Polycyclic Aromatic Hydrocarbons in Sediments from Typical Algae, Macrophyte Lake Bay and Adjoining River of Taihu Lake, China: Distribution, Sources, and Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Sample Preparation and Analysis
2.3. Quality Assurance and Quality Control
2.4. Statistical Analysis
3. Results and Discussion
3.1. Level and Distribution of PAHs in Sediments
- (1)
- two-ring PAHs (Naphthalene, Nap);
- (2)
- three-ring PAHs (Any, Ana, Flu, Phe, Ant);
- (3)
- four-ring PAHs (Flua, Pyr, BaA, Chr);
- (4)
- five-ring PAHs (BbF, BkF, BaP, DbA);
- (5)
- six-ring PAHs (InP, BghiP) [45].
3.2. Source Appointment of PAHs in Surface Sediments
3.2.1. Source Identification by Isomer Ratios
3.2.2. Principal Component Analysis
3.3. Risk Assessments of PAHs in Surface Sediments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, Z.; Song, N.; Wang, C.; Jiang, H. Functional potential and assembly of microbes from sediments in a lake bay and adjoining river ecosystem for polycyclic aromatic hydrocarbon biodegradation. Environ. Microbiol. 2020. [Google Scholar] [CrossRef]
- Yan, Z.; Hao, Z.; Wu, H.; Jiang, H.; Yang, M.; Wang, C. Co-occurrence patterns of the microbial community in polycyclic aromatic hydrocarbon-contaminated riverine sediments. J. Hazard. Mater. 2019, 367, 99–108. [Google Scholar] [CrossRef]
- Yan, Z.; He, Y.; Cai, H.; Van Nostrand, J.D.; He, Z.; Zhou, J.; Krumholz, L.R.; Jiang, H.-L. Interconnection of key microbial functional genes for enhanced benzo [a] pyrene biodegradation in sediments by microbial electrochemistry. Environ. Sci. Technol. 2017, 51, 8519–8529. [Google Scholar] [CrossRef] [Green Version]
- Nowacka, A.; Włodarczyk-Makuła, M. Monitoring of polycyclic aromatic hydrocarbons in water during preparation processes. Polycycl. Aromat. Compd. 2013, 33, 430–450. [Google Scholar] [CrossRef]
- DeBruyn, J.M.; Mead, T.J.; Wilhelm, S.W.; Sayler, G.S. PAH biodegradative genotypes in Lake Erie sediments: Evidence for broad geographical distribution of pyrene-degrading mycobacteria. Environ. Sci. Technol. 2009, 43, 3467–3473. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Zhao, S.; Shi, Y.; Zhu, L.; Wang, C.; Sharma, V.K. Transformation of polycyclic aromatic hydrocarbons and formation of environmentally persistent free radicals on modified montmorillonite: The role of surface metal ions and polycyclic aromatic hydrocarbon molecular properties. Environ. Sci. Technol. 2018, 52, 5725–5733. [Google Scholar]
- Haritash, A.; Kaushik, C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, L.; Wu, J. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediments from lakes along the middle-lower reaches of the Yangtze River and the Huaihe River of China. Limnol. Oceanogr. 2016, 61, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xia, K.; Waigi, M.G.; Gao, Y.; Odinga, E.S.; Ling, W.; Liu, J. Application of biochar to soils may result in plant contamination and human cancer risk due to exposure of polycyclic aromatic hydrocarbons. Environ. Int. 2018, 121, 169–177. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, Q.; Yan, Z.; Jiang, H. Novel magnetic loofah sponge biochar enhancing microbial responses for the remediation of polycyclic aromatic hydrocarbons-contaminated sediment. J. Hazard. Mater. 2021, 401, 123859. [Google Scholar] [CrossRef]
