analysis, yellow pre-
warning area analysis, orange pre-warning area analysis, red pre-warning area analysis,
and transitional rehabilitation area analysis.

4.1. Green Security Area Analysis

The water-energy-food symbiotic pattern of orange pre-warning area is a mutualism
pattern in which the water microsystem and energy or food microsystem promote each
other. Specifically, when they are in symbiosis, each party can get benefits from the other,
and the two parties are in a state of benign interaction. Moreover, the two parties support
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each other, and they develop together to achieve a win-win situation. According to the eval-
uation results of water security state and pre-warning levels, Zhejiang, Hunan, Guizhou,
and Yunnan belong to the green security pattern from the perspective of water-energy
symbiosis. Furthermore, Zhejiang and Hubei belong to this pattern from the perspective of
water-food symbiosis. Among them, the water security state of Zhejiang is green security
in any perspective.

From the perspective of water-energy symbiosis, provinces such as Guizhou and
Yunnan, whose water microsystems are in a green security state, are located in the main
hydropower energy enrichment areas of China. In these areas, the water system is stable,
the capacity of water conservancy projects is strong, the energy resources are abundant,
and the self-sufficiency rate is high (see Figure 10 for details). In particular, because of the
effective development and utilization of superior resources, these regions’ water resource
and energy conversion rates are high, and the coordination of water system and energy
system is better than other provinces. From the perspective of water-food symbiosis,
Zhejiang’s water microsystem is in a green security state. Zhejiang is a province that is
located in the Yangtze River Delta with a more suitable climate and is nourished by eight
major water systems, including the Qiantang River. In particular, the water microsystem
and the food microsystem in this region have good symbiotic coordination. What is more,
the two systems have a benign interaction, mutual promotion, and common development.
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4.2. Blue Pre-Warning Area Analysis

The water-energy-food symbiotic pattern of blue pre-warning areas is the pattern that
is only strongly beneficial to the water microsystem but harmful to the energy or food
microsystem. Specifically, although the energy or food microsystem is restrained by the
water microsystem, the beneficial value of the water microsystem exceeds the harmful
value of the energy or food microsystem, so that the overall symbiosis system is in a
security symbiosis state. At this time, water security is relatively healthy. According to
the evaluation results of water security state and pre-warning levels, Shanghai, Hubei,
and Chongqing belong to this pattern from the perspective of water-energy symbiosis.
Furthermore, Hunan, Chongqing, Guizhou, and Yunnan belong to this pattern from the
perspective of water-food symbiosis.

Combining the above analysis of green security areas, it can be found that the water
security level of Shanghai in the Yangtze River Delta region is either healthy or sub-healthy
from the perspective of water-energy and water-food symbiosis. Shanghai, in the Yangtze
River Delta region, pays more attention to the development of regional synergy economy
and park economy to enhance industrial agglomeration and scale effect. Moreover, the in-
dustrial structure is continuously optimized, and the proportion of tertiary industry keeps
increasing, which means that resource utilization efficiency is correspondingly improved.
At the same time, this region’s resource system conversion rate is high and resource system
has good coordination. Moreover, the added value generated by resource consumption is
high, which makes the water environment pollution caused by energy-related and food-
related production relatively small. Based on the above reasons, the water microsystems of
provinces or municipalities in this region are in a healthy or sub-healthy state.

From the perspective of water-food symbiosis and from the perspective of geograph-
ical distribution, the provinces whose water security levels are at risk are mainly con-
centrated in the upper reaches of the Yangtze River. The topography of this area is rela-
tively complex, almost all of it consisting of plateau and mountainous areas. Chongqing’s,
Guizhou’s, and Yunnan’s utilization rates of water resources are 12.81%, 9.41%, and 7.20%,
respectively, ranking them last in the Yangtze River Basin provinces, and far behind the
provinces in the middle and lower reaches of the Yangtze River. In addition, the effective
irrigation index is 0.1918, 0.1944, and 0.2526, respectively, which lags behind the Yangtze
River Basin, as shown in Figure 11. By the index retrospective method, it can be seen that,
although the total amount of water resources in the upper reaches of the Yangtze River
are abundant, the level of water resource utilization is insufficient, and there are obvious
inefficiencies and wastes. In addition, water conservancy facilities are incomplete, and wa-
ter security for grain planting is low. As a result, the actual utilization of water for grain
planting still cannot meet the demand for grain production, and the development of grain
production is still restricted and inhibited by the input of water resources. In summary,
the water security in the region is in security state, but the food microsystem is restrained
by the water microsystem. Although the food microsystem has a certain damage value,
the profit value of the water microsystem exceeds the damage value of the energy or food
microsystem, so that the symbiotic system of water and food is in a state of safe symbiosis.

