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Abstract: The formation of bacterial regrowth and disinfection by-products is ubiquitous in chlo-
rinated water distribution systems (WDSs) operated with organic loads. A generic, easy-to-use
mechanistic model describing the fundamental processes governing the interrelationship between
chlorine, total organic carbon (TOC), and bacteria to analyze the spatiotemporal water quality vari-
ations in WDSs was developed using EPANET-MSX. The representation of multispecies reactions
was simplified to minimize the interdependent model parameters. The physicochemical/biological
processes that cannot be experimentally determined were neglected. The effects of source water
characteristics and water residence time on controlling bacterial regrowth and Trihalomethane (THM)
formation in two well-tested systems under chlorinated and non-chlorinated conditions were an-
alyzed by applying the model. The results established that a 100% increase in the free chlorine
concentration and a 50% reduction in the TOC at the source effectuated a 5.87 log scale decrement
in the bacteriological activity at the expense of a 60% increase in THM formation. The sensitivity
study showed the impact of the operating conditions and the network characteristics in determining
parameter sensitivities to model outputs. The maximum specific growth rate constant for bulk phase
bacteria was found to be the most sensitive parameter to the predicted bacterial regrowth.

Keywords: EPANET-MSX; chlorine; bacteria; drinking water; water distribution; multispecies;
reactive-transport; trihalomethanes; water quality

1. Introduction

The focus during the operation of water distribution systems (WDSs) is to maintain the
risk of trade-off between protection against opportunistic pathogens and the disinfection
by-products (DBPs) [1]. Water quality models, specifically multispecies reactive-transport
(MSRT) models that simulate the interactions and transport of various abiotic and biotic
factors in the WDSs, become significant in this regard. Most of the attempts to model the
bacterial regrowth and DBP formation in WDSs utilized deterministic approaches applying
theoretical knowledge about reactions of the numerous reactive water species [2].

The conceptual base for multispecies modeling in WDSs was set forth by the pioneer-
ing work of [3]. The deterministic model, named the SANCHO model, developed by [4],
established itself as a convenient water quality modeling tool. However, the SANCHO
model, not linked with a hydraulic analysis model, later became inadequate to investigate
water quality under unsteady flow conditions. Nonetheless, the PICCOBIO model [5],
effectively linked with a hydraulic analysis model (Piccolo), facilitated dynamic modeling
of water quality variations within the distribution pipes.

Apparently, during the development of the PICCOBIO model, the researchers com-
plicated the mathematical descriptions and increased the number of parameters used for
describing the multispecies interactions. The model postulated that the biofilm layers
would consist of chlorinated and non-chlorinated layers, and that the diffusion of chlorine
would only take place up to the chlorinated layer. In addition, the reactions of hypochlorite
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ions and hypochlorous acid were separately addressed to explain the reaction kinetics of
chlorine in WDSs. As the expected variation in pH is negligible during the conveyance of
water in distribution pipes, significant changes might not happen to the relative propor-
tions of the two forms of free chlorine. Therefore, a more general and simplified kinetic
description with a smaller number of parameters, neglecting the effect of pH, could have
provided a good explanation of the process of bacterial mortality induced by free chlo-
rine. Equally, the use of different reaction rates for hypochlorous acid and hypochlorite
ions in the mathematical description of chlorine disappearance reactions could have also
been avoided and instead, a simpler kinetic relationship could have been advocated. The
number of parameters employed in the kinetic descriptions for detachment could also be
lower, and a much simpler mathematical description could have been adopted, reducing
the computational efforts.

The later model proposed by [6] successfully overcame many of the aforementioned
drawbacks of the PICCOBIO model. These researchers simplified the mathematical expres-
sions to define the multispecies processes concerning bacterial regrowth inside distribution
pipes. However, the bacterial detachment from the biofilm layers was assumed to follow
first-order kinetics concerning bacterial counts in this attempt. Consequently, the model
by [6] failed in explicitly accounting for the temperature effects and the turbulent shear
effects on the biofilm dynamics [7]. The mechanistic model developed by [8], akin to [6],
presumed first-order dependence of the detaching bacteria with both the flow velocity and
the biofilm density. However, specific conceptual issues plagued the model by [8], and
several assumptions made during its development stage have been proven to be inadequate
by recent studies [9].

All the above-discussed mechanistic MSRT models dealt mainly with the microbio-
logical interactions in the WDSs and the microbiological quality of the delivered water.
None of the above models considered the formation and transport of DBPs in WDSs. An
attempt in this regard, by developing the WU-MSRT model, was reported by [10]. A similar
work, utilizing a Cellular Automata-based model (CA-MSRT model), was recently reported
by [11]. Both the 1-D models (WU-MSRT and CA-MSRT) considered Trihalomethanes
(THMs) as the surrogate for DBPs in WDSs and utilized the concepts of bacterial regrowth,
biofilm formation, and the dynamics of chlorine decay and natural organic matter (NOM)
degradation reported by earlier researchers [5,6,8]. Consequently, the multispecies interac-
tions between chlorine, NOM, and microbial biomass were represented in both the bulk
and wall phases of distribution pipes through complex equations constituting many inter-
dependent parameters. The bulk phase represented the dynamic portion of the distribution
pipe, while the wall phase represented the thin static biofilm layer [5].

It may be noted that the quality of any mechanistic model predictions depends on
the certainty of understanding the processes [12]. Unfortunately, the state of knowledge
about several multispecies interactions in WDSs, included in the models mentioned above,
is inadequate for making deterministic water quality predictions. Additionally, technical
infeasibilities plague the direct measurement of reactive species at the biofilm layers, specif-
ically chlorine and NOM. Hence, the calibration and validation of the existing deterministic
models using real-world data become challenging for practitioners.

Nevertheless, it has to be agreed that the conceptual base and the computational
efficiency of MSRT modeling have evolved and improved, respectively, over time. However,
after the development of the PICCOBIO model, the research remained more or less as an
academic exercise. It failed to advance in terms of evolving practically applicable and
easy-to-use simulation engines. This paper explicitly addresses this issue by developing
a mechanistic model to aid the WDSs design and operation using EPANET-MSX [13].
EPANET-MSX is the multispecies extension of EPANET [14], the most widely used package
for modeling WDSs. To date, a bacterial regrowth and THM formation model using
EPANET-MSX has not been developed.

