Regional-Scale Model Analysis of Climate Changes Impact on the Water Budget of the Critical Zone and Groundwater Recharge in the European Part of Russia
Abstract
:1. Introduction
2. Study Area and Input Climate Data
3. Methods
3.1. Analysis of Climate Changes
3.2. Groundwater Recharge Model
3.3. Groundwater Recharge Model Calibration and Verification
4. Analysis of Latitudinal Patterns of Climatic Changes in the ER
4.1. Precipitation
4.2. Air Temperature
4.3. Wind Speed and Air Humidity
5. Simulation Results and Discussion
5.1. Surface Runoff
5.2. Evapotranspiration
5.3. Groundwater Recharge and Soil Water Storage
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Amanambu, A.C.; Obarein, O.A.; Mossa, J.; Li, L.; Ayeni, S.S.; Balogun, O.; Oyebamiji, A.; Ochege, F.U. Groundwater System and Climate Change: Present Status and Future Considerations. J. Hydrol. 2020, 589, 125163. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Gleeson, T.; Moosdorf, N.; Befus, K.M.; Schneider, A.; Hartmann, J.; Lehner, B. Global patterns and dynamics of climate–groundwater interactions. Nature Clim. Change 2019, 9, 137–141. [Google Scholar] [CrossRef]
- Fan, Y.; Clark, M.; Lawrence, D.M.; Swenson, S.; Band, L.E.; Brantley, S.L.; Brooks, P.D.; Dietrich, W.E.; Flores, A.; Grant, G.; et al. Hillslope hydrology in global change research and Earth system modeling. Water Resour. Res. 2019, 55, 1737–1772. [Google Scholar] [CrossRef] [Green Version]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Taylor, R.G.; Favreau, G.; Todd, M.C.; Shamsudduha, M.; Villholth, K.G.; Macdonald, A.M.; Scanlon, B.R.; Kotchoni, D.O.V.; Vouillamoz, J.-M.; et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 2019, 572, 230–234. [Google Scholar] [CrossRef]
- Condon, L.E.; Atchley, A.L.; Maxwell, R.M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 2020, 11, 873. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Li, H.; Miguez-Macho, G. Global Patterns of Groundwater Table Depth. Science 2013, 339, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Blöschl, G.; Bierkens, M.F.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.; Sivapalan, M.; et al. Twenty-three Unsolved Problems in Hydrology (UPH)–A community perspective. Hydrol. Sci. J. 2019, 64, 1141–1158. [Google Scholar] [CrossRef] [Green Version]
- Loucks, D. Solving the 23 Major Mysteries in Hydrology: Who Cares and Why? EGU General Assembly 2020, EGU2020, 364. [Google Scholar] [CrossRef]
- Barthel, R.; Banzhaf, S. Groundwater and Surface Water Interaction at the Regional-scale–A Review with Focus on Regional Integrated Models. Water Resour. Manag. 2016, 30, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Leterme, B.; Mallants, D.; Jacques, D. Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1d. Hydrol. Earth Syst. Sci. 2012, 16, 2485–2497. [Google Scholar] [CrossRef] [Green Version]
- Šimůnek, J.; Šejna, M.; Saito, H.; Sakai, M.; Van Genuchten, M.T. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Ver. 4.08; Prepr. Depart. of Environ. Sci. University of California: Riverside, CA, USA, 2009; 296p. [Google Scholar]
- Šimůnek, J. Estimating groundwater recharge using HYDRUS-1D. Geol. Inst. Bulg. Acad. Sci. 2015, 29, 25–36. [Google Scholar]
- Adane, Z.; Zlotnik, V.A.; Rossman, N.R.; Wang, T.; Nasta, P. Sensitivity of Potential Groundwater Recharge to Projected Climate Change Scenarios: A Site-Specific Study in the Nebraska Sand Hills, USA. Water 2019, 11, 950. [Google Scholar] [CrossRef] [Green Version]