4.3. Yellow Pre-Warning Area Analysis

The water-energy-food symbiotic pattern of yellow pre-warning areas is the pattern
that is only weakly beneficial to the water microsystem but harmful to the energy or food
microsystem. Specifically, although the water microsystem is in healthy and positive
development state, the energy or food microsystem is under the negative force of the water
microsystem; the harmful value of the water microsystem exceeds the beneficial value of
the energy or food microsystem so that the symbiotic index has dropped to a negative value.
According to the evaluation results of water security state and pre-warning levels, Jiangxi
belongs to this pattern from the perspective of water-energy symbiosis. Furthermore,
Shanghai and Jiangxi belong to this pattern from the perspective of water-food symbiosis.
Among them, the water security state of Jiangxi is classed as at risk in any perspective.
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Taking Jiangxi Province as an example, by the index retrospective method, it can be
seen that the ratio of primary and secondary industry production value to GDP in Jiangxi
Province is 0.5803, which is second only to Anhui Province and ranks second in the Yangtze
River Basin. It can be seen that the proportion of the primary and secondary industries
in Jiangxi Province is still relatively large. In addition, Jiangxi Province is rich in mineral
resources and has a relatively high degree of supporting mineral resources. What is more,
Jiangxi Province is an important heavy industrial base with many high water-consuming
and high-polluting industries, and industrial production has increased demand for water
resources. However, due to the inefficient use of water resources and the low storage
capacity of water conservancy projects, the energy microsystem is restrained by the water
resources system. Furthermore, the damage value of the energy microsystem is so large
that the symbiotic index of the water microsystem and the energy microsystem in this
region is negative.

4.4. Orange Pre-Warning Area Analysis

The water-energy-food symbiotic pattern of orange pre-warning area is a competition
pattern in which the water microsystem and energy or food microsystem compete with
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each other. Specifically, when the water microsystem and the energy or food microsystem
are in symbiosis, neither party can get benefits from the other and the two parties are in
a competitive relationship with each other. Moreover, the two parties inhibit each other,
harm each other’s interests, and ultimately lose both. According to the evaluation results
of water security state and pre-warning levels, Jiangsu and Sichuan belong to this model
from the water-energy symbiotic perspective. Furthermore, only Sichuan belongs to this
pattern from the perspective of water-food symbiosis. Among them, the water security
level of Sichuan is high-risk level, and their pre-warning levels are all orange from any
perspective. In terms of water resources, as China’s densely populated and economically
developed provinces, these provinces have a higher demand for water-related products
and services, compared with other provinces in the Yangtze River Basin. Furthermore,
energy industry and food planting in these provinces also require a large amount of water
resources. Considering the limited amount of water resources, high water supply pressure
of the water microsystem restricts the water use for energy and food production in these
provinces, so that the water microsystem has a certain inhibitory effect on the energy
microsystem and the food microsystem.

4.5. Red Pre-Warning Area Analysis

The water-energy-food symbiotic pattern of red pre-warning areas is the pattern that
is only strongly harmful to the water microsystem but beneficial to the energy or food
microsystem. Specifically, although the energy or food microsystem is in a healthy and
positive development state, the harmful value of the water microsystem has exceeded the
beneficial value of the energy or food system, so that the overall symbiosis system has
shown a negative development. According to the evaluation results of water security state
and pre-warning levels, only Jiangsu Province belongs to this pattern from the perspective
of water-food symbiosis. As very densely populated provinces in China, in order to meet
the needs of local residents for food-related products and services, Jiangsu Province not
only needs to consume a lot of water resources in the process of food production, but also
requires a lot of energy products, such as chemical fertilizers, to ensure the quality of food,
which increases the pressure on water supply and makes the pollution of farmland tail
water to the water environment more serious. It can be seen that the energy microsystems
of these provinces negatively inhibit the development of water microsystems.

4.6. Transitional Rehabilitation Area Analysis

The water-energy-food symbiotic pattern of transitional rehabilitation area is the
pattern that is only weakly harmful to the water microsystem but beneficial to the energy
or food microsystem. Specifically, although the energy or food microsystem inhibits the
water microsystem, considering that there is a certain complementarity between the water
microsystem and the energy or food microsystem in a specific time and space in the short
term, the damage value of the water microsystem does not exceed the beneficial value of
the energy or food microsystem. As a result, the symbiosis system composed of water,
energy, and food is in a green security state, and water security has not broken the bottom
line of security. Moreover, if the restraining effect of the energy or food microsystem on
the water microsystem is weakened and turned to gain state, then the water security of
the region can enter green security state. According to the evaluation results of water
security state and pre-warning levels, only Anhui Province belongs to this pattern from
the water-energy symbiotic perspective. As an important province in the hinterland of the
Yangtze River Delta, Anhui Province owns many large and important industrial enterprise
groups in the field of coal, non-ferrous metals, and steel. Comparing the energy data of
each province in the Yangtze River Basin, it can be seen that the primary energy production
in Anhui Province ranks only second to the major energy provinces in the upper reaches
of the Yangtze River, and it is far ahead in the middle and lower reaches of the Yangtze
River, which shows the depth of its heavy industrialization. In the integration process
of the Yangtze River Delta, with the further deepening of its heavy industrialization,
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the continuous transfer of the low-end and high-energy-consuming industrial chain from
Jiangsu, Zhejiang, and Shanghai has increased the consumption of water resources in Anhui
Province, which is a raw material supply area. In addition, the efficiency of water resources
utilization is not high, and pollution is increasing in the process of energy production.
Therefore, the water microsystem of Anhui Province is more obviously restrained by
the energy system. However, due to the mutual complementarity between the water
microsystem and the energy microsystem in the short term, water security has not broken
the bottom line.