The proposed model considers the advective transport and physicochemical and
biological reactions of chlorine, NOM, bacteria, and THMs in WDSs. However, unlike the
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earlier reported works, primary importance is given to the simplification of the representa-
tion of the multispecies reactions in WDSs and minimizing the number of interdependent
parameters. Likewise, the physicochemical and biological interactions that cannot be
experimentally investigated are omitted in the conceptual stage. A detailed sensitivity
analysis of the proposed model is presented by applying the model to benchmark problems
to benefit the practitioners in categorizing the model parameters for future applications.
Given the recent drifts towards non-chlorinated operation [2], the prospect of the proposed
model applicability on non-chlorinated WDSs is also ascertained.

The remainder of the paper is organized as follows: Section 2 explains the development
of the MSRT model. The conceptual and numerical details of the model are elucidated
in this section. Section 3 features the application of the developed model to demonstrate
the effects of source water characteristics and water residence time in controlling bacterial
regrowth and DBP formation in WDSs. Section 4 presents the deterministic sensitivity
analysis of the proposed mechanistic model in detail. Limitations and conclusions of the
present study are summarized in Sections 5 and 6, respectively.

2. Model Development
2.1. Conceptual Model

The proposed mechanistic model combines the advective transport with the physic-
ochemical and biological reactions of the following five species: chlorine, total organic
carbon (TOC), biodegradable OC (BDOC), bacteria (both suspended and attached), and
THMs. Due to the homogeneous configuration of the distribution pipes, a 1-D modeling
approach was selected [15] to represent the spatiotemporal distributions of the aforemen-
tioned species in WDSs. Chlorine was the disinfectant chemical inhibiting bacterial activity,
while BDOC was the organic fraction acting as the substrate for bacterial regrowth. TOC
and BDOC were the surrogate parameters for NOM in water, and they represent the mass
of the total and biodegradable organic matter present in the water, respectively. The BDOC
is only a fraction of TOC that can be assimilated and/or mineralized by the heterotrophic
flora residing in WDSs [16]. Its absence in the delivered water limits the bacterial activity
in WDSs [17].

The Pseudomonas bacteria strains, with organic carbon contents in the cell varying
between 1.04 × 10−8 and 1.40 × 10−9 mg-carbon(C)/CFU [18], were selected as surrogates
for bacteria inside the bulk phase and biofilm layers. For simplification, the bacterial
cells’ organic carbon contents were approximated as 1 × 10−9 mg-C/CFU [10,11]. The
biofilm layers were represented as a uniform layer distributed evenly across the perimeter
of distribution pipes [19]. The transformation between the bulk and biofilm layers was
assumed to occur via attachment and detachment mechanisms. THMs account for more
than fifty per cent of all the halogenated DBPs in WDSs, and they induce carcinogenic and
reproductive risks [20,21]. Thus, in this study, THMs were selected as the surrogate for
DBPs in distribution pipes, and it was presumed that they form in the bulk phase by the
chlorination of both NOM and bacteria-derived DBP precursors [22]. The effects of pipe
material and zero-valent iron in water in the formation of DBPs [23] were neglected to
simplify the model formulation.

2.2. Multispecies Interactions

The physicochemical and biological interactions between the five species considered
in the model formulation are schematically represented in Figure 1.
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Figure 1. Physicochemical and biological interactions considered in the model formulation.

The multispecies reactions considered in the model are as follows:
(i) Chlorination of NOM and suspended bacteria.
The reactions of chlorine with the NOM and the bulk phase bacteria, causing its decay

in the bulk phase, were represented using second-order kinetics based on the concept of
competing reactions in water [24].

(ii) Diffusion of chlorine and its reaction with the pipe wall.
The diffusion of chlorine from the bulk to the wall phase was approximated to occur

across an “unstirred” boundary layer [6]. For interpretation, the mass transfer and the
subsequent chlorine reactions with the pipe material and the biofilm layers were described
by first-order kinetics concerning bulk chlorine concentration [14].

(iii) Bacterial regrowth and substrate utilization in the bulk phase.
The Monod formulation was applied to model the regrowth and substrate utilization

of the suspended bacteria. Empirical expressions were incorporated to describe the chlorine
inhibition and temperature influence on the growth reactions [8].

(iv) Biofilm formation against chlorine inhibition.
A first-order approximation was selected to model the attached bacterial regrowth

against chlorine inhibition to avoid representing the influence of the NOM in the biofilm
layers on the biofilm dynamics. A resistance factor was incorporated into the empirical
expression describing the chlorine inhibition to accommodate the greater resistance of the
attached bacteria against the chlorine-induced inactivity [25].

(v) Mortality of bacteria and contribution to BDOC.
The natural mortality of bacteria was modeled with first-order kinetics with an aim

to simplify the complex processes associated with bacterial mortality by senescence and
the grazing of bacteria by protozoa [5]. The chlorine-induced mortality was modeled with
second-order kinetics based on the concept of competing reactions in water [11]. It was
considered that 30% of the dead bacteria enriches the BDOC by releasing intracellular
matter during cell lysis [5].

(vi) Attachment of bulk phase (suspended) bacteria on the pipe walls.
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A first-order dependence on the suspended bacteria [26] and a zero-order reliance on
the biofilm density were assumed to represent the deposition of the bulk phase bacteria
on the biofilm to generalize the mass transfer of bacterial cells across the thin “unstirred”
layer separating the bulk phase from the wall phase.

(vii) Detachment of attached bacteria due to the shear stress of water.
The bacterial detachment from the biofilm layers was approximated to have first-order

dependence on the shear stress induced by the flow velocity [7] and the attached bacterial
density [27].

(viii) THM formation due to the chlorination of TOC and suspended bacteria.
The THM formation, caused by the chlorination of NOM, and bacteria-derived DBP

precursors were modeled using the reaction yield coefficients [28].

2.3. Numerical Model

A set of advective-reactive (AR) equations (Equations (1)–(6)) were framed to describe
the mass balance concerning the five species within the distribution pipes. The AR equation
describes physical, chemical, and biological phenomena where concentrations of the five
species under consideration were transformed inside water distribution pipes due to the
combination of two processes: advection and reactions. Advective transport describes the
movement of the five species in the fluid flow direction by virtue of the flow velocity inside
the distribution pipes. The reactions include the equilibrium and kinetically controlled
multispecies interactions explained before.

