Morphometry-Driven Divergence in Decadal Changes of Sediment Property in Floodplain Water Bodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sediment SAMPLING and Properties
2.3. Catchment and FWB Characteristics
2.4. Statistical Analyses
3. Results
3.1. Overview of Catchment Characteristics
3.2. Overview of Sediment Properties and Their Temporal Changes
3.3. Factors Related to Spatial Variations in Sediment Properties
3.4. Factors Related to Temporal Variations in Sediment Properties
3.5. Changes in OM in Relation to FWB Types
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wetzel, R.G. Limnology: Lake and River Ecosystems; Gulf Professional Publishing: San Diego, CA, USA, 2001. [Google Scholar]
- Forsberg, C. Importance of sediments in understanding nutrient cyclings in lakes. Hydrobiologia 1989, 176, 263–277. [Google Scholar] [CrossRef]
- Rydberg, J.; Lindborg, T.; Sohlenius, G.; Reuss, N.; Olsen, J.; Laudon, H. The importance of eolian input on lake-sediment geochemical composition in the dry proglacial landscape of western Greenland. Arctic Antarct. Alp. Res. 2016, 48, 93–109. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.H. Eutrophication. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Elsevier: Oxford, UK, 2009; Volume 3, pp. 61–73. [Google Scholar]
- Fillos, J.; Swanson, W.R. The release rate of nutrients from river and lake sediments. J. Water Pollut. Control. Fed. 1975, 47, 1032–1042. [Google Scholar]
- Fisher, M.M.; Reddy, K.R.; James, R.T. Internal nutrient loads from sediments in a shallow, subtropical lake. Lake Reserv. Manag. 2005, 21, 338–349. [Google Scholar] [CrossRef]
- Lee, H.W.; Lee, Y.S.; Kim, J.; Lim, K.J.; Choi, J.H. Contribution of internal nutrients loading on the water quality of a reservoir. Water 2019, 11, 1409. [Google Scholar] [CrossRef] [Green Version]
- Søndergaard, M.; Jensen, J.P.; Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003, 506, 135–145. [Google Scholar] [CrossRef]
- Ribeiro, D.C.; Martins, G.; Nogueira, R.; Cruz, J.V.; Brito, A.G. Phosphorus fractionation in volcanic lake sediments (Azores-Portugal). Chemosphere 2008, 70, 1256–1263. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, R.; Müller, R.A.; Tranvik, L.J.; Sobek, S.; Clow, D.; Verpoorter, C.; Raymond, P. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 2017, 8, 1694. [Google Scholar] [CrossRef] [Green Version]
- Søndergaard, M.; Jeppesen, E.; Lauridsen, T.L.; Skov, C.; Van Nes, E.H.; Roijackers, R.; Lammens, E.; Portielje, R. Lake restoration: Successes, failures and long-term effects. J. Appl. Ecol. 2007, 44, 1095–1105. [Google Scholar] [CrossRef]
- Hickey, C.W.; Gibbs, M.M. Lake sediment phosphorus release management—Decision support and risk assessment framework support and risk assessment framework. N. Z. J. Mar. Freshwater Res. 2009, 43, 819–856. [Google Scholar] [CrossRef] [Green Version]
- Negishi, J.N.; Soga, M.; Ishiyama, N.; Suzuki, N.; Yuta, T.; Sueyoshi, M.; Yamazaki, C.; Koizumi, I.; Mizugaki, S.; Hayashida, K.; et al. Geomorphic legacy controls macrophyte distribution within and across disconnected floodplain lakes. Freshw. Biol. 2014, 59, 942–954. [Google Scholar] [CrossRef]