- Han, J.; Liang, Y.; Zhao, B.; Wang, Y.; Xing, F.; Qin, L. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis. Environ. Pollut. 2019, 251, 312–327. [Google Scholar] [CrossRef]
- Yan, Z.; Jiang, H.; Li, X.; Shi, Y. Accelerated removal of pyrene and benzo[a]pyrene in freshwater sediments with amendment of cyanobacteria-derived organic matter. J. Hazard. Mater. 2014, 272, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Xu, H.; Yan, Z.; Yang, T.; Wang, C.; Jiang, H.-L. Improved lignin degradation through distinct microbial community in subsurface sediments of one eutrophic lake. Renew. Energy 2019, 138, 861–869. [Google Scholar] [CrossRef]
- Song, N.; Yan, Z.-S.; Cai, H.-Y.; Jiang, H.-L. Effect of temperature on submerged macrophyte litter decomposition within sediments from a large shallow and subtropical freshwater lake. Hydrobiol. 2013, 714, 131–144. [Google Scholar] [CrossRef]
- Tao, Y.; Li, W.; Xue, B.; Zhong, J.; Yao, S.; Wu, Q. Different effects of copper (II), cadmium (II) and phosphate on the sorption of phenanthrene on the biomass of cyanobacteria. J. Hazard. Mater. 2013, 261, 21–28. [Google Scholar] [CrossRef]
- Dachs, J.; Eisenreich, S.J.; Hoff, R.M. Influence of eutrophication on air–water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants. Environ. Sci. Technol. 2000, 34, 1095–1102. [Google Scholar] [CrossRef]
- Jouanneau, Y.; Willison, J.C.; Meyer, C.; Krivobok, S.; Chevron, N.; Besombes, J.-L.; Blake, G. Stimulation of pyrene mineralization in freshwater sediments by bacterial and plant bioaugmentation. Environ. Sci. Technol. 2005, 39, 5729–5735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Z.; Jiang, H.; Cai, H.; Zhou, Y.; Krumholz, L.R. Complex interactions between the macrophyte Acorus calamus and microbial fuel cells during pyrene and benzo[a]pyrene degradation in sediments. Sci. Rep. 2015, 5, 10709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Z.; Zhang, H.; Wu, H.; Yang, M.; Wang, S. Occurrence and removal of polycyclic aromatic hydrocarbons in real textile dyeing wastewater treatment process. Desalin. Water Treat. 2016, 57, 22564–22572. [Google Scholar]
- Wlodarczyk-Makula, M. The loads of PAHs in wastewater and sewage sludge of municipal treatment plant. Polycycl. Aromat. Compd. 2005, 25, 183–194. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, X.; Lu, S.; Zhang, T.; Jin, B.; Wang, Q.; Tang, Z.; Liu, Y.; Guo, X.; Zhou, J. A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China. Sci. Total Environ. 2019, 651, 2497–2506. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Yao, S.; Xue, B.; Deng, J.; Wang, X.; Feng, M.; Hu, W. Polycyclic aromatic hydrocarbons in surface sediments from drinking water sources of Taihu Lake, China: Sources, partitioning and toxicological risk. J. Environ. Monit. 2010, 12, 2282–2289. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Liang, B.; Liu, X.; Liu, X.; Wang, J.; Liu, F.; Cui, B. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from the Haihe River, a typical polluted urban river in Northern China. Environ. Sci. Pollut. Res. 2017, 24, 17153–17165. [Google Scholar] [CrossRef]