∂C
∂t

+ u
∂C
∂x

= −kCN × N × C − kCX × Xb × C −
kw × k f(

kw + k f

)
× Rh

× C (1)

∂N
∂t + u ∂N

∂x = − 1
Y × µmax,b

S
Ks+S × exp(−kinact × C)× exp

[(
− (Topt−T)
(Topt−Ti)

)2
]

×Xb − YN × kCN × N ×+a(YX × kCX × Xb × C + kmort × Xb)

(2)

∂S
∂t + u ∂S

∂x = − 1
Y × µmax,b

S
Ks+S × exp(−kinact × C)× exp

[(
− (Topt−T)
(Topt−Ti)

)2
]

×Xb − YN × kCN × S ×+a(YX × kCX × Xb × C + kmort × Xb)

(3)

∂Xb
∂t + u ∂Xb

∂x = µmax,b
S

Ks+S × exp(−kinact × C)× exp

[(
− (Topt−T)
(Topt−Ti)

)2
]

×Xb − YX × kCX × Xb × C − kmort × Xb − kdep × Xb

+kdet × τw × Xa
Rh

(4)

dXa
dt = µmax,a × exp

(
− kinact

kr
× C

)
× exp

[(
− (Topt−T)
(Topt−Ti)

)2
]
× Xa

−kmort × Xa + kdep × Xb × Rh − kdet × τw × Xa

(5)

∂H
∂t

+ u
∂H
∂x

= YH1 × kCN × N × C + YH2 × kCX × Xb × C (6)

The notations C, N, S, X, and H denote the five variables (chlorine, TOC, BDOC, bacte-
ria, and THMs, respectively). The notations b and a related to X indicate the suspended
and attached bacteria, respectively. For the other notations: t = time (s); u = flow velocity
(m/s); x = distance along the axial direction (m); kCN = second-order kinetic constant corre-
sponding to reactions between chlorine and NOM (L/mg-C.s); kCX = second-order kinetic
constant corresponding to reactions between chlorine and bacteria (L/CFU.s); kw = wall
decay coefficient (m/s); k f = mass-transfer coefficient of chlorine (m/s); Rh = hydraulic
mean radius (m); Y = growth yield of bacteria (CFU/mg-C); µmax = maximum specific
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growth rate of bacteria (1/s); Ks = half-saturation constant (mg-C/L); kinact = bacterial
growth inactivation constant (L/mg-chlorine (Cl)); Topt = optimal temperature for bacterial
activity (◦C); Ti = temperature-dependent shape parameter (◦C); YX = reaction yield coeffi-
cient for bacteria (CFU/mg-Cl); YN = reaction yield coefficient for NOM (mg-C/mg-Cl);
a = fraction of dead bacteria contributing to BDOC; kmort = bacterial mortality constant
(1/s); kdep = deposition/attachment constant (1/s); kdet = bacterial detachment coefficient
(m.s/g); τw = shear stress at pipe wall (g/m.s2); kr = resistance factor of attached bacteria
to chlorine-induced mortality; YH1 = reaction yield coefficient corresponding to THM
formation from chlorination of NOM (µg-THM/mg-Cl); YH2 = reaction yield coefficient
corresponding to THM formation from chlorination of bacteria (µg-THM/mg-Cl). The
base values of the parameters, selected based on a detailed review of the literature, are
reported in Table 1.

Table 1. Values and formulas of the parameters used in the multispecies reactive-transport (MSRT) model.

Parameter Value/Formula Unit Reference Base Value Selected

kCN 3 × 104 × exp
(
− 6050

T+273

)
L/mg-C.s [29] -

kCX 3 × 10−4 × exp
(
− 6050

T+273

)
L/CFU.s [10] -

kw
1.04 × 10−7–1.43 × 10−5 m/s [30]

1.04 × 10−7 m/s
0.0072 mg/m2.s [12]

µmax,b 1.39 × 10−5–4.2 × 10−4 1/s [6,31] 4.2 × 10−4 1/s
µmax,a 7.2 × 10−16–6.1 × 10−10 mg-C/CFU.s [26] 8.6 × 10−7 1/s

KS 0.05–1.20 mg-C/L [32,33] 0.195 mg-C/L
Y 0.007–1.50 mg-C/mg-C [26] 0.007 × 106 CFU/mg-C

kinact 0.05–5.0 L/mg-Cl [6,10,26] 0.35 L/mg-Cl
Topt 37 ◦C [12] 37 ◦C
Ti 7 ◦C [12] 7 ◦C
YX 0.59 ± 0.15 mg-C/mg-Cl [26] 0.34 × 106 CFU/mL
YN 0.4–4.88 mg-C/mg-Cl [34] 0.98 mg-C/mg-Cl
a 0.3 - [5] 0.3

kmort 9 × 10−7–1.8 × 10−5 1/s [6,26] 6.3 × 10−5 1/s
kdep 5.5 × 10−6–4.2 × 10−4 1/s [26] kmort

kdet
4 × 10−4 1/s [6]

6.618 × 10−7 m.s/g
6.618 × 10−7 m.s/g [27]

τw Blasius equation g.m/s2 [7] Temperature effects on water
dynamic viscosity

kr 3–3000 - [26] 100
YH1 5.68–188.20 µg-THM /mg-Cl [28,34] 118.435 µg-THM /mg-Cl
YH2 4.487 µg-THM /mg-Cl [10] 4.487 µg-THM /mg-Cl

Equations (1)–(4) and Equation (6), corresponding to the bulk phase species, are par-
tial differential equations, including the advection term and the multispecies interactions.
Simultaneously, Equation (5), corresponding to the attached bacteria, is an ordinary dif-
ferential equation representing the regrowth of biofilm within a reactor of zero mass flux.
The diffusion to the biofilm layers from the bulk phase is neglected for TOC (Equation (2)),
BDOC (Equation (3)), and THMs (Equation (6)) considering the associated uncertainty of
the process and the practical difficulty to experimentally measure the NOM content and
THM concentration in the biofilm layers.