- Ward, J.V.; Tockner, K.; Schiemer, F. Biodiversity of floodplain river ecosystems: Ecotones and connectivity. Regul. Rivers Res. Manag. 1999, 15, 125–139. [Google Scholar] [CrossRef]
- Hauer, F.R.; Locke, H.; Dreitz, V.J.; Hebblewhite, M.; Lowe, W.H.; Muhlfeld, C.C.; Nelson, C.R.; Proctor, M.F.; Rood, S.B. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Sci. Adv. 2016, 2, e1600026. [Google Scholar] [CrossRef] [Green Version]
- Paira, A.R.; Drago, E.C. Origin, Evolution, and Types of Floodplain Water Bodies. In The Middle Paraná River: Limnology of a Subtropical Wetland; Iriondo, M.H., Paggi, J.C., Parma, M.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 53–81. [Google Scholar]
- Rivetti, C.; López-Perea, J.J.; Laguna, C.; Piña, B.; Mateo, R.; Eljarrat, E.; Barceló, D.; Barata, C. Integrated environmental risk assessment of chemical pollution in a Mediterranean floodplain by combining chemical and biological methods. Sci. Total Environ. 2017, 583, 248–256. [Google Scholar] [CrossRef]
- Tockner, K.; Stanford, J.A. Riverine flood plains: Present state and future trends. Environ. Conserv. 2002, 29, 308–330. [Google Scholar] [CrossRef] [Green Version]
- Petry, P.; Bayley, P.B.; Markle, D.F. Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River floodplain. J. Fish. Biol. 2003, 63, 547–579. [Google Scholar] [CrossRef]
- Kizuka, T.; Yamada, H.; Yazawa, M.; Chung, H.H. Effects of agricultural land use on water chemistry of mire pools in the Ishikari Peatland, northern Japan. Landsc. Ecol. Eng. 2008, 4, 27–37. [Google Scholar] [CrossRef]
- Negishi, J.N.; Sagawa, S.; Kayaba, Y.; Sanada, S.; Kume, M.; Miyashita, T. Mussel responses to flood pulse frequency: The importance of local habitat. Freshw. Biol. 2012, 57, 1500–1511. [Google Scholar] [CrossRef]
- Houlahan, J.E.; Findlay, C.S. Estimating the ‘critical’ distance at which adjacent land-use degrades wetland water and sediment quality. Landsc. Ecol. 2004, 19, 677–690. [Google Scholar] [CrossRef]
- Wilson, C.; Weng, Q. Assessing surface water quality and its relation with urban land cover changes in the Lake Calumet Area, Greater Chicago. Environ. Manag. 2010, 45, 1096–1111. [Google Scholar] [CrossRef] [PubMed]
- Coulter, C.B.; Kolka, R.K.; Thompson, J.A. Water quality in agricultural, urban, and mixed land use watersheds. J. Am. Water Resour. Assoc. 2004, 40, 1593–1601. [Google Scholar] [CrossRef]
- Walker, W.J.; McNutt, R.P.; Maslanka, C.K. The potential contribution of urban runoff to surface sediments of the Passaic River: Sources and chemical characteristics. Chemosphere 1999, 38, 363–377. [Google Scholar] [CrossRef]
- Ahn, Y.S.; Nakamura, F.; Kizuka, T.; Yugo, N. Elevated sedimentation in lake records linked to agricultural activities in the Ishikari River floodplain, northern Japan. Earth Surf. Process. Landf. 2009, 34, 1650–1660. [Google Scholar] [CrossRef]
- Sobek, S.; Tranvik, L.J.; Prairie, Y.T.; Kortelainen, P.; Cole, J.J. Patterns and regulation of dissolved organic carbon: An analysis of 7500 widely distributed lakes. Limnol. Oceanogr. 2007, 52, 1208–1219. [Google Scholar] [CrossRef] [Green Version]