- Li, C.; Huo, S.; Yu, Z.; Xi, B.; Zeng, X.; Wu, F. Spatial distribution, potential risk assessment, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Lake Chaohu, China. Environ. Sci. Pollut. Res. 2014, 21, 12028–12039. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, C.-S.; Xu, J.; Tian, Y.-Z.; Shi, G.-L.; Feng, Y.-C. Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: Comparison of three receptor models. Water Res. 2012, 46, 3065–3073. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, L.; Deng, J.; Wu, J. The potential effects of phytoplankton on the occurrence of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in water from Lake Taihu, China. Environ. Sci. Process. Impacts 2015, 17, 1150–1156. [Google Scholar] [CrossRef]
- Tao, Y.; Yu, J.; Lei, G.; Xue, B.; Zhang, F.; Yao, S. Indirect influence of eutrophication on air–water exchange fluxes, sinking fluxes, and occurrence of polycyclic aromatic hydrocarbons. Water Res. 2017, 122, 512–525. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Y.; Wu, H.; Yang, M.; Zhang, H.; Hao, Z.; Jiang, H. Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo [a] pyrene biodegradation. RSC Adv. 2017, 7, 46690–46698. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Wang, B.; Wang, D.; Li, X.; Huang, B.; Hu, P.; Zhang, L.; Pan, X. Environmental Behavior of PAHs in Dianchi Lake Distributions, Sources and Risk Assessment of Polycyclic Aromatic Hydrocarbons in Surface Sediments from Dianchi Lake, China. Int. J. Environ. Res. 2014, 8, 317–328. [Google Scholar]
- Ren, C.; Wu, Y.; Zhang, S.; Wu, L.-L.; Liang, X.-G.; Chen, T.-H.; Zhu, C.-Z.; Sojinu, S.O.; Wang, J.-Z. PAHs in sediment cores at main river estuaries of Chaohu Lake: Implication for the change of local anthropogenic activities. Environ. Sci. Pollut. Res. 2015, 22, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-L.; Gao, H.; Zhu, C.; Li, G.-G.; Yang, F.; Gong, Z.-Y.; Lian, J. Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments of the Nansi Lake, China. Environ. Monit. Assess. 2009, 154, 469. [Google Scholar] [CrossRef]
- White, J.; Triplett, T. Polycyclic aromatic hydrocarbons (PAHs) in the sediments and fish of the Mill River, New Haven, Connecticut, USA. Bull. Environ. Contam. Toxicol. 2002, 68, 104–110. [Google Scholar] [CrossRef]
- Zakaria, M.P.; Takada, H.; Tsutsumi, S.; Ohno, K.; Yamada, J.; Kouno, E.; Kumata, H. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: A widespread input of petrogenic PAHs. Environ. Sci. Technol. 2002, 36, 1907–1918. [Google Scholar] [CrossRef]
- Liu, F.; Liu, J.; Chen, Q.; Wang, B.; Cao, Z. Pollution characteristics and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the southern part of the Haihe River system in China. Chin. Sci. Bull. 2013, 58, 3348–3356. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Zhang, E.; Lin, Q.; Wang, R.; Liu, E. Sources appointment and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Erhai Lake, a low-latitude and high-altitude lake in southwest China. Environ. Sci. Pollut. Res. 2016, 23, 4430–4441. [Google Scholar]
- Bai, Y.; Meng, W.; Xu, J.; Zhang, Y.; Guo, C.; Lv, J.; Wan, J. Occurrence, distribution, environmental risk assessment and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Liaohe River Basin, China. Bull. Environ. Contam. Toxicol. 2014, 93, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Luo, X.; Li, F.; Dai, J.; Guo, J.; Chen, S.; Hong, C.; Mai, B.; Xu, M. Organochlorine compounds and polycyclic aromatic hydrocarbons in surface sediment from Baiyangdian Lake, North China: Concentrations, sources profiles and potential risk. J. Environ. Sci. 2010, 22, 176–183. [Google Scholar] [CrossRef]