At the nodes/junctions where two or more pipes meet, the mixing of the water parcels
was assumed to be instantaneous and complete. After mixing, the water parcels leave these
nodes with the flow-weighted average of concentrations coming from the incoming pipes.
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Thus, the concentration of the bulk phase species leaving the node j at any time t is shown
in Equation (7), given below.

Anj =
∑

Npj
i=1 Qi × Ai(x = Li) + QEj × AEj

∑
Npj
i=1 Qi + QEj

; j = 1, . . . , Nj (7)

The notations used are: Anj = concentration of any bulk phase species at node j (mg/L);
Npj = number of incoming pipes at node j; Qi = flow rate in pipe i (L/s); Ai = concentration
of any bulk phase species inside pipe i (mg/L); Li = length of pipe i (m); QEj = external
source flow rate into node j (L/s); AEj = external source concentration of any bulk phase
species at node j (mg/L); Nj = total number of nodes in the network.

The complete mixing model [14] was selected at the storage tanks by assuming that all
water parcels entering a tank are instantaneously and wholly mixed with the water parcels
already present in the tank. This assumption makes modeling the temporal variations of
the bulk phase species within the tanks quite simple as it requires no extra parameters to
describe it. Additionally, it applies well to all the storage components that are operated in
a fill-and-draw manner [35].

2.4. Model Implementation

Solving the set of mass-conservation equations (Equations (1)–(7)) will deliver the
concentrations of the five model species at different values of x and t. In the present work,
the EPANET-MATLAB toolkit [36], based on a MATLAB Class, “epanet”, was utilized in
this regard. The toolkit enables the operation of EPANET 2.0 and EPANET-MSX as shared
object libraries for hydraulic and water quality modeling, respectively. Their dynamic link
library (DLL) for Windows was used through the programming interface of MATLAB.
Before using EPANET-MSX for water quality analysis, the EPANET 2.0 network (as. inp file
format) was applied to simulate the hydraulic dynamics using the EPANET DLL and derive
the flow/pressure values. The multispecies interactions in the form of model governing
equations are described as .msx file formats. These were generated and implemented
using the MATLAB interface. The dynamic multispecies water quality was then simulated
by applying the EPANET-MSX DLL to derive the concentrations of the model species at
pipes, demand nodes, and storage tanks. The default Lagrangian transport algorithm of
EPANET 2.0 and EPANET-MSX was applied to solve the advective transport part of the
model equations, and the fifth-order Runge–Kutta integrator with automatic time step
control was utilized to solve the reaction part.

3. Model Application
3.1. Test Problems

The applicability of the proposed MSRT model was demonstrated by applying it
to two well-tested benchmark networks. The Balerma network [37] was selected as Test
Problem 1. It is an adaptation of the irrigation network in the province of Almeria (Spain).
The network has four reservoirs, 443 demand nodes, and 454 pipes. The Balerma network
layout is given in Figure 2.

3.2. Test Conditions

The water quality analysis was performed at different operating conditions to elucidate
the significance of the boundary conditions (source water characteristics) in determining
the microbiological and chemical qualities of the delivered water at the demand nodes.
Three scenarios (Scenarios 1a, 1b, and 1c) were selected for Test Problem 1 (Table 2) by
varying the chlorine concentration, NOM content, and the bacterial cell count of the treated
water supplied from the four source nodes (Reservoir IDs 38, 43, 44, and 88). The free
chlorine concentration was varied as 0.5, 1.0, and 2.0 mg-Cl/L and the TOC content was
varied as 1.0, 2.0, and 3.0 mg-C/L. The source water with a TOC value of 1.0 mg-C/L
corresponds to biologically treated water with minimum NOM content [40]. A TOC value
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of 3.0 mg-C/L represents water with possible organic pollution [11]. The bacterial cell
count values in the source water are changed to 0.01, 0.1, 1.0, 10, and 100 CFU/mL to
indicate different degrees of microbiological quality of the source water.

Figure 2. Schematic of the Balerma Network (Test Problem 1).

The second network (Test Problem 2) selected is the KLmod network [38], which is
the modified version of the network proposed initially by [39]. KLmod is a single-sourced
network consisting of 935 demand nodes and 1274 pipes, meeting the average demand of
29.1 million L/day. The schematic of the KLmod network is shown in Figure 3.

Figure 3. Schematic of KLmod Network (Test Problem 2).
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Table 2. Details of the scenarios considered for Test Problem 1.

Scenario ID
Reservoir ID 38 Reservoir ID 43 Reservoir ID 44 Reservoir ID 88

C0 * Xb0 * N0 * C0 Xb0 N0 C0 Xb0 N0 C0 Xb0 N0

Scenario 1a 0.5 0.01 1.0 1.0 0.1 2.0 2.0 1 3.0 0.5 10 1.0
Scenario 1b 1.0 0.1 2.0 2.0 1 3.0 0.5 10 1.0 1.0 100 2.0
Scenario 1c 2.0 1 3.0 0.5 10 1.0 1.0 100 2.0 2.0 0.01 3.0
Scenario 1d - 0.01 1.0 - 0.1 2.0 - 1 3.0 - 10 1.0
Scenario 1e - 0.1 2.0 - 1 3.0 - 10 1.0 - 100 2.0
Scenario 1f - 1 3.0 - 10 1.0 - 100 2.0 - 0.01 3.0

* C0, Xb0, and N0 denote chlorine concentration (mg-Cl/L), bacterial cell count (CFU/mL), and total organic carbon (TOC) concentration
(mg-C/L), respectively, in the source nodes (reservoirs).

For Test Problem 2, four scenarios (Scenarios 2a, 2b, 2c, and 2d) were considered
by varying the supplied water characteristics in the reservoir (Reservoir ID 1) (Table 3).
The free chlorine content was varied as 0.5 and 1.0 mg-Cl/L, and the TOC values were
changed to 1.0 and 2.0 mg-C/L. The bacterial cell count was kept at 0.001 CFU/mL for
all the scenarios. Such a very low value of bacterial cell count indicates the source water
meeting the bacteriological quality requirements for direct human consumption.

Table 3. Details of the scenarios considered for Test Problem 2.