- Cremona, F.; Laas, A.; Hanson, P.C.; Sepp, M.; Nõges, P.; Nõges, T. Drainage ratio as a strong predictor of allochthonous carbon budget in hemiboreal lakes. Ecosystems 2018, 22, 805–817. [Google Scholar] [CrossRef]
- Lawniczak-Malińska, A.; Ptak, M.; Celewicz, S.; Choiński, A. Impact of lake morphology and shallowing on the rate of overgrowth in hard-water eutrophic lakes. Water 2018, 10, 1827. [Google Scholar] [CrossRef] [Green Version]
- Gälman, V.; Rydberg, J.; de-Luna, S.S.; Bindler, R.; Renberg, I. Carbon and nitrogen loss rates during aging of lake sediment: Changes over 27 years studied in varved lake sediment. Limnol. Oceanogr. 2008, 53, 1076–1082. [Google Scholar] [CrossRef] [Green Version]
- Den Heyer, C.; Kalff, J. Organic matter mineralization rates in sediments: A within- and among-lake study. Limnol. Oceanogr. 1998, 43, 695–705. [Google Scholar] [CrossRef]
- Gale, P.M.; Reddy, K.R.; Graetz, D.A. Mineralization of sediment organic matter under anoxic conditions. J. Environ. Qual. 1992, 21, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.; Huang, T.; Fan, R.; Luo, D.; Yang, H.; Huang, C. Temporal variation in sediment C, N, and P stoichiometry in a plateau lake during sediment burial. J. Soils Sediments 2020, 20, 1706–1718. [Google Scholar] [CrossRef]
- Twichell, S.C.; Meyers, P.A.; Diester-Haass, L. Significance of high C/N ratios in organic-carbon-rich Neogene sediments under the Benguela Current upwelling system. Org. Geochem. 2002, 33, 715–722. [Google Scholar] [CrossRef]
- Geurts, J.J.M.; Smolders, A.J.P.; Banach, A.M.; van de Graaf, J.P.M.; Roelofs, J.G.M.; Lamers, L.P.M. The interaction between decomposition, net N and P mineralization and their mobilization to the surface water in fens. Water Res. 2010, 44, 3487–3495. [Google Scholar] [CrossRef] [PubMed]
- Gudasz, C.; Bastviken, D.; Steger, K.; Premke, K.; Sobek, S.; Tranvik, L.J. Temperature-controlled organic carbon mineralization in lake sediments. Nature 2010, 466, 478–481. [Google Scholar] [CrossRef]
- Lalonde, K.; Mucci, A.; Ouellet, A.; Gélinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 2012, 483, 198–200. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, A.; Ikeda, S.; Tsushima, R.; Ishikawa, Y.; Hidaka, S. Spatial and temporal variations in nutrients in water and riverbed sediments at the mouths of rivers that enter Lake Hachiro, a shallow eutrophic lake in Japan. Catena 2015, 133, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Jin, X.; Zhao, H.; Wu, F. Phosphorus release characteristics of different trophic lake sediments under simulative disturbing conditions. J. Hazard. Mater. 2009, 161, 1551–1559. [Google Scholar] [CrossRef]
- Kaushal, S.; Binford, M.W. Relationship between C:N ratios of lake sediments, organic matter sources, and historical deforestation in Lake Pleasant, Massachusetts, USA. J. Paleolimnol. 1999, 22, 439–442. [Google Scholar] [CrossRef]
- Ishii, Y.; Hori, K.; Momohara, A. Middle to late Holocene flood activity estimated from loss on ignition of peat in the Ishikari lowland, northern Japan. Glob. Planet. Chang. 2017, 153, 1–15. [Google Scholar] [CrossRef]