- Ko, F.-C.; Baker, J.; Fang, M.-D.; Lee, C.-L. Composition and distribution of polycyclic aromatic hydrocarbons in the surface sediments from the Susquehanna River. Chemosphere 2007, 66, 277–285. [Google Scholar] [CrossRef]
- Hale, S.E.; Meynet, P.; Davenport, R.J.; Jones, D.M.; Werner, D. Changes in polycyclic aromatic hydrocarbon availability in River Tyne sediment following bioremediation treatments or activated carbon amendment. Water Res. 2010, 44, 4529–4536. [Google Scholar] [CrossRef] [PubMed]
- Barakat, A.O.; Mostafa, A.; El-Sayed, N.B.; Wade, T.L.; Sweet, S.T. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Lake Manzala, Egypt. Soil Sediment. Contam. Int. J. 2013, 22, 315–331. [Google Scholar] [CrossRef]
- Oyo-Ita, O.E.; Offem, J.O.; Ekpo, B.O.; Adie, P.A. Anthropogenic PAHs in mangrove sediments of the Calabar River, SE Niger Delta, Nigeria. Appl. Geochem. 2013, 28, 212–219. [Google Scholar] [CrossRef]
- Pozo, K.; Perra, G.; Menchi, V.; Urrutia, R.; Parra, O.; Rudolph, A.; Focardi, S. Levels and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Lenga Estuary, central Chile. Mar. Pollut. Bull. 2011, 62, 1572–1576. [Google Scholar] [CrossRef] [PubMed]
- Arias, A.H.; Vazquez-Botello, A.; Tombesi, N.; Ponce-Vélez, G.; Freije, H.; Marcovecchio, J. Presence, distribution, and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahía Blanca estuary, Argentina. Environ. Monit. Assess. 2010, 160, 301. [Google Scholar] [CrossRef]
- Baumard, P.; Budzinski, H.; Garrigues, P. Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea. Environ. Toxicol. Chem. Int. J. 1998, 17, 765–776. [Google Scholar] [CrossRef]
- Sanders, M.; Sivertsen, S.; Scott, G. Origin and distribution of polycyclic aromatic hydrocarbons in surficial sediments from the Savannah River. Arch. Environ. Contam. Toxicol. 2002, 43, 438–448. [Google Scholar] [CrossRef]
- Qian, X.; Liang, B.; Fu, W.; Liu, X.; Cui, B. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the intertidal zone of Bohai Bay, Northeast China: Spatial distribution, composition, sources and ecological risk assessment. Mar. Pollut. Bull. 2016, 112, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Li, X.G.; Li, S.Y.; Ma, Y.Y. Source apportionment of polycyclic aromatic hydrocarbons in surface sediment of mud areas in the East China Sea using diagnostic ratios and factor analysis. Mar. Pollut. Bull. 2013, 70, 266–273. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Z.; Niu, J.; Wang, J. Characterization, ecological risk assessment and source diagnostics of polycyclic aromatic hydrocarbons in water column of the Yellow River Delta, one of the most plenty biodiversity zones in the world. J. Hazard. Mater. 2009, 169, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Tobiszewski, M.; Namieśnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Jiang, Y.; Li, Q.; Cai, Y.; Yin, H.; Zhang, L.; Zhang, J. Spatial correlation analysis of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediments between Taihu Lake and its tributary rivers. Ecotoxicol. Environ. Saf. 2017, 142, 117–128. [Google Scholar]
