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Abstract: Solving fluid dynamics problems mainly rely on experimental methods and numerical
simulation. However, in experimental methods it is difficult to simulate the physical problems in
reality, and there is also a high-cost to the economy while numerical simulation methods are sensitive
about meshing a complicated structure. It is also time-consuming due to the billion degrees of
freedom in relevant spatial-temporal flow fields. Therefore, constructing a cost-effective model to
settle fluid dynamics problems is of significant meaning. Deep learning (DL) has great abilities to
handle strong nonlinearity and high dimensionality that attracts much attention for solving fluid
problems. Unfortunately, the proposed surrogate models in DL are almost black-box models and lack
interpretation. In this paper, the Physical Informed Neural Network (PINN) combined with Resnet
blocks is proposed to solve fluid flows depending on the partial differential equations (i.e., Navier-
Stokes equation) which are embedded into the loss function of the deep neural network to drive
the model. In addition, the initial conditions and boundary conditions are also considered in the
loss function. To validate the performance of the PINN with Resnet blocks, Burger’s equation with
a discontinuous solution and Navier-Stokes (N-S) equation with continuous solution are selected.
The results show that the PINN with Resnet blocks (Res-PINN) has stronger predictive ability than
traditional deep learning methods. In addition, the Res-PINN can predict the whole velocity fields
and pressure fields in spatial-temporal fluid flows, the magnitude of the mean square error of the
fluid flow reaches to 107°. The inverse problems of the fluid flows are also well conducted. The
errors of the inverse parameters are 0.98% and 3.1% in clean data and 0.99% and 3.1% in noisy data.

Keywords: N-S equations; PINN; Resnet; fluid flow; numerical simulation; experimental method

1. Introduction

Fluid dynamics problems, such as cavity flow, pipeline flow and flow past bluff
body, are almost described by the Navier-Stokes equations, which is a complicated and
indeterminable nonlinear partial differential equation (PDE) system. Various methods,
such as the Runge-Kutta method, finite element method/finite volume method and spectral
methods which is known as the computational fluid dynamics (CFD) method, to solve the
N-S equations [1,2]. However, the CFD approach cannot handle tens of billion degrees of
freedom in the fluid field, resulting in cumbersome computations. In addition, the CFD
method has significant limitations in dealing with complex configuration and special mesh
(e.g., moving mesh) which is difficult to converge.

Reduced order modeling (ROM), has been identified as a strong tool to reduce the
time—consuming calculation of the CFD, was proposed [3]. Proper orthogonal decompo-
sition (POD) and dynamic model decomposition (DMD), as the two of the most routine
approaches of the ROM, are able to reduce the computational cost and maintain sufficient
precision. Enormous research was adopted to handle the lower dimensional fluid flows
by utilizing these approaches [4-7]. However, the properties of the ROM method are
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linearization and weak non-linearization, which means that methods deal with the more
complicated fluid dynamics problems with limitations.

The deep learning method has gained attention over the last few decades. This
method enjoys the strong ability of solving the nonlinear problem with multiple degrees
of relevant data. In this decade, it has had enormous breakthroughs in many fields such
as image processing [8], speech recognition [9], and disease diagnosis [10]. For the last
few years, deep learning method was proposed to solve the fluid dynamics that attracted
the attention of many scholars because of its effectiveness in solving strong nonlinearity
and high dimensionality. Ma et al. used statistical learning to predict the simple bubbly
system [11]. The flow properties of the wake (such as formation length, Reynolds stresses,
and distance between separation points and the location where the vortex is fully formed)
are known to be closely related with the pressure (especially the base pressure) on the bluff
body [12]. Ling et al. [13] firstly utilized the deep learning method to solve fluid dynamics.
The turbulence models are observed and the Reynolds-averaged Navier-Stokes (RANS)
model has been deduced. Wu et al. (2018) also utilized physics-informed deep learning
approach to predict the RANS model [14]. Wang et al. adopted a data-driven technique
to describe the stress closure in large-eddy simulations (LESs) [15]. Maulik et al. (2018)
selected a convolutional neural network and deconvolutional neural network to handle
the turbulence according to the LESs [16]. Peng et al. presented a new multi objective
optimization statistical Pareto frontier method composed of artificial neural network and
multi objective genetic algorithm to improve the pipe flow hydrodynamic and thermal
properties such as pressure drop and heat transfer coefficient for non-Newtonian binary
fluids [17].