- De Silva, C.S. Simulation of Potential Groundwater Recharge from the Jaffna Peninsula of Sri Lanka using HYDRUS-1D Model. OUSL Journal 2015, 7, 43–65. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Jin, M.; van Genuchten, M.T.; Wang, B. Ground water recharge at five representative sites in the Hebei Plain of china: Case study. Ground Water 2011, 49, 286–294. [Google Scholar] [CrossRef]
- Wang, T.; Zlotnik, V.A.; Šimůnek, J.; Schaap, M.G. Using pedotransfer functions in vadose zone models for estimating groundwater recharge in semiarid regions. Water Resour. Res. 2009, 45, 12. [Google Scholar] [CrossRef] [Green Version]
- Pozdniakov, S.P.; Vasilevsky, P.Y.; Grinevskiy, S.O.; Lekhov, V.A.; Sizov, N.E.; Wang, P. Variability in spatial-temporal recharge under the observed and projected climate: A site-specific simulation in the black soil region of Russia. J. Hydrol. 2020, 590, 125247. [Google Scholar] [CrossRef]
- Middleton, N.J.; Thomas, D.S.G. World Atlas of Desertification, 2nd ed.; Arnold: London, UK, 1997. [Google Scholar] [CrossRef]
- Grinevskii, S.O.; Pozdnyakov, S.P. Principles of Regional Estimation of Infiltration Groundwater Recharge Based on Geohydrological Models. Water Resour. 2010, 37, 638–652. [Google Scholar] [CrossRef]
- Grinevskiy, S.O.; Pozdniakov, S.P. The use of HYDRUS-1D for groundwater recharge estimation in boreal environments. In HYDRUS Software Applications to Subsurface Flow and Contaminant Transport Problems; Šimůnek, J., van Genuchten, M.T., Kodešová, R., Eds.; Dept. of Soil Science and Geology, Czech University of Life Sciences: Prague, Czech Republic, 2013; pp. 107–118. [Google Scholar]
- Grinevskiy, S.O.; Pozdnyakov, S.P. A retrospective analysis of the impact of climate change on groundwater resources. Mosc. Univ. Geol. Bull. 2017, 72, 200–208. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrig. Drain. Pap. 1998, 56, 300. Available online: http://www.fao.org/docrep/X0490E/X0490E00.htm (accessed on 5 February 2021).
- Pozdniakov, S.P.; Vasilevskiy, P.Y.; Grinevsky, S.O. Estimation of groundwater recharge by flow in vadose zone simulation at the watershed with different landscapes and soil profiles. Geol. Inst. Bulg. Acad. Sci. 2015, 29, 47–58. [Google Scholar]
- Pozdniakov, S.P.; Grinevsky, S.O.; Dedulina, E.A. Impact of climate change on long-term dynamics of seasonal freezing in Moscow Region: Retrospective analysis and uncertainties in forecasting for the second half of the 21st century. Earth`s Cryosphere 2019, 4, 22–30. [Google Scholar]
- Grinevskii, S.O. Structure and Parameter Schematization of the Vadose Zone for Groundwater Recharge Modeling. Mosc. Univ. Geol. Bull. 2010, 65, 387–398. [Google Scholar] [CrossRef]
- Grinevskii, S.O. Modeling root water uptake when calculating unsaturated flow in the vadose zone and groundwater recharge. Mosc. Univ. Geol. Bull. 2011, 66, 189–201. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 02502. [Google Scholar] [CrossRef]
- Yang, D.; Sun, F.; Liu, Z.; Cong, Z.; Ni, G.; Lei, Z. Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resour. Res 2007, 43, W04426. [Google Scholar] [CrossRef]
- Li, D.; Pan, M.; Cong, Z.; Zhang, L.; Wood, E. Vegetation control on water and energy balance within the Budyko framework. Water Resour. Res. 2013, 49, 969–976. [Google Scholar] [CrossRef]
- Roshydromet Project. The second Assessment Report of RosHydromet on Climate Changes and Their Consequences on the Territory of the Russian Federation. General Summary; Roshydromet: Moscow, Russia, 2014; 58p. [Google Scholar]
