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Abstract: We study cross-sections on the Detailed Geological Map of Poland (SMGP) to find a geologic
and geomorphic pattern under river valleys in Poland. The pattern was found in 20 reaches of the
largest Polish rivers (Odra, Warta, Vistula, Narew, and Bug) located in the European Lowland, in
the landscape of old (Pleistocene, Saalian) glacial high plains extending between the Last Glacial
Maximum (LGM) moraines on the North and the Upland on the South. The Upland was slightly
folded and up-faulted during Alpine orogeny together with the thrust of Carpathian nappes and
the uplift of Tatra Mts. and Sudetes. The found pattern is an alluvial river with broad Holocene
floodplain and the channel developed atop the protrusion of bedrock (Jurassic, Cretaceous limestones,
marlstones, sandstones) or non-alluvial, cohesive, overconsolidated sediments resistant to erosion
(glacial tills, lacustrine or “ice-dammed lake” clays) of Cenozoic (Paleogene, Neogene, Quaternary—
Elsterian). We regard the sub-alluvial protrusion as the limit of river incision and scour. It cannot
be determined why the river flows atop these protrusions, in opposition to “differential erosion”,
a geomorphology principle. We assume it is evidence of geological flood control. We propose
an environmental and geomorphological framework for the hydrotechnical design of instream
river training.

Keywords: flood control; scour; incision control; alluvial substrate; rock resistance; planation sur-
face; glaciotectonic

1. Introduction

Riverine floodplains cover ca. 1% of Earth’s terrestrial surface, but are among the most
distinctive landscape features on the globe, as well as the most biologically productive and
diverse ecosystems on our planet [1]. Due to the great fertility of floodplains, people have
reclaimed most of their surface. They had great cultural and economic importance for early
civilizations, but floodplains became one of the most endangered landscapes on Earth [1].
Human pression on floodplains threatens them, and it resulted in the development of a
false perspective—an overestimation of the role of human efforts to control the dynamics
of the alluvial plains in the river valley, especially a proximal zone of these plains.

The proximal part of a floodplain [2] is a zone adjacent to the river channel, shaped by
the deposition and erosion coming directly from the main channel. Sometimes such a
zone raises above the flood basin level, and is called an alluvial ridge [3]. In fluvial
sedimentology, the proximal zone of floodplain represents the following facies: channel-fill,
channel-belt, natural levee, and crevasse-splay [4].

From the perspective of geomorphology, the floodplain is a landform developed by
fluvial deposition (geological and geomorphological definitions compiled by [5]) for a long
time, thus it can be regarded as a reflection of some tendencies in the river’s behavior.
From the point of view of geology, the reflection of the river’s behavior (mentioned above)
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lasts at least since the beginning of the Holocene [6,7], thus, much longer than the Anthro-
pocene perspective [8–10]. Considering the fact that flood events occurred thousands of
times during the Holocene, a repetition of fluvial processes in a given river reach could
develop there a repetitive pattern of geological setting. The reading of such a pattern can
be regarded as an attempt to understand the impact of the flood on the geological structure
of the river valley as well as the geological flood control.

The results of previously published studies on this topic in a relatively small area
(representing two large rivers in Poland [11–18]) indicate the existence of a specific geo-
logical pattern under the rivers flowing through the lowland landscape: the river prefers
somehow to flow atop the bedrock protrusion.

The basic geomorphological principle of “differential erosion” [19–25] says something
different than the paragraph above. This principle was a milestone in the conception of
drainage pattern development, especially in mountainous areas of the Earth, e.g., in the
Outer Carpathian Mts (OC)—the headwater of the largest river in our study. This mountain
range is built on flysch—a sequence of sandstones resistant to erosion and shales susceptible
to erosion. Initially, when the Carpathians were assumed as an area which underwent
long-lasting tectonic quiescence after the end of alpine orogeny, differential erosion used
to be perceived as a dominating process. On the presumed conditions, the Carpathian
streams incised into a surface built on “soft” shales, therefore differential erosion exhumed
sandstones outcrops. The sandstones formed the summit, and the walls of the OC mountain
ridges. Planation surfaces of different age (from Miocene up to early Pleistocene) were
described as a distinct feature of the OC geomorphology [26], but later the existence of these
landforms was critically revised [27]. The revision induced doubts in the topic of differential
erosion in the OC. According to the present-day views on the OC morphogenesis [28],
the differential erosion still plays the most significant role on mountains exhumation,
however, the eroded surface does not differ due to diversity in lithology (bedrock relative
resistance [26]), but rather due to tectonics [28]. Accretionary wedges and other structures
which developed between nappes are more susceptible to erosion than the structures less
impacted by tectonic fragmentation [28].