- Soga, M.; Ishiyama, N.; Sueyoshi, M.; Yamaura, Y.; Hayashida, K.; Koizumi, I.; Negishi, J.N. Interaction between patch area and shape: Lakes with different formation processes have contrasting area and shape effects on macrophyte diversity. Landsc. Ecol. Eng. 2014, 10, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Hayashida, K.; Hirayama, A.; Ueda, H. Changes in fish fauna in oxbow lakes on the Ishikari river and the influence of invasive fish species. Annu. J. Hydraul. Eng. 2010, 54, 1261–1266. (In Japanese) [Google Scholar]
- Kusa, D.; Yamamoto, T.; Inoue, T.; Nagasawa, T. Evaluation of oxbow lakes and circulating irrigation in the Ishikari River basin, Japan. Int. J. Environ. Rural Dev. 2014, 5, 65–71. [Google Scholar]
- Ishiyama, N.; Miura, K.; Yamanaka, S.; Negishi, J.N.; Nakamura, F. Contribution of small isolated habitats in creating refuges from biological invasions along a geomorphological gradient of floodplain waterbodies. J. Appl. Ecol. 2019, 57, 548–558. [Google Scholar] [CrossRef]
- Izumi, H.; Negishi, J.N.; Miura, K.; Ito, D.; Pongsivapai, P. Distribution and life-history traits of Unionoid mussels in floodplain waterbodies of the Ishikari River. Ecol. Civ. Eng. 2020, 23, 1–20. (In Japanese) [Google Scholar] [CrossRef]
- MLIT A Comprehensive Plan for Nature Restoration of Lowlands of the Ishikari River. Available online: https://www.hkd.mlit.go.jp/sp/kasen_keikaku/kluhh40000002hwd-att/kluhh4000000cx8y.pdf (accessed on 9 November 2020). (In Japanese)
- Jha, P.K.; Minagawa, M. Assessment of denitrification process in lower Ishikari river system, Japan. Chemosphere 2013, 93, 1726–1733. [Google Scholar] [CrossRef]
- Ishii, Y.; Hori, K. Formation and infilling of oxbow lakes in the Ishikari lowland, northern Japan. Quat. Int. 2016, 397, 136–146. [Google Scholar] [CrossRef]
- Zhu, M. Aquatic Food-Web Structure in Floodplain Waterbodies in Relation to Nutrient Pollution, Ecosystem Size, and Invasive Species. Master’s Thesis, Hokkaido University, Sapporo, Japan, 2017. [Google Scholar]
- Nakatani, N.; Otomichi, M.; Yoshida, O.; Ushiyama, K. Evaluation of the degree of water pollution and estimation of phosphorus loads from migrating birds in Lake Miyajimanuma, Hokkaido. Wetl. Res. 2014, 5, 15–23. (In Japanese) [Google Scholar] [CrossRef]
- Nasir, A.; Lukman, M.; Tuwo, A.; Hatta, M.; Tambaru, R. Nurfadilah the use of C/N ratio in assessing the influence of land-based material in coastal water of South Sulawesi and Spermonde Archipelago, Indonesia. Front. Mar. Sci. 2016, 3, 266. [Google Scholar] [CrossRef] [Green Version]
- Novikmec, M.; Hamerlík, L.; Kočický, D.; Hrivnák, R.; Kochjarová, J.; Oťaheľová, H.; Pal’ove-Balang, P.; Svitok, M. Ponds and their catchments: Size relationships and influence of land use across multiple spatial scales. Hydrobiologia 2016, 774, 155–166. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2018. [Google Scholar]
- Larson, J.H.; Staples, D.F.; Maki, R.P.; Vallazza, J.M.; Knights, B.C.; Peterson, K.E. Do water level fluctuations influence production of walleye and yellow perch young-of-the-year in large northern lakes? N. Am. J. Fish. Manag. 2016, 36, 1425–1436. [Google Scholar] [CrossRef]