However, it is significant to reconstruct the spatiotemporal dynamics of fluid by
utilizing a low computing cost. Omatta and Shirayama utilized the deep autoencoder
to represent the low-dimensional temporal behavior of flow fields [18]. Fukami et al.
adopted the convolutional neural network (CNN) and the hybrid down sampled skip-
connection multiscale models to build up the flow field [19]. Convolution neural network
can accurately obtain the flow field information and predict the flow field. Jin et al.
utilized the CNN to rebuild the velocity field around a cylinder by utilizing the pressure
field [20]. Sekar et al. also selected the combination between CNN and deep Multilayer
Perceptron (MLP) to predict incompressible laminar steady low field over airfoils [21].
Han et al. combined long short term memory (LSTM) and CNN, called ConvLSTM,
to construct the fully-dimensional fluid dynamics and also consider the spatiotemporal
dynamics of flow [22]. Farimani et al. [23] first introduced the conditional generative
adversarial networks (cGAN) to simulate steady state heat conduction and incompressible
fluid flow. This study proves that GANs can be effective in exhibiting complex nonlinear
fluid structures. Xie et al. [24] introduced a temporal discriminator to GANSs for solving the
super-resolution problem for smoke flows. However, the success of these deep learning
models is mostly dependent on a sufficient amount of offline training data, which, as
mentioned above, are inaccessible in many applications, e.g., super-resolution for flow
MR imaging.

The aim of this paper is to propose a physics informed neural network combined
with Resnet blocks (Res-PINN) to solve the fluid dynamics problems based on Burger’s
equations and Naiver-Stokes equations. The fully-connected neural network (FC-NN) is
designed to solve the information of the fluid flows. The examples of cavity flow and
flow past cylinder are demonstrated to validate the effectiveness of the Res-PINN. This
method can predict the fluid dynamics according to the physics-constrained conditions
and initial /boundary conditions. In this paper, the novelty of the work is to embed the
physical law into the loss function which can reduce the amount the training data. In
addition, the physics informed neural network can solve the inverse problems of the fluid
dynamics. A schematic diagram of the physics informed neural network for solving the
model of the fluid dynamics can be described in Figure 1. Resnet block is applied to make
the neural network more stable. The Xavier initialization method is applied to decide the
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initial weights and biases which can improve the convergence speed. The auto-differential
technique is utilized to calculate the gradients and the governing equations are embedded
into the loss function. The training set is 60% of the whole dataset while the validation set
is 40% of the whole dataset. The flow information in the last moment are selected in the
validation set.
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Figure 1. A schematic diagram of the physical informed neural network for solving the model of the fluid dynamics.

The structure of this paper can be viewed as follows. Section 2 introduces the method
of the Res-PINN and compared to the traditional deep learning method for fluid dynamics
problems. In Section 3, the optimal methods, Xavier initialization and Adam optimizer,
are adopted to optimize the Res-PINN, the swish activation function with the adjustable
parameter is also utilized to ensure the effectiveness of approach. Section 4 firstly solve
the Burger’s equation with discontinuous solutions to testifies the wide adaptability of the
method. Then the cavity flow and flow past cylinder based on N-S equations are solved
and discussed. Section 5 concludes all work in this paper.

2. Methodology
2.1. Overview

Most fluid flows, such as cavity flow, pipeline flow and flow past bluff body, can
be represented by the incompressible Navier-Stokes equation and can be described as
follows [25]:

V-u=0 x,t€ QbR

1
G+ Vut JVp—vViu+bs =0, xt€Qy,0€R W

Fu,p)=0= {

where u denotes the velocity field (including streamwise velocity and crosswise velocity);
p the pressure field; p and v the density and viscosity of the fluid, respectively; by the
body force; ()¢; denotes the spatial-temporal domain; 6 denotes the parameters in the N-S
equations such as the information of boundary conditions, the properties of fluid and the
value of the domains, etc. The unique solution under different statements is constrained by
the initial conditions and boundary conditions and can be described as follows:

I(x,p,u,0)=0, x€Qpt=0,0€cR

B(t,xpu,0) =0, xted0;x[0T],0e R @
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where 7 and B are the differential operators of the initial and boundary conditions, respec-
tively. When parameters 6 are determined, the solution of the flow dynamics (i.e., u(t, x)
and p(t,x)) can be obatined numerically by discretizing the Equations (1) and (2) utilizing
the finite difference/finite volume/finite element methods. However, this approach needs
to generate large numbers of mesh and calculate the nonlinear problems iteratively which
itself is time-consuming. In addition, some parameters in the fluid dynamics is difficult to
be confirmed. The generation of computational meshes is a challenge when solving for the
complex configuration in the numerical simulation.