5. Conclusions

In this paper, firstly, we introduced the “symbiosis theory” into the water-energy-food
nexus to build a regional water-energy-food nexus symbiosis framework. Secondly, we es-
tablished a WEF L-V symbiotic evolution model on the basis of the method of indicator-
index coupling. Thirdly, we calculated the symbiotic security index including symbiotic
stress index and symbiotic index. Fourthly, we judged the water security state and pre-
warning level from the perspective of water-energy-food symbiosis. Finally, the causes of
water security problems were analyzed by the inverse decoupling of indictor-index.

Many conclusions can be drawn from our research. Firstly, from the perspective of the
spatial distribution of water security, the state of water security in the middle and upper
reaches of the Yangtze River Basin is better than that in the lower reaches. Specifically,
the water resources security levels in the upstream hydropower energy enrichment re-
gions are generally high. Most of the provinces in the upper reaches of the Yangtze River
Basin have good states of water security and their pre-warning levels of water security are
healthy or sub-healthy. Moreover, the water resources systems of all three provinces in the
middle reaches of the Yangtze River are all positively affected by the symbiotic stress of
energy and food systems, and the overall water security is relatively good. By contrast,
the state of water security in the lower reaches of the Yangtze River Basin is complicated.
The level of water security varies across provinces and municipalities, and even the water
resources systems of certain downstream socio-economically developed provinces have
certain risks. Secondly, through the backtracking of the indicators, we can find the rea-
sons for the different water security states of various regions in the Yangtze River Basin.
The developed provinces in the lower reaches of the Yangtze River pay attention to regional
coordinated development, with a higher water resource system conversion rate and better
resource coordination. Some major industrial provinces in the middle and lower reaches
of the Yangtze River have more energy-intensive and highly polluting energy industries
and are very densely populated. Additionally, the demand for water resources is large,
the utilization efficiency is low, and the environmental pollution is serious, which leads
to a certain degree of security problem in the water microsystem. There is a stable water
microsystem, strong water conservancy projects with strong storage capacity, abundant
energy resources, and high self-sufficiency rates in the provinces of the lower reaches of
the Yangtze River. What is more, the effective development and utilization of superior
resources can make the region’s water resources and energy coordinated better. However,
in some downstream provinces, the effective irrigation index is low, and the utilization rate
of water resources is not high. Additionally, there are obvious inefficiencies and wastes in
the use of water resources in the process of food production. Therefore, there are certain
hidden dangers in water security in these provinces.

In this paper, there are possible improvements, characteristics, and advantages in
terms of theoretical framework, measurement threshold, measurement scale, judgment
criteria, and cause analysis. Firstly, from the perspective of theoretical framework and
measurement, we shift from the “single resource” security research of water resources
to the “multi-resource” collaborative security of water-energy-food by introducing the
ecological symbiosis theory and the Lotka–Volterra symbiotic evolution model into the re-
search of water-energy-food symbiosis for studying regional water resources security state
and pre-warning levels from the perspective of water-energy-food symbiosis. Secondly,
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in terms of measuring scale and judgment standard, traditional methods use weighted
summation methods to synthesize comprehensive evaluation values for water resources
related indicators, which used to be the only judgment standard. The method mentioned
above is likely to result in the bad consequence that some areas whose water microsystems
have not actually reached the level of green security can also get high comprehensive
evaluation values [44]. In this paper, the symbiotic security index calculated by the WEF
L-V symbiotic evolution model was used to obtain the judgment standard of security
state and pre-warning level to judge the security state of the regional water microsystem.
Thirdly, in terms of cause analysis, the WEF L-V symbiotic evolution model integrates the
index system method and the characteristic indicator method, which has the advantage of
effectively tracing the cause. The original value of each individual indicator can be traced
back by decoupling to deeply analyze the specific causes of water security problems.

In this paper, the WEF L-V symbiotic evolution model was used to measure the
symbiotic security index to judge the water security state and pre-warning level of the
Yangtze River Basin. The research focused on the study of water security in the basin from
the perspective of water-energy-food symbiosis. In order to conduct a specific empirical
analysis of the internal operation mechanism of the water-energy-food symbiosis system,
we will further apply ecosystem theory, symbiosis theory, and evolutionary game theory to
analyze the operating mechanism of the water-energy-food symbiosis system, discuss the
stability of the water-energy-food symbiosis system, and study the co-evolution strategy of
the water-energy-food symbiosis system.
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