- Iqbal, J.; Overton, E.B.; Gisclair, D. Sources of polycyclic aromatic hydrocarbons in Louisiana Rivers and coastal environments: Principal components analysis. Environ. Forensics 2008, 9, 310–319. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, J.-Z.; Liang, B.; Zeng, E.Y. Occurrence of polycyclic aromatic hydrocarbons in surface sediments of a highly urbanized river system with special reference to energy consumption patterns. Environ. Pollut. 2011, 159, 1510–1515. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, C.; Shen, Z.; Zhang, D.; Crittenden, J.C. Spatial variation and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the Yangtze Estuary, China. Environ. Sci. Process. Impacts 2015, 17, 1340–1347. [Google Scholar] [CrossRef]
- Ribeiro, J.; Silva, T.; Mendonca Filho, J.G.; Flores, D. Polycyclic aromatic hydrocarbons (PAHs) in burning and non-burning coal waste piles. J. Hazard. Mater. 2012, 199, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.R.; Martins, D.A.; Morais, P.C.; Oliveira, A.H.; Gama, A.F.; Nascimento, R.F.; Choi-Lima, K.F.; Moreira, L.B.; Abessa, D.M.; Nelson, R.K. Influence of anthropogenic activities and risk assessment on protected mangrove forest using traditional and emerging molecular markers (Ceará coast, northeastern Brazil). Sci. Total Environ. 2019, 656, 877–888. [Google Scholar] [CrossRef]
- Long, E.; Ingersoll, C.; MacDonald, D. Calculation and uses of mean sediment quality guideline quotients: A critical review. Environ. Sci. Technol. 2006, 40, 1726–1736. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, X.; Liu, M.; Li, X.; Wang, Q.; Zhu, J.; Qadeer, A. Distribution, sources and ecological risk of polycyclic aromatic hydrocarbons in the estuarine–coastal sediments in the East China Sea. Environ. Sci. Process. Impacts 2017, 19, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Long, E.R.; MacDonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Lin, B.-L.; Meng, Y.; Kamo, M.; Naito, W. An all-in-one tool for multipurpose ecological risk assessment and management (MeRAM) of chemical substances in aquatic environment. Chemosphere 2020, 268, 128826. [Google Scholar] [CrossRef]
- Ancione, G.; Lisi, R.; Milazzo, M.F. Human health risk associated with emissions of volatile organic compounds due to the ship-loading of hydrocarbons in refineries. Atmos. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Neff, J.M.; Stout, S.A.; Gunster, D.G. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: Identifying sources and ecological hazard. Integr. Environ. Assess. Manag. Int. J. 2005, 1, 22–33. [Google Scholar] [CrossRef] [PubMed]
Lacation | Number of PAHs | ∑PAHs (ng·g−1 dw) | References |
---|---|---|---|
Range | |||
Haihe River, China | 16 | 258.77–11,296.66 | [34] |
Chaohu Lake, China | 15 | 80.82–30,365.01 | [30] |
Dianchi Lake, China | 16 | 210–11,070 | [29] |
Erhai Lake, China | 16 | 32420–55,8530 | [35] |
Liaohe River, China | 16 | 92.2–29,5635.2 | [36] |
Nansi Lake, China | 16 | 160–32,600 | [31] |
Nanfei River (Chaohu Lake), China | 28 | 7140–70,500 | [30] |
Fuhe River (Baiyangdian Lake), China | 16 | 191.6–6360.5 | [37] |
Mill River, US | 16 | 0–39,000 | [32] |
Susquehanna River, US | 16 | 74–18,073 | [38] |
Tyne River, UK | 16 | 9100–23,700 | [39] |
Tokyo Bay, Japan | 16 | 534–29,2370 | [33] |
Manzala Lake, Egypt | 39 | 246–9910 | [40] |
Calabar River, Nigeria | 17 | 1670–20,100 | [41] |