In general, lowlands are perceived as an area shaped by (fluvial) deposition rather
than (differential) erosion, eg., the Lower Mississippi River [4,7]. This can be a reason for
the lack of papers describing the differential erosion process in the lowlands. Erosional
processes in lowland rivers usually act in Holocene in alluvial deposits [2,29,30]. If the
lowland was glaciated in Pleistocene by several advances of ice sheets, rivers had to cut
through the glacial moraines [18], especially in the case of rivers flowing to the Baltic Sea
in Germany, Poland, Lithuania, Latvia, and Northwest Russia, where ice sheets advanced
upslope, in contrast to the Interior Plains of Northern America [7,31–34].

Such a regional framework can develop a unique relation between the geological
control of flood and the evolution of the fluvial system in Holocene. The relation is written
in the geological pattern mentioned above [11–18]. This specific pattern looks opposite
to: (i) the pattern expected from the differential erosion, and (ii) the pattern found in a
typical lowland river valley where fluvial deposition increases downstream. The increasing
rate of deposition creates in the lower reach of lowland river so-called “Holocene alluvial
wedge” between the bedrock (or just non-alluvial substrate of the alluvium) and the
floodplain surface [4].

The existence of the specific pattern [11–18] should be verified in a larger area than
the Vistula and Bug River valleys [11–18]. This is the main goal of our study: to determine
the repetitive pattern of geological setting under large rivers (in the whole of Poland).

2. Study Area, Materials and Methods

The study area is Poland (Figure 1). The study area cannot be extended to a larger
territory (e.g., continental or global scale), since we aim to use a comparative method
and comparative materials—Detailed Geological Map of Poland (sometimes in English:
DMGP, in Polish: SMGP, further in the text: The Map) at a scale of 1:50,000. The Map
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covers all territory of Poland by 1069 sheets (Figure 1) in a grid of the Polish Topographical
Map according to the Coordinate system 1942 (EPSG: 3333, 3334 and 3335; the local
implementation of Pulkovo 1942 coordinate system). All the sheets were elaborated by
geologists and geomorphologists using the same, uniform instruction which is unique case
in Europe and probably worldwide [35]. Each sheet of The Map contains a geological cross-
section at a vertical scale of 1:2000. Our study focuses on these geological cross-sections.
We review all the published sheets of The Map in order to find on the geological cross-
sections a repetitive pattern of geological setting under large, alluvial valleys. Such valleys
exist in Middle and Northern Poland, but they dominate the landscape belt located between
mountains and uplands in the south of Poland and The Lakeland (bright green and yellow)
in the north of the country (colors according to Figure 1). Due to the dominance of large
river valleys, this region was named The Belt of Great Valleys [36].

After a preliminary review of all published sheets (ca. 1% of 1069 sheets is unpublished
yet) of The Map, the 20 of these sheets revealed the geological cross-section presenting the
discussed pattern [11–18]. The pattern is known from previous studies which were based
mainly on fieldwork [11–18]. These 20 cross-sections were split into 6 groups. Each group
consists of the cross-sections through the same river (or the same reach as in the case of
the Vistula River, the longest and largest one). In every group, we juxtapose the different
cross-sections one on each other and it was done in order to locate the river channel at
the same place and to follow the same orientation consistent with the general river flow
direction in Poland, namely: SW on the left river bank and NE on the right river bank.
We copy from the cross-sections (published below The Map) the following lines: (i) wetted
perimeter of the river channel during a medium (lower than a bankfull) stage; (ii) surface
topography of the floodplain, upper terraces and the valley edges (valley walls); (iii)
the bottom of Holocene alluvial sediments which can be regarded as floodplain defined
by [37]; (iv) bedrock in the extent of their protrusion under the river valley. As the bedrock,
we regard not only the Mesozoic solid rocks (limestones, sandstones) but also glacial
tills and lacustrine (or ice-dammed lake) cohesive sediments (mostly clays) deposited
during the Cenozoic, but before the Holocene. These sediments are resistant to erosion
(in comparison to the Holocene alluvial sand) due to their cohesive strength [38,39] and
due to strength received from glacial pressure—preconsolidation [40–42]. The lines of the
upper limit of the non-alluvial protrusion were marked by a color that refers to the age
according to the chronostratigraphic chart [43].