Scenario ID
Water Quality Characteristics in the Reservoir ID 1

C0 N0

Scenario 2a 0.5 1.0
Scenario 2b 1.0 2.0
Scenario 2c 0.5 2.0
Scenario 2d 1.0 1.0
Scenario 2e - 1.0
Scenario 2f - 2.0

Water quality analysis was performed on Test Problems 1 and 2 under three and two
scenarios, respectively, to test the proposed model’s performance under non-chlorinated
conditions. Scenarios 1d, 1e, and 1f (Table 2) are comparable to Scenarios 1a, 1b, and
1c, except that the chlorine concentration is zero at the four nodes. Similarly, Scenarios
2e and 2f (Table 3) for Test Problem 2 correspond to Scenarios 2a and 2b with chlorine
concentration in Reservoir ID 1 as zero.

At zero chlorine concentration, the chlorine decay (Equation (1)) and THM formation
(Equation (6)) modules of the MSRT model become inactive, and all the reaction terms in
Equations (2)–(5) constituting chlorine except the term corresponding to bacterial regrowth
and substrate utilization are converted to zero. Additionally, under non-chlorinated con-
ditions, the term becomes 1, and the chlorine inhibition to the bacterial regrowth in the
Monod formulation becomes nonexistent.

For the water quality analysis of both the problems, the BDOC content was assumed to
be 30% of the TOC, and the THM concentration at the source nodes is deemed absent. The
water temperature is considered as 25 ◦C. The analysis corresponding to all the scenarios
mentioned above for Test Problems 1 and 2, using the proposed MSRT model, is performed
with a time step of 300 s until 0.1% convergence in the values of all the reactive species
(steady-state condition) is achieved in the nodes.

3.3. Results and Discussion

For Test Problem 1, with four source nodes, the average flow velocity inside the pipes
and average water age at the demand nodes were 0.89 m/s and 1.02 h, respectively. For
Test Problem 2, with a single source node, the average flow velocity inside the pipes was
0.19 m/s, and the average water age at the demand nodes was 7.2 h. Only <6% of the
nodes of Test Problem 2 had water age value of less than 1 h, while at the same point in Test
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Problem 1 this was >47%. Four demand nodes of Test Problem 1 with Node IDs 1, 72, 265,
and 403 with contributions from only one source node, i.e., Reservoir IDs 88, 38, 44, and 43,
respectively, were selected to demonstrate the effects of the source water characteristics
in determining the water quality. The water age in these four nodes was obtained as 1.33,
1.51, 1.13, and 1.67 h, respectively. To establish the impacts of water residence time in the
water quality, five demand nodes (Node IDs 608, 387, 770, 1185, and 1319) of Test Problem
2 with water ages of 0.10, 2.76, 6.53, 14.60, and 25.71 h, respectively, were selected.

3.3.1. Effects of Source Water Characteristics

The steady-state values of bacterial cell count, chlorine concentrations, TOC concen-
trations, and THM concentrations in the four nodes of Test Problem 1 under Scenarios 1a,
1b, and 1c are shown in Figure 4.

Figure 4. Steady-state values of (a) bacterial cell counts and concentrations of (b) chlorine, (c) TOC,
and (d) Trihalomethanes (THMs) in the nodes of Test Problem 1 under Scenarios 1a, 1b, and 1c.

The bacterial cell counts in the four nodes under the three scenarios varied between
5.3 and 1.4 × 104 CFU/mL. The results established the direct effects of free chlorine and
organic substrate (BDOC) on the bacterial regrowth inside distribution pipes. Under
Scenarios 1a and 1c, the increases in the bacterial counts in the delivered water at nodes
265 and 1 were found to be 2.75 log scale and 0.72 log scale, respectively (Figure 4a). This
indicated the significance of the bacteriological quality of the source water in influencing
the degree of bacterial regrowth under similar growth environments, which could be
attributed to the first-order dependence of the bacterial concentration in the growth reaction
term represented by Monod formulation in Equation (4). It was observed that the NOM
degradation induced by bacteria (substrate utilization) was subservient when compared
with its degradation caused by the reactions with available chlorine (Figure 4b,c). This
could be related to the scales of the selected values of the parameters Y, kCN , and YN . The
observed results of THM concentrations in the four nodes (Figure 4d) indicated that the
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reactions between chlorine and NOM entirely influence the model predictions, and the role
of bacterial-derived precursors in the dynamics of DBP formation is insignificant.

3.3.2. Effects of Water Residence Times

The bacterial cell counts, chlorine concentrations, and TOC concentrations in the five
demand nodes of Test Problem 2 under the Scenarios 2a, 2b, 2c, and 2d are shown in
Figure 5.

Figure 5. Steady-state values of bacterial cell counts and concentrations of chlorine and TOC in Test Problem 2 under
Scenarios (a) 2a, (b) 2b, (c) 2c, and (d) 2d.

The results specified the direct correlation between water age and bacterial regrowth
inside distribution pipes. Under Scenario 2a, a continuous increase in the bacterial cell
count from 0.001 to 183 CFU/mL was observed (Figure 5a). However, under Scenario
2b, the bacterial regrowth followed a downward trend after the water age value 14.60 h
(Figure 5b). This could be attributed to the relative values of the reaction terms corre-
sponding to regrowth and mortality in Equation (4). A 100% increase in the free chlorine
concentration and 50% reduction in the TOC content under Scenario 2d, compared to
Scenario 2c, effectuated a reversal of a 6.1 log scale increment in the bacterial activity to
a 0.23 log scale decrement (Figure 5c,d). These results established the advantages of the
effective regulation of the relative concentrations of chlorine and NOM in the supplied
water to control the bacteriological quality in WDSs with relatively greater water age values.
Nevertheless, a 60% increase in the THM concentration (Figure 6) was observed between
Scenarios 2c and 2d.
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Figure 6. Steady-state THM concentrations in the nodes of Test Problem 2 under Scenarios 2a, 2b, 2c,
and 2d.

This showed that the benefits of inhibiting the bacterial regrowth accomplished by
increasing the chlorine concentration of source water are attained only at the expense of
increased THM formation in the delivered water. Hence, it may be inferred that even under
very low organic loading (TOC = 1 mg/L), an optimal selection of the chlorine dose may
be essential to minimize the microbiological and chemical risks in the delivered water.