Lenga Estuary, Chile | 16 | 290–6118 | [42] |
Bahía Blanca Estuary, Argentina | 18 | 15–10,260 | [43] |
Meiliang Lake Bay and East Taihu Lake Bay | 16 | 4900–16,800 | this study |
Mashan River and Dongshan River | 16 | 5736.2–69,362.8 |
PAHs | Principal Component | |
---|---|---|
PC1 | PC2 | |
Nap | 0.366 | 0.343 |
Ana | 0.830 | 0.376 |
Flu | 0.219 | 0.959 |
Any | 0.367 | 0.906 |
Phe | 0.711 | 0.687 |
Ant | 0.447 | 0.885 |
Flua | 0.868 | 0.490 |
Pyr | 0.874 | 0.482 |
Chr | 0.803 | 0.570 |
BaA | 0.883 | 0.466 |
BkF | 0.956 | 0.284 |
BbF | 0.917 | 0.390 |
BaP | 0.859 | 0.501 |
DbA | 0.876 | 0.470 |
BghiP | 0.956 | 0.270 |
InP | 0.927 | 0.256 |
Eigenvalues | 9.688 | 5.112 |
Variance % | 60.552 | 31.951 |
Cumulative variance % | 60.552 | 92.504 |
Compound | SQG (ng g−1) | Range | Mean | <ERL | ERL–ERM | >ERM | HQ | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
ERL | ERM | Lake Bay | River | Lake Bay | River | Lake Bay | River | ||||
Nap | 160 | 2100 | 2951.2–14,800 | 5738.2 | 0 | 0 | 0 | 0 | 12 | 12 | 2.52 |
Any | 16 | 500 | N.D.–167.8 | 26.5 | 12 | 6 | 0 | 6 | 0 | 0 | 0.01 |
Ana | 44 | 640 | N.D.–623.4 | 60.2 | 12 | 6 | 0 | 6 | 0 | 0 | 0.03 |
Flu | 19 | 540 | N.D.–167.8 | 90.6 | 8 | 4 | 4 | 7 | 0 | 1 | 0.04 |
Phe | 240 | 1500 | 200–3835.7 | 1004.3 | 3 | 0 | 9 | 7 | 0 | 5 | 0.63 |
Ant | 85.3 | 1100 | N.D.–1439.5 | 179.5 | 12 | 4 | 0 | 7 | 0 | 1 | 0.09 |
Flua | 600 | 5100 | 100–8741.6 | 1585.3 | 11 | 5 | 1 | 4 | 0 | 3 | 0.87 |
Pyr | 665 | 2600 | 200–8849.1 | 1627.6 | 11 | 5 | 1 | 2 | 0 | 5 | 0.9 |
BaA | 261 | 1600 | N.D.–3852.5 | 761.0 | 9 | 5 | 3 | 2 | 0 | 5 | 0.47 |
Chr | 384 | 2800 | 28–5415.2 | 921.3 | 11 | 5 | 1 | 4 | 0 | 3 | 0.58 |
BbF | 320 | 1880 | N.D.–8276.5 | 1153.1 | 9 | 5 | 3 | 2 | 0 | 5 | 0.63 |
BkF | 280 | 1620 | 2.7–3457.6 | 588.1 | 8 | 4 | 4 | 6 | 0 | 2 | 0.35 |
BaP | 430 | 1600 | N.D.–4374 | 798.6 | 11 | 6 | 1 | 1 | 0 | 5 | 0.49 |
InP | - | - | N.D.–3144.1 | 362.5 | - | - | - | - | - | - | 0.28 |
DbA | 63.4 | 260 | N.D.–740.4 | 107.9 | 11 | 6 | 1 | 1 | 0 | 5 | 0.15 |
BghiP | 430 | 1600 | N.D.–8191.6 | 1160 | 11 | 5 | 1 | 2 | 0 | 5 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Yan, Z.; Wu, H.; Zhang, G.; Zhang, H.; Yang, M. Polycyclic Aromatic Hydrocarbons in Sediments from Typical Algae, Macrophyte Lake Bay and Adjoining River of Taihu Lake, China: Distribution, Sources, and Risk Assessment. Water 2021, 13, 470. https://doi.org/10.3390/w13040470
Dong Y, Yan Z, Wu H, Zhang G, Zhang H, Yang M. Polycyclic Aromatic Hydrocarbons in Sediments from Typical Algae, Macrophyte Lake Bay and Adjoining River of Taihu Lake, China: Distribution, Sources, and Risk Assessment. Water. 2021; 13(4):470. https://doi.org/10.3390/w13040470
Chicago/Turabian StyleDong, Yibo, Zaisheng Yan, Huifang Wu, Guoqing Zhang, Haichen Zhang, and Mingzhong Yang. 2021. "Polycyclic Aromatic Hydrocarbons in Sediments from Typical Algae, Macrophyte Lake Bay and Adjoining River of Taihu Lake, China: Distribution, Sources, and Risk Assessment" Water 13, no. 4: 470. https://doi.org/10.3390/w13040470
APA StyleDong, Y., Yan, Z., Wu, H., Zhang, G., Zhang, H., & Yang, M. (2021). Polycyclic Aromatic Hydrocarbons in Sediments from Typical Algae, Macrophyte Lake Bay and Adjoining River of Taihu Lake, China: Distribution, Sources, and Risk Assessment. Water, 13(4), 470. https://doi.org/10.3390/w13040470