To enable rapid and efficient calculations in accordance with the forward/inverse
uncertainty quantification and optimization modes, a deep learning method based on
PINN, which is built up by the FC-NN strucutre, is constructured to calculate the fluid
informations according to Naiver-Stokes equations. The data sample can be obtained by
the numerical simulations or experiments. Then the input layer include time ¢, spatial
coordinates x, and the parameters of fluid 8 while the output layer composes velocity and
pressure field. The hidden layer including many layers is able to solve the nonlinearity.
The auto-differentiation technique is utilized to obtain the differential variables in the N-S
equations and then are embedded into loss function. The loss funtion and initial /boundary
conditions are trained by the optimizal method to reach to minimum and then solution of
the N-S function can be achieved.

2.2. Deep Neural Network and Physical Informed Neural Network

Artificial neural network (ANN) has been a research hotspot in the field of artificial
intelligence since 1980s. It abstracts the neural network of human brain from the perspective
of information processing, establishes some simple model, and forms different networks
according to different connection modes. Mathematically, ANN can be described as a
direct graph which is composed of a group of vertices representing neurons and a group of
edges representing links. There are many variants of the neural network, such as FC-NN,
CNN and recurrent neural network (RNN), etc., to perform various increasingly complex
tasks [26]. In this paper, the feedforward neural network, which is also referred to as a
multilayer perceptron (MLP), is adopted to solve the problem. A FC-NN structure can be
described by:

2= fi (WlTZl—l + bz) 3)

where z; denotes the hidden layers between the input layer and output layer; the subscript
I the index of the layer; W] and b; are the weight matrix and bias vector, respectively; f;(-)
denotes the activation function (e.g., sigmoid function, ReLU function and tanh function,
etc.) which can improve nonlinear treatment capability. The velocity and pressure of the
fluid flow can be calculated by the feedforward algorithm as Equation (3). Since only
weight matrixes and bias vectors are considered to be trained, the computational cost of
the FC-NN can be neglected compared to that of traditional numerical simulations.

Conventionally, the deep learning method is for solving fluid dynamics problems
by building up input and output relations. The solution can be calculated by a black-box
surrogate model, such as fully-connected neural network (FC-NN) and convolutional
neural network (CNN), the process can be demonstrated as:

f(t,x,0) ~ f(t, x,0) 2 z(t,x,6; W,b) 4)

where f(t, x, 0) denotes the exact solution of the fluid dynamics including veloctiy field and
pressure field; z; (t,x,0,W,b) the structure of neural network; f(t, x,0) the local minimized
trained by the FC-NN. The loss function can be formulated:

2
Laata(W,b) = L|£(,%,0) — z(t,x, e;w,b))
W*,b* = argminL 4,,,(W,b) ©®)

w,b
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Ly (W, b)

where L;,:,,(W,b) represent the loss function which is defined as “data-based loss’ by Sun
et al. (2020) [27]; W* and b* denote the weights and biases trained by the optimization;
£(t,x,6) the training data.

However, the traditional surrogate model mentioned above is a black-box model
which requires large number of training samples to build up a input-output relationship.
Moreover, the black-box model is absence of the physical interpretability, it means that
the predicting unknown data is not convincing enough. Therefore, the physical informed
neural network (PINN) is proposed in this paper. The structure of the loss function by
PINN method can be defined as flgj)llow:

L&y 2, 1 Zlou 1
=N, i;)u(th,x;) - ul’ + ﬁf 1:21 5 T (u-V)u+ EVp —vV?u + by

2

Initial / Boundary conditions Structure imposed by N—S equations

N
1 < )
+— Z|Vu|
Nf i=1
\ﬁ,_/

(6)