3.3.3. Water Quality Modeling in Non-chlorinated Systems

The proposed MSRT functioned well under non-chlorinated conditions for both Test
Problems 1 and 2. As expected, the absence of free chlorine in water favored the bacterial
regrowth in the delivered water (Figure 7).

Figure 7. Steady-state bacterial cell counts in the nodes of (a) Test Problem 1 and (b) Test Problem 2 under non-
chlorinated conditions.

The maximum increment in the bacterial cell counts at the demand nodes of the Test
Problem 1, under non-chlorinated conditions, was observed to be 0.73 log scale, 1.23 log
scale, and 1.19 log scale, respectively, for Scenarios 1d, 1e, and 1f when compared with
Scenarios 1a, 1b, and 1c (Figure 7a). Similarly, when compared with Scenarios 2a and 2b, the
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maximum increment in the bacterial cell counts in the demand nodes of test problems under
Scenarios 2e and 2f was found to be 3 log scale and 3.47 log scale, respectively (Figure 7b).
Nevertheless, the average comparative increments under the scenarios mentioned above
for Test Problem 2 were obtained as 1.33 log scale and 1.20 log scale, respectively. This
showed that in the absence of chlorine’s inhibitory effects in water, the model predictions
of bacterial regrowth under substrate loadings of 0.3 and 0.6 mg-C/L are comparable. This
might be attributed to the magnitude of the KS value selected in the bacterial regrowth
module. However, the NOM degradation in the water in the absence of free chlorine was
subservient (Figure 8) compared to that in chlorinated water. This is partly attributed to
the magnitude of the selected value of Y, and partly to the higher rates of the reactions
between chlorine and organic matter in WDSs.

Figure 8. Steady-state TOC concentrations in the nodes of Test Problem 1 under Scenarios 1d, 1e, and
1f corresponding to non-chlorinated conditions.

4. Parameter Sensitivity Analysis
4.1. Deterministic Sensitivity Analysis Procedure

The proposed mechanistic MSRT model provides a framework to understand the
interactions among chlorine, NOM, and bacteria in WDSs and predict the outcome of
these interactions on the microbiological and chemical qualities of the delivered water.
Even though all the model parameters can be derived through deterministic experimental
investigations, the uncertainties in the state of knowledge about some of the mechanisms
considered during the model formulation impede us from warranting deterministic predic-
tions. Parameter sensitivity analysis becomes accordingly significant in this regard. This
helps us to calculate the deviations in the model outputs in a localized region of the space
of parameter inputs.

The simple deterministic sensitivity analysis procedure [41] was selected in this study
for performing parameter analysis. The procedure is based on the idea of varying one
uncertain model parameter at a time. The sensitivity is defined [12] as follows:

S∗ =
∂Z
∂α

=
[Z(α + ∆α)− Z(α)]/Z(α)

∆α/α
(8)

where S∗ is the normalized relative sensitivity coefficient or elasticity, Z is the state variable,
α is the model parameter of interest, and ∆α is the perturbation step. In the present work,
∆α value in Equation (8) was selected as 0.01, as suggested by [12]. The concentrations of
suspended bacteria, chlorine, and THMs, which are the outputs of the bacterial regrowth
module, chlorine decay module, and THM formation module, were selected as the state
variables for conducting the parameter sensitivity analysis. In total, 17 parameters were se-
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lected, and the analysis was performed under all the scenarios mentioned in Tables 2 and 3
by increasing one parameter (out of 17 parameters) by 1% and keeping all other parameters
at their base values. Using Equation (8), the normalized relative sensitivity coefficient
values corresponding to the three state variables (Xb, C, and H) mentioned above were
determined at every demand node (and storage tanks, if any) for each time step under
all the test conditions. The S∗ values obtained at all the nodes for the entire simulation
period were compared to select the maximum value of the sensitivity coefficient. The
maximum values of S∗ corresponding to the three modules, thus obtained, are reported as
the sensitivity of a model parameter to the model outputs.

4.2. Sensitivity of Model Parameters

The parameter sensitivity analysis results for all the loading conditions (Tables 2 and 3)
on Test Problems 1 and 2 are presented in Tables 4 and 5, respectively. The “+” and “−”
signs associated with the S∗ values indicate the increment and decrement, respectively.
Interestingly, the S∗ values were found to be highly dependent on the operating conditions.
This shows the impact of the source water characteristics in determining the various
multispecies reactions in WDSs and directing the sensitivity of the model outputs to the
assumed parameter values. The reported results indicate that the network characteristics
play a crucial part in controlling the scale of the S∗ values. Out of the two problems
considered, the S∗ values were comparatively higher for Test Problem 2 than that for Test
Problem 1. This could be attributed to the water residence time inside pipes in both the
WDSs. The greater water residence times, caused by the low flow velocities, might have
enhanced the interactions between the six reactive species within the system domain and
influenced the bacterial regrowth in Test Problem 2 significantly more compared to that in
Test Problem 1.

Table 4. Results of the parameter sensitivity analysis conducted for Test Problem 1.

Parameter

S*Value

Bacterial Regrowth Module Chlorine Decay Module THM Formation Module

Scenario
1a

Scenario
1b

Scenario
1c

Scenario
1a

Scenario
1b

Scenario
1c

Scenario
1a

Scenario
1b

Scenario
1c

kCN 0.435 0.952 0.882 −0.488 −0.583 −0.543 0.995 0.995 0.996
kCX −1.116 −1.747 −1.749 - −0.001 - - - -
kw 0.022 0.005 0.003 −0.018 −0.017 −0.015 −0.001 −0.001 −0.002

µmax,b 2.433 2.148 2.145 - 0.002 0.002 - - -
µmax,a 0.002 0.001 0.001 - - - - - -

KS −0.689 −0.542 −0.906 - −0.001 −0.001 - - -
Y 0.002 0.011 0.016 - −0.003 −0.002 - - -

kinact −0.551 −0.833 −0.821 - −0.001 −0.001 - - -
YX −1.116 −1.747 −1.749 - - - - - -
YN −0.194 −0.437 −0.357 0.101 0.141 0.126 −0.014 −0.017 −0.008
a - - - - - - - - -

kmort −0.080 −0.077 −0.082 - - - - - -
kdep. −1.184 −0.567 −0.499 - - - - - -
kdet 0.003 002 0.003 - - - - - -
kr 0.003 0.005 0.003 - - - - - -

YH1 - - - - - - 1.000 1.000 1.000
YH2 - - - - - - - - -



Water 2021, 13, 463 15 of 19

Table 5. Results of the parameter sensitivity analysis conducted for Test Problem 2.