- Kireeva, M.; Frolova, N.; Rets, E.; Samsonov, T.; Entin, A.; Kharlamov, M.; Telegina, E.; Povalishnikova, E. Evaluating climate and water regime transformation in the European part of Russia using observation and reanalysis data for the 1945–2015 period. Int. J. River Basin Manag. 2020, 18, 491–502. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K. Variability of Air Temperature, Precipitation and Outflows in the Vistula Basin (Poland). Resources 2020, 9, 103. [Google Scholar] [CrossRef]
- Kalyuzhny, I.L.; Lavrov, S.A. Effect of climate changes on the soil freezing depth in the Volga River basin. Ice Snow 2016, 56, 207–220. [Google Scholar] [CrossRef]
- Li, L.; Ni, J.; Chang, F.; Yue, Y.; Frolova, N.; Magritsky, D.; Borthwick, A.G.L.; Ciais, P.; Wang, Y.; Zheng, C.; et al. Global trends in water and sediment fluxes of the world’s large rivers. Sci. Bull. 2020, 65, 62–69. [Google Scholar] [CrossRef] [Green Version]
Weather Station | Nothern Latitude, Deg. | Eastern Longitude, Deg. | Precipitation, mm | Air Temperature, °C | ||||
---|---|---|---|---|---|---|---|---|
Annual | Warm Season | Cold Season | Annual | Warm Season | Cold Season | |||
Mezen | 65.9 | 44.2 | 532.3 | 371.7 | 160.6 | −0.5 | 6.7 | −10.5 |
Reboli | 63.8 | 30.8 | 613.1 | 414.7 | 198.4 | 1.6 | 8.6 | −8.3 |
Petrozavodsk | 61.8 | 34.3 | 594.4 | 412.6 | 181.8 | 2.9 | 9.7 | −6.6 |
S.Petersburg | 60.0 | 30.3 | 649.1 | 432.2 | 216.9 | 5.5 | 12.0 | −3.6 |
Tihvin | 59.7 | 33.5 | 746.7 | 478.3 | 268.3 | 3.9 | 10.8 | −5.9 |
Belogorka | 59.4 | 30.1 | 677.5 | 454.9 | 222.6 | 4.2 | 10.8 | −5.0 |
Vologda | 59.3 | 39.9 | 559.0 | 389.6 | 169.4 | 2.9 | 10.5 | −7.6 |
Bologoe | 57.9 | 34.1 | 659.9 | 448.7 | 211.2 | 4.3 | 11.2 | −5.4 |
Kostroma | 57.8 | 40.8 | 616.6 | 423.0 | 193.6 | 3.9 | 11.6 | −6.8 |
Toropec | 56.5 | 31.6 | 737.5 | 473.9 | 263.6 | 4.9 | 11.7 | −4.6 |
Mozhaisk | 55.5 | 36.0 | 655.5 | 454.9 | 200.7 | 4.8 | 11.9 | −5.3 |
Smolensk | 54.8 | 32.1 | 714.6 | 473.6 | 241.0 | 5.1 | 12.0 | −4.4 |
S-Demensk | 54.4 | 34.0 | 687.6 | 469.7 | 217.8 | 5.0 | 12.0 | −4.8 |
Suhinichi | 54.1 | 35.4 | 616.7 | 425.5 | 191.2 | 5.1 | 12.3 | −5.0 |
Zhizdra | 53.8 | 34.7 | 609.9 | 428.4 | 181.5 | 5.1 | 12.2 | −4.9 |
Poniri | 52.3 | 36.3 | 628.5 | 417.1 | 211.4 | 5.6 | 13.0 | −4.9 |
Voronezh | 51.8 | 39.2 | 577.6 | 371.6 | 206.0 | 6.6 | 14.4 | −4.2 |
Valuiki | 50.2 | 38.1 | 571.3 | 357.5 | 213.8 | 7.4 | 14.9 | −3.1 |
Volgograd | 48.7 | 44.4 | 398.1 | 220.5 | 177.6 | 8.6 | 17.2 | −3.4 |
Rostov-Don | 47.3 | 39.8 | 606.4 | 343.7 | 262.8 | 9.9 | 17.3 | −0.5 |
Gigant | 46.5 | 41.3 | 513.8 | 318.8 | 194.9 | 10.2 | 17.6 | −0.3 |
Akhtarsk | 46.0 | 38.1 | 580.6 | 341.0 | 239.6 | 11.4 | 18.4 | 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grinevskiy, S.O.; Pozdniakov, S.P.; Dedulina, E.A. Regional-Scale Model Analysis of Climate Changes Impact on the Water Budget of the Critical Zone and Groundwater Recharge in the European Part of Russia. Water 2021, 13, 428. https://doi.org/10.3390/w13040428
Grinevskiy SO, Pozdniakov SP, Dedulina EA. Regional-Scale Model Analysis of Climate Changes Impact on the Water Budget of the Critical Zone and Groundwater Recharge in the European Part of Russia. Water. 2021; 13(4):428. https://doi.org/10.3390/w13040428
Chicago/Turabian StyleGrinevskiy, Sergey O., Sergey P. Pozdniakov, and Ekaterina A. Dedulina. 2021. "Regional-Scale Model Analysis of Climate Changes Impact on the Water Budget of the Critical Zone and Groundwater Recharge in the European Part of Russia" Water 13, no. 4: 428. https://doi.org/10.3390/w13040428
APA StyleGrinevskiy, S. O., Pozdniakov, S. P., & Dedulina, E. A. (2021). Regional-Scale Model Analysis of Climate Changes Impact on the Water Budget of the Critical Zone and Groundwater Recharge in the European Part of Russia. Water, 13(4), 428. https://doi.org/10.3390/w13040428