We used QGIS 3.10 [44] to draw a location map (Figure 1) and Inkscape 1.0.1 [45] to
draw the 6 sets of cross-sections (Figures 2–7).
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Figure 1. Physical map of Poland, Kondracki and Richling [46], with five the largest Polish rivers (Odra, Warta, Vistula, 
Bug, and Narew) and 1069 sheets of the Map (Detailed Geological Map of Poland, in Polish: SMGP), among them 20 sheets 
used in the study. LGM—Last Glacial Maximum, OC—Outer Carpathians Mts., IC—Inner Carpathian Mts., SU—Sudetes, 
HC—Holy Cross Mts. 

Figure 1. Physical map of Poland, Kondracki and Richling [46], with five the largest Polish rivers (Odra, Warta, Vistula,
Bug, and Narew) and 1069 sheets of the Map (Detailed Geological Map of Poland, in Polish: SMGP), among them 20 sheets
used in the study. LGM—Last Glacial Maximum, OC—Outer Carpathians Mts., IC—Inner Carpathian Mts., SU—Sudetes,
HC—Holy Cross Mts.

3. Results and Discussion

We found that the specific and repetitive pattern of geological setting is in 20 sheets
(2%) (red squares in Figure 1). Moreover, 75% of them occur in The Belt of Great Valleys [36]
(dark green on the map in Figure 1). Furthermore, 25% of cases are located northerly, in the
Lakeland—yellow-green on the map in Figure 1.
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These results can be biased by the frequency of the geological cross-sections through
the river valley with the deep boreholes drilled on the floodplain. One of the reasons is the
fact that in the 1950s there was a concept of building 9 dams in the Lower Vistula River
valley (The Lower Vistula Cascade, pol. Kaskada Dolnej Wisły) [47,48]. Another reason can
be a larger number of bridges crossing the Lower Vistula River in comparison to the Middle
Vistula, Bug, and Narew Rivers. Fieldworks in the locations of the designed dams and
bridges resulted in an increase in the number of deep boreholes drilled at the bottom of the
valley in the Lower Vistula River. These boreholes induced authors of The Map to draw the
geological cross-section through the river valley or enhanced the projection of geological
setting under the floodplain. Geological structures under the bottom of the Lower Vistula
River valley are probably better documented than in the other large Polish rivers.

The specific pattern revealed in our study looks like the river channel sits atop
the bedrock or non-alluvial protrusion, and it repeats in all the large rivers of Poland—
Figures 2–7.
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Figure 2. Geological cross-sections through the Bug river valley, according to [49,50]. Each cross-section presents: water in
the river channel during medium stage (blue body); schematic river channel with flow direction (blue line) the valley profile
graph with the floodplain surface and the valley’s walls (black), alluvial cover of the floodplain (grey) and non-alluvial
protrusion underneath. The color of the non-alluvial protrusion indicates its age according to the stratigraphic chart [43].

In the Bug river, the protrusions were identified on two geological cross-sections
located near Wyszków [49] and near Janów Podlaski [50]. The simplified cross-sections
are shown in Figure 2. The protrusion near Janów Podlaski is located in the Podlasie Gap
of the Bug River (in Polish: Podlaski Przełom Bugu) [51] and is visible as a single hump
built on Upper Cretaceous chalk rocks. The next protrusion near Wyszków is a Pleistocene
glacial till hump and it repeats its shape underneath in the Neogene (Miocene and Pliocene)
lacustrine clays. The Cretaceous bedrock is just around 2 m below the river channel bottom
in the Podlasie Gap of the Bug River. Non-alluvial sediments in the Bug river reach near
Wyszków are at a depth of ca. 10 m (Pleistocene) and ca. 70 m (Miocene and Pliocene).
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Figure 6. Geological cross-sections through the Middle Vistula River valley, according to [62–66]. Each cross-section
presents: water in the river channel during medium stage (blue body); schematic river channel with flow direction (blue
line) the valley profile graph with the floodplain surface and the valley’s walls (black), alluvial cover of the floodplain
(grey) and non-alluvial protrusion underneath. The color of the non-alluvial protrusion indicates its age according to the
stratigraphic chart [43].
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The non-alluvial protrusions under the Narew river channel Figure 3 were revealed at
three locations: Łomża [52], Ostrołęka [53], and Plutycze [54]. The protrusion near Łomża
forms a hump located deeply, ca. 100 m below the channel bottom. It consists of Paleogene
(Eocene and Oligocene) lacustrine sediments. The protrusions near Ostrołeka and Plutycze
are built of Pleistocene glacial tills, located 10–20 m below the river channel bottom.