Mass conservation

W*,b* = argmin L, (W,b)
w,b

The N-S equations, Mass conservation equation and boundary condition are embed-
ded into the loss function. The first and second derivative terms of velocity and pressure
are calculated directly by automatic differentiation. It is worth emphasizing that automatic
differentiation is a method between symbolic differentiation and numerical differentiation.
Numerical differentiation emphasizes directly substituting into numerical approximate so-
lution at the beginning while symbolic differentiation emphasizes solving algebra directly
before substituting numerical. Automatic differentiation applies symbolic differentiation to
the most basic operators, such as constant, power function, exponential function, logarith-
mic function, trigonometric function, etc., and then substituting it into the numerical value,
retaining the intermediate result, and finally applying it to the whole function. Therefore,
the automatic differentiation can avoid truncation and round-off errors effectively [28]. In
this paper, the automatic differentiation technique is carried out by the Pytorch framework.
The Adam algorithm is adopted to optimize the loss function and the more information on
this method is introduced in Section 3.2.

2.3. Residual Neural Network (Resnet)

The structure of the deep neural network can convert into a shallow neural network
if the hidden layers are identity mays. Therefore, the problem is transformed to learn the
identity mapping. In fact, the existing neural networks are difficult to fit the potential
identity mapping function H(x) = x. However, if the neural network is designed as
H(x) = F(x) + x and the identity mapping is directly regarded as a part of the network.
The problem can be transformed into learning a residual function: F(x) = H(x) — x. As
long as F(x) = 0, an identity mapping H(x) = x is generated. Moreover, training residuals
can reduce the complexity of solving problems instead of training mapping identity.

He et al. (2015) adopted residual machine learning to every few hidden layers [25].
A building block can be shown in Figure 2. Mathematically, a building block can be
demonstrated as the following equation:

y=F(x, {Wi}) +x @)

where x, y denotes input and output values, respectively; the function F(x, {W;}) is the
residual mapping to be trained.

In addition, the right line in Figure 2 is called a shortcut connection. By jumping in
front of the activation function, the output from before layer or several layers is added with
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the current layer and is injected to the activation function which is as the output from the
current layer. Moreover, the residual part in Figure 2 can be expressed as follows:

F = WzO’(Wlx) (8)
X
Weight layer
o . X
F(X) Activation function . .
| identity
Weight layer
dRY
a7
FX)+X Activation function

Figure 2. Residual learning: a building block.

3. Structural Optimization
3.1. Model Parameter Initialization Method

When the form of the partial differential equation is cast by Res-PINN and the fully-
connected neural network with residual blocks are determined. In order to make the
information flow better in the network, the output variance of each layer should be as equal
as possible. Therefore, the initial weights in each layer should meet certain conditions.
designed Xavier method is designed to solve this problem [29].

The output in one layer can be calculated as follows:

Yy =wixy + -+ wpxy+b )

According to the knowledge of probability and statistics, the following variance
formula can be deduced as follows:

Var(wix;) = E[w;]*Var(x;) + E[x;]*Var(w;) + Var(w;)Var(x;) (10)

We can assume the average values of input and weights are zero, the Equation (13)
can be simplified as:
Var(w;x;) = Var(w;)Var(x;) (11)

It is further assumed that input and weights are independent identically distributed,
the problem can be described:

Var(y) = n;Var(w;) Var(x;) (12)

To ensure that the input and output variances are consistent, it can be deduced
as follow:
Var(w;) = 1 (13)
n;
For a multi-layer network, the variance of a layer can be expressed in the form of
accumulation:
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Var|Z'] = Var|x H nVarlw (14)
When calculate the gradients, the back propagation has the same form:
dCost BCost
Var| Py | = Var| ol H 141 Var[w' ] (15)

i'=i

Therefore, in order to ensure that the variance of each layer is consistent in forward
and backward propagation, the initial weights need to meet the below conditions:

Vi, n;Var[w'] =1
Vi,  mgqVar[w'] =1 (16)

The Xavier initialization is the following uniform distribution:

w~U|— V6 V6 (17)

\/7’1]' + 1’1]'+1’ \/Tl] + 14

3.2. Adam Optimization

In order to reduce the error of the loss function, the Adam optimizer is utilized to
optimize the target function. Adam algorithm is different from traditional random gradient
descent. Adam optimizer can constantly adjust the learning rates with the situation changes
in the learning process. Furthermore, another advantage of the Adam optimizer can change
the learning rate through the average of the nearest weight gradient, it means that the
algorithm has a good performance in non-stationary problem.