- Carter, L.D.; Dzialowski, A.R. Predicting sediment phosphorus release rates using landuse and water-quality data. Freshw. Sci. 2012, 31, 1214–1222. [Google Scholar] [CrossRef]
- Von Lützow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Gu, C.; Hornberger, G.M.; Mills, A.L.; Herman, J.S.; Flewelling, S.A. Nitrate reduction in streambed sediments: Effects of flow and biogeochemical kinetics. Water Resour. Res. 2007, 43, W12413. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhao, T.; Zhu, Y.; Qu, X.; He, Z.; Giesy, J.P.; Meng, W. Molecular characterization of macrophyte-derived dissolved organic matters and their implications for lakes. Sci. Total Environ. 2018, 616–617, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.M.; Kalff, J. Patterns in the submerged macrophyte biomass of lakes and the importance of the scale of analysis in the interpretation. Can. J. Fish. Aquat. Sci. 1990, 47, 357–363. [Google Scholar] [CrossRef]
- Ye, B.; Chu, Z.; Wu, A.; Hou, Z.; Wang, S. Optimum water depth ranges of dominant submersed macrophytes in a natural freshwater lake. PLoS ONE 2018, 13, e0193176. [Google Scholar] [CrossRef] [Green Version]
- Lucà, F.; Buttafuoco, G.; Terranova, O. GIS and Soil. In Comprehensive Geographic Information Systems; Huang, B., Ed.; Elsevier: Oxford, UK, 2018; Volume 2, pp. 37–50. ISBN 9780128046609. [Google Scholar] [CrossRef]
- Conforti, M.; Lucà, F.; Scarciglia, F.; Matteucci, G.; Buttafuoco, G. Soil carbon stock in relation to soil properties and landscape position in a forest ecosystem of southern Italy (Calabria region). Catena 2016, 144, 23–33. [Google Scholar] [CrossRef]
- Duan, W.; Takara, K.; He, B.; Luo, P.; Nover, D.; Yamashiki, Y. Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010. Sci. Total Environ. 2013, 461–462, 499–508. [Google Scholar] [CrossRef]
- Ribeiro, D.C.; Martins, G.; Nogueira, R.; Brito, A.G. Mineral cycling and pH gradient related with biological activity under transient anoxic-oxic conditions: Effect on P mobility in volcanic lake sediments. Environ. Sci. Technol. 2014, 48, 9205–9210. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shen, Z.; Niu, J.; Liu, R. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions. J. Hazard. Mater. 2009, 162, 92–98. [Google Scholar] [CrossRef]
FWB ID | FWB Type | Surface Area (×103 m2) | Depth (m) | Volume (×103 m3) | Catchment Area (×103 m2) | Drainage Index (m−1) | TN (mg/L) | TP (mg/L) | Trophic State | MLIT Data Year |
---|---|---|---|---|---|---|---|---|---|---|
A1 | Artificial | 37.63 | 0.22 | 8.28 | 6002.25 | 724.91 | 2.328 | 0.149 | Hypertrophic | 2005 |
A2 | Artificial | 45.87 | 1.94 | 88.99 | 1154.16 | 12.97 | 1.931 | 0.086 | Hypertrophic | 2005 |
A3 | Artificial | 127.40 | 0.34 | 43.74 | 1163.23 | 26.59 | 5.223 | 0.630 | Hypertrophic | 2005 |
A4 | Artificial | 25.26 | 0.28 | 7.07 | 2679.08 | 378.94 | 1.831 | 0.159 | Hypertrophic | 2005 |
A5 | Artificial | 50.17 | 1.24 | 62.21 | 347.91 | 5.59 | 0.558 | 0.061 | Eutrophic | 2005 |