The analysis of the geological cross-sections through the Odra river valley Figure 4 re-
vealed four protrusions near Czerwieńsk [55], Sulechów [56], Ścinawa [57], and Oława [58].
At all four sites, the river flows atop the Neogene (Miocene) humps located less than 50 m
below the bottom of the river channel. The protrusion near Oława is located just a few
meters below the river channel bottom and it is built of Miocene lacustrine deposits and
Pleistocene (Elsterian) glacial tills. The protrusion near Ścinawa and Sulechów are made of
Miocene lacustrine sediments.

The Warta river channel flows atop the Mesozoic protrusions, as revealed by three
geological cross-sections in Figure 5. The first protrusion, near Koło [59], is built of Upper
Cretaceous marlstones, limestones, and sandstones and it can be found around 10 m
below the bottom of the river channel. The next one has similar lithology and stratigraphy
(Maastrichtian) to that near Koło, but it is located near Warta (city) [60]. It is placed just
5 m below the river channel bottom. The third one is built of limestones, but older than
those mentioned above—Upper Jurassic (Upper Oxford). It is located near Osjaków [61].
The protrusion is also shallowly located, just 5 m below the bottom of the river channel.

The analysis of the geological cross-sections through the Vistula river revealed 8 reaches
with a specific pattern of geological setting. In order to increase the readability of our
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results, the river was divided into the Lower Vistula (5 reaches—Figure 6) and the Middle
Vistula (3 reaches—Figure 7).

The protrusions on the Lower Vistula River are located near Kwidzyn [62], Ciechocinek [63],
Płock [64], Słubice [65], and Wyszogród [66] as shown in Figure 6. The protrusion near
Kwidzyn is located very deeply (70 m below the river channel bottom) and it is made
of lacustrine deposits (glauconitic sands with phosphorites and clays) of the Paleogene
(Oligocene) age. The protrusion near Ciechocinek is the oldest in the Lower Vistula river.
It is made of Lower Cretaceous limestones and shales and Upper Jurassic (Portland)
marlstones, mudstones and limestones located 20 m below the bottom of the river channel.
The next protrusions are located adjacent to Last Glacial Maximum (LGM) margin near
Płock and Słubice. They consist of Negoene (Pliocene) lacustrine clays. Their surface can be
found just 10–20 m below the bottom of the river channel. The protrusion near Wyszogród
comprises the river channel bottom and it is made of Neogene (Miocene) lacustrine clays.

The Middle Vistula river has three protrusions according to The Map: near Mod-
lin [67], in the southern part of Warsaw [68], and near Kazimierz Dolny [69] visible in
Figure 7. The protrusion near Modlin is made of ice-dammed lake clays dated on the Lower
Pleistocene (Elsterian) and it is located 20 m below the river channel bottom. Protrusion
near the southern margin of Warsaw is built of Neogene (Pliocene) lacustrine clays and it
can be found 10 m below the bottom of the river channel. The Kazimierz Dolny protru-
sion is the oldest in the middle reach of the Vistula river—Upper Cretaceous (Maastricht).
The hump is made of chalk (limestones) and it is located around 15 m below the bottom of
the river channel.

A fact of the specific location (Figure 1) of the river valley reaches with the repetitive,
specific pattern of geological setting (Figures 2–7) can be a result of several advances of
Fennoscandian Ice Sheet in Polish Lowland [18]. A continental glaciation is a very sig-
nificant and long-lasting (a timescale of Quaternary) disturbance for the fluvial systems,
because glacial till completely covers the initial (preglacial) surface. Usually, after ice-sheet
retreat, an incision occurs, and a new river valley has to be formed again. Bedrock protru-
sion can serve in such a case as the limit of an incision. Many large river valleys in Poland
are landforms inherited from the ice-marginal valleys [70], which were impacted by fluvial
and glaciofluvial deposition during the last (Vistulian; from German also: Weichselian)
glaciation. This deposition formed the upper terraces that reworked the fluvial setting in
the river valley and enabled the later floodplain formation in Holocene [30]. The fluvial
system can recover therefore to the initial state but in different postglacial frames. However,
the river channel tends to anchor on the non-alluvial protrusion again.

Hauer and Pulg [71,72] found a similar pattern in the Norwegian rivers and they
linked its origin with long-lasting river incision into fluvial deposits that has exposed
glacial tills buried underneath. However, Hauer and Pulg [71,72] described such non-fluvial
protrusions in the longitudinal profile of mountainous streams in Norway. The results of
our study reveal the existence of non-fluvial protrusion in the transverse profile of the river
valley and locate the protrusion exactly below the river channel.

Our findings can prove useful in understanding the geological control of Holocene
flood dynamics in large, alluvial valleys (Figure 8). We distinguish two different types of
flood: (I) events induced by ice-jam when relatively small discharge in the channel can
involve overbank flow on the floodplain (Figure 8—left side); and (II) rainfall or snow-melt
events with very high discharge in the river (Figure 8—right side).