The step of the Adam optimizer can be described as follows:

Step 1: compute gradients of parameters at time step w.r.t stochastic objective functions;
Step 2: compute first moment estimate, to help avoid disordered moving, and to prevent
settling into local optima;

Step 3: estimate second moment estimate, to guarantee an upper bound of step size;

Step 4: compute unbiased estimate of first moment estimate and second moment estimate;
Step 5: update parameters.

The pseudo-code of the Adam optimization method can be viewed in Figure 3.

Require:
Require:
Require:
Require:

« : Stepsize

B B € [O. 1): Exponential decay rates for the moment estimates
f (9) : Stochastic objective function with parameters ¢

@, : Initial parameter vector

m, < 0 (Initialize 1** moment vector)
Vv, 0 (Initialize 2*¢ moment vector)
t < 0(Initialize timestep)

while &, not converged do

11+l

g« V. f(6, ) (Get gradients w.r.t stochastic objective at timestep #)

m, < fB,-m,_ +(1-f,)- g (Update biased first moment estimate)

v, fy v +(1- 5, )g,2 (Update biased raw second moment estimate)
m, <—m, / (1 — ) (Compute bias-corrected moment estimate)

v, <V, / (l -p ) (Compute bias-corrected second raw moment estimate)
6, « 0 —am, / ( \/f + g) (Update parameters)

end while
return &, (Resulting parameters)

Figure 3. The pseudo-code of the Adam optimization method.
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4. Discussion
4.1. Problem Setup

In this section, three scenarios are proposed to validate the Res-PINN'’s performance
on solving the fluid flow problems. First scenario is to handle the Burger’s equation with
the discontinuous solutions while the last scenarios are to calculate the N-S equations
with the smooth and continuous solutions including cavity flow and the unsteady flow
past cylinder.

The data of the Burger’s equation is obtained by the finite element method (FEM)
while that of the N-S equation is obtained by the direct numerical simulation (DNS).
The fully-connected neural network is adopted to build up the Res-PINN and the Swish
activation function is selected to determine the nonlinear capacity. It is noteworthy that the
Swish activation function has a better performance in improving the convergence rate and
accuracy of the neural network. The value of learning rate is dynamic and the initial value
is 0.001. The uncertainties in the fluid properties and flow information are solved by the
Res-PINN. In this study, only steady-state of fluid flows are selected for proof-of-concept.
Accordingly, the initial conditions can be neglected.

The Res-PINN is implemented in the PyTorch platform. The perfect structure of the
deep neural network, including number of layers, number of neurons per layer, is not
fully understood that need to be tested by the trail and error. In addition, the different
number of training samples are also selected to validate that the Res-PINN has an accurate
performance in solving fluid flows problems based on finite data samples.

4.2. PINN Method for Burger’s Equation with Discontinuous Solution

The incompressible fluid relevant to cavity flow and flow past cylinder are considered
in this section. It is noteworthy that the mentioned above flow solutions are almost
smooth and continuous. Therefore, the burger’s equation, as a canonical problem with
discontinuous solution, is proposed to demonstrate the physical informed neural network
can also has a good performance in solving discontinuous problems. The Burger’s equation
with the initial and boundary conditions can be described as follow:

ur +uuy — (0.01/m)uxe =0, x€[1,1], t€]0,1],
u(0,x) = —sin(mx), (18)
u(t,—1) =u(t,1) =0

The process of Res-PINN solving the burger’s equations can be viewed in Figure 4.
The time ¢ and spatial coordinates x are selected as input while the velocity u is seemed as
output and the layers and neurons in each layer between input and output which consist
the FC-NN structure. For illustration purpose only, the structure of network including 3
hidden layers and 5 neurons per hidden layer are demonstrated in Figure 4. The automatic
differentiation technique is adopted to compute the physical-based loss function and the
velocity u on the training data is calculated by minimizing the loss function. In addition, I in
the green box denotes the identity operator while the d; differential operator which can be
explained as activation operator. In addition, the term does not in the physical-based loss
function (e.g., ust or ugy) which coefficients are set to be zero. To determine the best structure
of the Res-PINN, mean square value of the latent solution under the different layers and
different neurons in each layer are demonstrated in Table 1. It can be demonstrated that
the best structure of the Res-PINN includes 10 hidden layers with 20 neurons in each layer.
The more complex structure of the neural network does not mean that the Res-PINN has
the higher performance in solving Burger’s equation, it may result in over-fitting and bad
generalization ability. Furthermore, the comparisons between loss function based on purely
dataset and loss function based on physical model can be demonstrated in Figure 5. The
structure of 10 hidden layers with 20 neurons per layer is adopted and the different data
samples to test the performance of Res-PINN and traditional deep learning. It is obvious
that Res-PINN method, compared to the traditional deep learning method based on purely
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data, has more accurate predictions in solving Burger’s equations under limited amount of
data. It demonstrates that the mean square error is pretty low when the number of training
data reach to 2000. Therefore, the Res-PINN can well calculate the predict values in limited
dataset and reduce the time cost.