A6 | Artificial | 78.43 | 3.26 | 255.68 | 9013.87 | 35.25 | 1.177 | 0.100 | Eutrophic | 2005 |
A7 | Artificial | 111.10 | 0.42 | 46.66 | 14,481.57 | 310.36 | 1.236 | 0.075 | Eutrophic | 2004 |
A8 | Artificial | 56.91 | 0.92 | 52.17 | 21,954.90 | 420.83 | 2.343 | 0.171 | Hypertrophic | 2005 |
A9 | Artificial | 38.83 | 0.40 | 15.53 | 1646.98 | 106.05 | 1.374 | 0.166 | Hypertrophic | 2005 |
A10 | Artificial | 403.90 | 0.30 | 121.17 | 12,825.36 | 105.85 | 3.191 | 0.299 | Hypertrophic | 2005 |
A11 | Artificial | 86.18 | 0.56 | 48.26 | 1201.61 | 24.90 | 0.708 | 0.057 | Eutrophic | 2005 |
M1 | Marsh | 11.69 | 0.40 | 4.68 | 247.87 | 52.96 | 2.534 | 0.081 | Eutrophic | 2006 |
M2 | Marsh | 175.30 | 0.77 | 134.40 | 2722.16 | 20.25 | 1.752 | 0.169 | Hypertrophic | 2006 |
M3 | Marsh | 50.83 | 0.37 | 18.64 | 814.02 | 43.67 | 2.398 | 0.159 | Hypertrophic | 2006 |
M4 | Marsh | 67.74 | 0.80 | 54.19 | 913.77 | 16.86 | 1.158 | 0.096 | Eutrophic | 2006 |
M5 | Marsh | 21.46 | 1.34 | 28.76 | 810.57 | 28.18 | 2.565 | 0.087 | Eutrophic | 2006 |
M6 | Marsh | 96.76 | 1.60 | 154.82 | 337.92 | 2.18 | 1.126 | 0.069 | Eutrophic | 2006 |
M7 | Marsh | 26.57 | 1.30 | 34.54 | 498.69 | 14.44 | 1.417 | 0.087 | Eutrophic | 2006 |
M8 | Marsh | 283.30 | 0.35 | 99.16 | 1029.21 | 10.38 | 7.880 | 0.655 | Hypertrophic | 2006 |
M9 | Marsh | 64.21 | 1.32 | 84.54 | 748.50 | 8.85 | 2.381 | 0.136 | Hypertrophic | 2006 |
M10 | Marsh | 105.10 | 3.04 | 319.50 | 1044.34 | 3.27 | 0.962 | 0.057 | Eutrophic | 2006 |
N1 | Natural | 241.10 | 0.40 | 96.44 | 5644.15 | 58.52 | 0.942 | 0.204 | Hypertrophic | 2003 |
N2 | Natural | 112.10 | 0.16 | 17.71 | 12,542.11 | 708.19 | 0.601 | 0.053 | Eutrophic | 2004 |
N3 | Natural | 142.40 | 1.68 | 239.23 | 888.28 | 3.71 | 1.686 | 0.081 | Eutrophic | 2004 |
N4 | Natural | 118.30 | 0.62 | 73.35 | 1779.48 | 24.26 | 0.705 | 0.070 | Eutrophic | 2004 |
N5 | Natural | 88.71 | 6.67 | 591.70 | 629.52 | 1.06 | 0.543 | 0.043 | Eutrophic | 2005 |
N6 | Natural | 112.70 | 3.12 | 351.62 | 865.02 | 2.46 | 1.227 | 0.111 | Hypertrophic | 2004 |
N7 | Natural | 73.63 | 2.40 | 176.71 | 1079.20 | 6.11 | 1.083 | 0.070 | Eutrophic | 2005 |
N8 | Natural | 129.50 | 0.88 | 113.96 | 2955.53 | 25.93 | 1.213 | 0.108 | Hypertrophic | 2005 |
Variables | Log-likelihood | AIC | Estimates | SE | Z | p |
---|---|---|---|---|---|---|
OM | −162.9 | 333.7 | 2.4580 | 0.5990 | 4.10 | <0.001 |
TN | −126.0 | 260.0 | 0.1051 | 0.3840 | 0.27 | 0.78 |
TP | −38.9 | 85.7 | −0.4058 | 0.0948 | −4.28 | <0.001 |
OM to TN | −12.3 | 32.6 | 0.2179 | 0.0712 | 3.06 | <0.01 |
TN to TP | −36.6 | 81.3 | 0.3027 | 0.0708 | 4.28 | <0.001 |
OM (3, 4) | TN (3, 3) | TN to TP (2, 2) | OMN (1) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cumulative % of variance explained (response variables) | 54.42 | 49.29 | 84.39 | 76.80 | 66.25 | 48.28 | 19.11 | ||||||||||||
Cumulative % of variance explained (predictor variables) | 76.52 | 86.48 | 75.88 | 70.24 | 60.75 | 57.86 | 45.56 | ||||||||||||
Component loadings | |||||||||||||||||||
MLIT | 2019 | MLIT | 2019 | MLIT | 2019 | MLIT | |||||||||||||
Variables | C1 | C2 | C3 | C1 | C2 | C3 | C4 | C1 | C2 | C3 | C1 | C2 | C3 | C1 | C2 | C1 | C2 | C1 | |