(I) Jamming of the river channel by ice leads to scouring. When scour reaches the
bedrock protrusion, it cannot be eroded due to high resistance and an overbank flow
initiates on the floodplain surface. The overbank flow cuts in the floodplain surface
an erosional through, a landform that is parallel to the main channel and serves as the
temporary sidearm. At the final phase of the flood, a filling process occurs at the bottom of
the channel. Such a type of flood tends to occur very often, and it has a local extent.
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Figure 8. Idealized, schematic geological cross-section of the large, alluvial river valley with the river channel anchored atop
bedrock (or non-alluvial protrusion) during the ice-jam floods (on the left) and snowmelt or rainfall floods (on the right).

(II) Snowmelt or rainfall flood acts, in opposite to ice-jams, in the non-confined river
channel. Overbank flow on the floodplain occurs only on the condition of very high dis-
charge and it can initiate after breaching of natural levees at the banks of the river channel.
Scour reaches the bedrock protrusion as in the case of ice-jam, but overbank erosion on
the floodplain is limited to the crevasse channel cut in the natural levee. The erosional
landforms can be masked by the latter rebuild of levees.
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The pattern of geological setting, which we reveal in Figures 2–7 and idealized on the
scheme in Figure 8, can be adopted as an environmental framework by hydrotechnical
engineers who aim to develop instream river training [73,74]. Such a design practice faces
a problem of too high stream power [39,75–85] in the channel which leads to erosion.
There are few concepts of energy dissipation of the stream. One of them involves putting
the concrete baffles or micro groynes into the channel [73,74,86].

The present state of the art in science is not enough to explain or even understand the
origin of the specific geological pattern of river channel flowing atop bedrock protrusion
we present in this study. If this pattern exists more widely in fluvial systems on Earth, some
basic principles of fluvial geomorphology should be revised. The “differential erosion”
concept says that a river uses less resistant (to erosion) bedrock to form its channel and
whole fluvial valley. The results of our study prove something different, that rivers try
harder. Rivers tend to flow on the most resistant (to erosion) rock available under the
alluvial belt.

The study area underwent glaciotectonic modelling [87–89] and a postglacial rebound,
glacial isostatic adjustment [90], which undoubtedly modified non-alluvial protrusions,
or even formed these structures from the relatively flat preglacial surface (Figure 9).
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Figure 9. The geological pattern of the river channel flowing atop the non-alluvial protrusion on the cross-section through
the Lower Vistula River at Troszyn-Wykowo (near Płock) [91], modified by [92] with the locator map of Poland from
Figure 1. The red rectangle indicates the location of the cross-section exactly at the margin of the LGM paleo-ice stream
(Vistula Ice Stream—compare [89,93]).
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4. Conclusions

A basic source of geological information in Poland (SMGP; The Map) enables us to
determine the specific pattern of geological setting under the large, alluvial river valleys.
The pattern can be identified in the in 2% sheets of The Map, however, it exists under all
the large rivers of Poland: Odra, Warta, Middle Vistula, Narew, Bug, and Lower Vistula.

In a wide and alluvial valley, a river tends to flow above the protrusion of non-alluvial
sediments which are the most resistant to erosion and the oldest ones among different
deposits available under the alluvial belt.

The geographical distribution of the pattern in Poland indicates its dominance in
the broad valleys which are cut by the rivers flowing through the old-glacial (Pleistocene
but beyond the LGM) high plains—a type of morainic plateau without postglacial lakes.
This location used to be named The Belt of Great Valleys.

The geological pattern controls on the Holocene incision of large rivers, what we regard
as a reasonable driver of fluvial resistance [16]. The pattern also controls on floodplain
recovery after a disturbance because a river channel stays at the same location in the alluvial
belt during thousands of flood events in the Holocene. The control of incision resistance
combined with the ability of floodplain recovery create the resilience of the studied fluvial
systems, as proposed by [94].

A reason for horizontal stability of the channel exactly atop the non-alluvial protrusion
during a very long period is unknown. Further research on this topic is necessary.

The time of lateral stability of the river channel is the Holocene in the LGM extent,
but beyond the LGM extent, it can last longer, in some cases at least since the younger
interglacial periods of the Pleistocene, or even since the preglacial period of Quaternary.

Our conception of reversed “differential erosion” on Polish Lowland should be veri-
fied through a perspective without tectonic quiescence, similar to other revisions of the
old-fashioned topics in geomorphology, eg., revisions of planation surfaces in the Outer
Carpathians [27] and in Northern Etiopia [95].
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