Parameter

S* Value

Bacterial Regrowth Module Chlorine Decay Module THM Formation Module

Scenario
2a

Scenario
2b

Scenario
2c

Scenario
2d

Scenario
2a

Scenario
2b

Scenario
2c

Scenario
2d

Scenario
2a

Scenario
2b

Scenario
2c

Scenario
2d

kCN 1.831 3.211 3.658 0.474 −2.121 −3.483 −5.217 −0.835 0.996 0.993 0.994 0.995
kCX −3.837 −2.942 −2.563 −5.099 −0.066 −0.198 −0.055 - 0.006 0.006 0.001 -
kw 0.183 0.105 0.061 0.280 −0.086 −0.083 −0.080 −0.092 −0.015 −0.009 −0.008 −0.012

µmax,b 35.327 24.195 43.618 10.610 0.646 1.964 0.987 - −0.056 −0.060 −0.038 -
µmax,a - - - - - - - - - - - -

KS −14.172 −7.627 −10.193 −6.091 −0.287 −0.828 −0.317 - - 0.024 0.015 -
Y 2.102 1.850 1.916 - −0.026 −0.097 −0.055 - 0.002 0.002 −0.001 -

kinact −1.522 −1.427 −1.420 −1.469 −0.026 −0.091 −0.022 - 0.002 0.003 0.001 -
YX −3.837 −2.942 −2.563 −5.099 −0.065 −0.188 −0.041 - 0.006 0.006 0.002 -
YN −8.576 −6.580 −3.000 −10.282 1.173 2.028 1.373 1.588 −0.128 −0.127 −0.058 −0.378
a - 0.001 0.001 - - - - - - - - -

kmort −1.103 −0.628 −0.935 −0.553 −0.021 −0.059 −0.031 - 0.002 0.002 0.001 -
kdep −9.367 −5.445 −8.017 −4.799 −0.183 −0.533 −0.273 - 0.016 0.016 0.011 -
kdet 0.008 0.007 0.007 0.001 - - - - - - - -
kr - - - - - - - - - - - -

YH1 - - - - - - - - 1.000 1.000 1.000 1.000
YH2 - - - - - - - - - - - -

4.2.1. Parameter Sensitivity on Bacterial Regrowth Module Outputs

The S∗ values corresponding to the bacterial regrowth module were relatively higher
than the chlorine decay and the THM formation modules of the MSRT model. The average
S∗ values for µmax,b were obtained as 2.422 and 28.437 from the analyses conducted on Test
Problems 1 and 2. The results confirm that the growth parameter µmax,b has the maximum
S∗ value out of the 17 parameters, hence it is most significant in determining the model
predictions on microbiological quality. The µmax,b value +2.433 of the parameter µmax,b
corresponding to Scenario 1a specified that the bacterial regrowth module output of the
MSRT model would increase by 2.433% when the parameter µmax,b was increased by 1%
from its base value while keeping all other parameters at their base values.

The analysis results revealed that the network characteristics significantly influence
the order of sensitivity of model parameters on the bacterial regrowth module outputs.
For Test Problem 1, YX and kCX were the second most sensitive parameters, while for
Test Problem 2, KS was the parameter most influencing the bacteriological activity after
µmax,b. The parameters YX and kCX defining the reactions between chlorine and bacteria
were observed to have the same S∗ values (Tables 4 and 5). Nevertheless, these two
parameters were found to be insensitive (S∗ < 1) to the outputs of the chlorine decay
module. This showed that the significance of these two parameters and their influence
on the model outputs is governed by the second reaction term on the right-hand side
(RHS) of Equation (4), describing the chlorine-induced mortality of the bulk phase bacteria.
The growth parameter KS was observed to have a noticeable decrementing effect on the
bacterial regrowth module predictions. This parameter controls the growth dynamics in
the Monod kinetic formula.

The comparison of the S∗ values corresponding to the reaction yield coefficients
(YN and YX) and the reaction rate constants (kCN and kCX) concerning the outputs of
the chlorine decay and bacterial regrowth modules helps present a clear image of the
comparative importance of the chlorine reactions with NOM and bacteria in influencing
the model predictions. The bacterial regrowth module outputs are more sensitive to YN and
kCN compared to the outputs of the chlorine decay module. This infers the significance of
the second reaction term on the RHS of Equation (3) in governing the substrate utilization
and bacterial activity, defined by the first reaction term in the RHS of Equation (4). The
parameter kinact, defining the effect of chlorine in inhibiting bacterial regrowth, was also
found to have a prominent control over the bacterial regrowth module outputs and a
decremental effect on the growth dynamics.
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Interestingly, the parameter Y, describing the cell mass generation from unit sub-
strate consumption, was insensitive (S∗ < 1) to the bacterial regrowth module outputs
corresponding to Test Problem 1. However, it was found to have a noticeable influence
(average S∗ = 1.956) on the outputs from the analysis on Test problem 2. This could be
attributed to the operating conditions and, more particularly, the substrate concentration
and bacterial cell counts in the source water. The analysis of Test Problem 2 was carried
out with comparatively lower bacterial cell counts (Xb0 = 1 CFU/mL) in the source water.
Consequently, the 1% increment in the Y value induced a more significant influence on the
bacterial activity [42] in Test Problem 2 compared to that in Test Problem 1.

Another parameter that has shown marked influence on the bacterial regrowth module
outputs is the parameter kdep, defining the attachment (first-order kinetics) of the bulk
phase bacteria on the biofilm layers. However, the detachment coefficient was found to be
insignificant in influencing the bulk phase bacteriological activity predictions. Similarly,
another parameter µmax,a, defining the biofilm growth dynamics, was also observed to be
unimportant in regulating the model predictions on bulk phase bacterial concentrations.
Altogether, the sensitivity analysis results give the impression that the model predictions
of bacterial dynamics are most sensitive to the bulk phase growth reaction. The results
also established that the biofilm parameters defining the bacterial interactions do not
significantly control bulk phase microbiological quality predictions.