OM | NA | NA | NA | NA | NA | NA | NA | 0.33 | 0.62 | 0.12 | 0.37 | 0.54 | 0.36 | 0.48 | 0.33 | 0.62 | −0.27 | ||
Depth | 0.40 | −0.38 | −0.24 | 0.44 | −0.55 | −0.22 | 0.11 | 0.36 | −0.46 | −0.13 | 0.36 | −0.50 | 0.37 | −0.42 | 0.37 | −0.51 | −0.39 | ||
Volume | 0.39 | −0.30 | −0.31 | 0.44 | −0.54 | −0.20 | 0.17 | 0.35 | −0.41 | −0.20 | 0.35 | −0.50 | 0.37 | −0.35 | 0.36 | −0.48 | −0.38 | ||
DR | −0.46 | 0.19 | −0.12 | −0.56 | 0.20 | −0.44 | 0.18 | −0.10 | −0.53 | 0.25 | −0.45 | 0.30 | −0.51 | 0.24 | 0.44 | ||||
%paddy | −0.12 | −0.84 | 0.49 | −0.19 | −0.56 | 0.45 | −0.21 | −0.11 | −0.35 | 0.70 | 0.70 | −0.11 | −0.17 | ||||||
%crop | 0.10 | 0.52 | −0.60 | −0.33 | 0.93 | 0.27 | −0.57 | 0.18 | −0.12 | ||||||||||
%urban | −0.27 | −0.32 | 0.57 | −0.69 | −0.27 | 0.15 | −0.63 | −0.16 | −0.50 | ||||||||||
DR_pad | −0.45 | −0.15 | −0.58 | 0.13 | −0.44 | 0.14 | −0.52 | 0.20 | 0.29 | −0.43 | 0.25 | −0.49 | 0.19 | 0.42 | |||||
DR_crop | −0.39 | 0.31 | −0.47 | −0.48 | 0.16 | −0.28 | 0.47 | −0.39 | 0.21 | −0.38 | −0.48 | 0.17 | −0.40 | 0.23 | −0.47 | 0.15 | 0.37 | ||
DR_urban | −0.42 | 0.17 | −0.25 | −0.43 | 0.46 | −0.45 | −0.41 | 0.24 | −0.17 | −0.43 | 0.29 | −0.37 | −0.43 | 0.16 | −0.43 | 0.22 | 0.42 |
OM (1) | TN (3) | TP (3) | |||||
---|---|---|---|---|---|---|---|
Cumulative % of variance explained (response variables) | 28.74 | 49.50 | 52.32 | ||||
Cumulative % of variance explained (predictor variables) | 50.87 | 70.69 | 72.70 | ||||
Component loadings | |||||||
Variables | C1 | C1 | C2 | C3 | C1 | C2 | C3 |
OM | NA | 0.72 | 0.371 | 0.6 | - | 0.419 | |
Depth | −0.422 | −0.474 | 0.377 | −0.469 | 0.404 | - | |
Volume | −0.424 | −0.557 | 0.322 | 0.159 | −0.535 | 0.326 | - |
DR | 0.449 | 0.375 | −0.504 | 0.101 | 0.463 | −0.481 | - |
%paddy | - | 0.309 | - | −0.378 | 0.345 | 0.139 | −0.47 |
%crop | - | −0.337 | - | 0.771 | −0.394 | −0.151 | 0.62 |
%urban | 0.114 | 0.229 | - | - | - | −0.241 | 0.117 |
DR_pad | 0.405 | 0.366 | −0.452 | - | 0.513 | −0.375 | −0.169 |
DR_crop | 0.374 | 0.173 | −0.507 | 0.504 | 0.25 | −0.524 | 0.394 |
DR_urban | 0.418 | 0.41 | −0.398 | 0.283 | 0.359 | −0.468 | 0.343 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pongsivapai, P.; Negishi, J.N.; Izumi, H.; Garrido, P.A.; Kuramochi, K. Morphometry-Driven Divergence in Decadal Changes of Sediment Property in Floodplain Water Bodies. Water 2021, 13, 469. https://doi.org/10.3390/w13040469
Pongsivapai P, Negishi JN, Izumi H, Garrido PA, Kuramochi K. Morphometry-Driven Divergence in Decadal Changes of Sediment Property in Floodplain Water Bodies. Water. 2021; 13(4):469. https://doi.org/10.3390/w13040469
Chicago/Turabian StylePongsivapai, Pongpet, Junjiro N. Negishi, Hokuto Izumi, Paolo A. Garrido, and Kanta Kuramochi. 2021. "Morphometry-Driven Divergence in Decadal Changes of Sediment Property in Floodplain Water Bodies" Water 13, no. 4: 469. https://doi.org/10.3390/w13040469
APA StylePongsivapai, P., Negishi, J. N., Izumi, H., Garrido, P. A., & Kuramochi, K. (2021). Morphometry-Driven Divergence in Decadal Changes of Sediment Property in Floodplain Water Bodies. Water, 13(4), 469. https://doi.org/10.3390/w13040469