4.2.2. Parameter Sensitivity on Chlorine Decay Module Outputs

Overall, the S∗ values corresponding to the chlorine decay module of the MSRT model
were not significantly high. This indicated that the model predicted chlorine concentrations
are not sensitive to most of the 17 parameters considered. kCN was the parameter most
influencing the dynamics of chlorine decay. The parameter YN was observed to be the
second most significant in determining the model predictions. It is interesting to note the
slightly higher S∗ values of the growth parameters (µmax,a, KS, and kdep), particularly for
Test Problem 2 (Table 5). This proves the importance of the first reaction term on the RHS
of Equation (2) in controlling the dynamics of chlorine reactions defined by Equation (1).

4.2.3. Parameter Sensitivity on THM Formation Module Outputs

The S∗ value corresponding to the parameter YH1 was found to be 1, and for the
parameter YH2, the same was obtained to be less than 0.001. It may be noted these two
parameters only appear in the THM formation module (Equation (6)), and they have no
impact on the outputs of the other five modules of the MSRT model (Equations (1)–(5)).
Hence, it could be inferred that the share of the model predicted THM formation by the
reactions between chlorine and bacteria-derived DBP precursors (second reaction term
on the RHS of Equation (6)), in the total THM formation was less than 0.1% for all the
scenarios tested. In other words, more than 99.9% of the model predicted THM formation
corresponds to the reactions between chlorine and NOM. This explains the relatively trivial
but obvious impact of the parameters linked with the NOM degradation on the outputs of
the THM formation module. Nevertheless, other than for the parameters YH1, and kCN , the
S∗ values of all other parameters were relatively small (Tables 4 and 5), and hence, their
sensitivity on model predictions may be ignored.

4.3. Parameter Sensitivity under Non-chlorinated Conditions

The parameter sensitivity analysis revealed that the S∗ values corresponding to the
bacterial regrowth module for both Test Problems 1 and 2 under non-chlorinated conditions
are comparable to those obtained under chlorinated conditions. Nonetheless, a noticeable
increment in the S∗ values corresponding to the parameter µmax,b was observed, specifically
for Test Problem 1 (Table 6). This indicated that the sensitivity of the model predicted
bacteriological quality on µmax,b increases in the absence of inhibitory effects of chlorine
in the water. The parameters KS and kdep were observed to be the second and third most
significant parameters in influencing the outputs of the bacterial regrowth module. Inter-
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estingly, the variations in the S∗ values of the model parameters under different operating
conditions were relatively lower in the absence of free chlorine in water (Tables 4–6).

Table 6. Values corresponding to the bacterial regrowth module for Test Problems 1 and 2 under
non-chlorinated conditions.

Parameter

S*Value

Test Problem 1 Test Problem 2

Scenario 1d Scenario 1e Scenario 1f Scenario 2e Scenario 2f

kCN - - - - -
kCX - - - -
kw - - - - -

µmax,b 2.727 2.726 2.711 33.359 32.105
µmax,a - - - - -

KS −0.674 −0.743 −0.773 −10.730 −6.736
Y 0.002 0.001 0.013 2.002 1.843

kinact - - - - -
YX - - - - -
YN - - - - -
a - - - - -

kmort −0.062 −0.062 −0.062 −0.839 −0.641
kdep −0.552 −0.552 −0.551 −7.194 −5.554
kdet 0.002 0.001 0.001 0.001 0.001
kr - - - - -

YH1 - - - - -
YH2 - - - - -

This could be attributed to the reduced influence caused by the lesser number of
reaction terms in the model governing equations due to no chlorine being in the system
domain. The higher BDOC concentrations observed under non-chlorinated conditions
showed that the reactions of NOM with chlorine are more substantial in determining
its degradation in water than its utilization as a substrate in the growth reactions of the
bulk phase bacteria. The analysis results also established the insensitivity of the bacterial
regrowth module outputs to the parameters defining the biofilm dynamics.

5. Limitations of the Study and Future Scope

The paper attempted to develop a generic, easy-to-use simulation engine to aid the
WDSs design and operation. However, the proposed MSRT model utilizes the computing
environment of EPANET-MSX, and hence, it is plagued with the numerical limitations of
the Lagrangian transport algorithm. Further, the model is purely advective, and due to this
reason, its pertinency in systems operated with low flow velocities may be re-examined.
The model selects only one bacteria strain (Pseudomonas) to simplify the interpretations of
microbiological interactions in the bulk and wall phases of the WDS. However, Pseudomonas
cannot be recommended as the prototypical organism, representing the heterogeneous
bacterial community in WDSs. Thus, incorporating more bacterial strains might be con-
sidered in the future to improve the applicability of the proposed model. The formation
and transport of THMs are only considered in the present study. There may be other DBPs,
inducing more severe carcinogenic and reproductive risks, which need to be included in
the model formulation. A detailed experimental/field investigation may be required to
understand and adjust the various model parameters. Future work aims to calibrate and
validate the MSRT model for predicting the microbiological and chemical quality variations
in real-world WDSs.

6. Conclusions

An EPANET-MSX based mechanistic MSRT model to predict the temporospatial
variations of bacteriological and chemical qualities in WDSs was presented. The model



Water 2021, 13, 463 18 of 19

applicability was demonstrated by applying it to two well-tested benchmark networks
under both chlorinated and non-chlorinated conditions. The results established the model’s
suitability to be applied in WDSs operated with or without disinfectant chemical residuals.
The direct effects of the effective regulation of chlorine and organic loading concentrations
in the supplied water to control the bacterial regrowth and THM formation in WDSs were
analyzed. In chlorinated WDSs, when operated with very low organic loading, the chlorine
dose played an essential part in minimizing the chemical risks of the delivered water. The
deterministic parameter sensitivity analysis revealed the impact of the operating conditions
and the network characteristics in determining the extent of various multispecies reactions
in WDSs and directing the sensitivity of the model outputs to the kinetic parameters.
The analysis results established that the maximum specific growth rate constant for bulk
phase bacteria (µmax,a) is most significant when defining the model predictions on bacterial
dynamics in WDSs.
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