FC-NN structure

Automatic
differentiation

----- \ Physical-based loss function

‘ \\" \"/
\ “\ ‘\ 4'1 0 4' (
0 A‘ 'A A‘ AN 'A

u,+uu —Au_ =0 ]

1.C./B.C. condltlons /

----- £~ Adam optimizer

Figure 4. Burger’s equation informed neural network.

Table 1. The mean square error between predict value and exact value in validation set with different
layers and neurons.

Neurons
Layers 10 20 30 40
2 (without Restnet) 3.8x1073 21 %1073 6.6 x 1074 8.7 x 1073
4 13 x 1074 8.8 x107° 6.7 x 107° 6.4 x107°
6 82x107° 53 %1075 43 %1076 6.1 x 107
8 6.6 x 107° 7.2 x107° 24 x107° 72 %107
10 23 %107 9.2 x 1077 82 x107° 6.7 x 10

4001 387.28 L
I [ oss function based on purely dataset
B [oss function based on physical model

300

(]
=
=]

189.91
164.35

138.66

—
(=3
(=}

91.32

Mean square error (1E-7)

_ B TUTST Toas Tous. Tom Tou7 Ti0a4
0.58 :

|-

1000 1500 2000 2500 3000 3500 4000 4500 5000
Sample points

Figure 5. The comparisons between mean square error of velocity calculated by loss function based
on purely dataset and that calculated by loss function based on physical model.

The analytical solution is compared with the solution calculated by the Res-PINN
which can be viewed in Figure 6. The top of the Figure 6 is the spatial-temporal values
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of the Burger’s equation predicted by the analytical solution. The bottom of three figures
is comparisons between predicted values (red dotted line) and exact values (blue line) at
different times. It is obvious that the predicted values are almost agreement with the exact
values. The mean square error of the validation set is to reach to 9.2 x 10~7. In addition, the
inverse problem of the Burger’s equation is also considered and the parameter predicted
by the Res-PINN in Burger’s equation is 0.00318 which is versus with the exact parameter
(0.01/m), the error is almost negligible.

u(t, x)
1.0
. 0.5
8 0.0
—-0.5
—1.0 1 T T T T
0.0 0.2 0.4 0.6 0.8
t
t=0.25 t =0.50 t=0.75
1 1 1
B & B
< 0 = 0 = 04
3 3 S
—1 —1 4 —1 4
T T T T T T T T T
-1 1 -1 0 1 -1 0 1
T x
— Exact == = Prediction

Figure 6. Performance of the Res-PINN for solving the Burger’s equation with discontinuous

solution.

4.3. Res-PINN Method for N-S Equation with Continuous Solution

In this section, the cavity flow and incompressible flow past cylinder are considered
to identify the N-S equations. Cavity flow refers to the flow of closed incompressible fluid
(such as water) driven by the top plate at a constant speed in a regular area. Almost all
flow phenomena that may occur in incompressible fluid can be observed in square cavity
flow. The cavity flow can be described based on dimensionless N-S equation as follow:

up + (uiix + vuy) = —px + Re™ ! (txx + 11yy)
Ot + (uvx + Z)Ux) = _py + Re_l (Uxx + vyy) (19)
Prx + Pyy = —(Uxtix 4 21y vy + vy0y)

where Re denotes the Reynolds number. u and v represent the x-direction and y-direction
of the velocity flied, respectively; p the pressure field. The scenario of the 2-D cavity flow
and the boundary conditions can be viewed in Figure 7. The boundary conditions of
the top cover, pressure is zero and x-direction velocity is 1, while that of the other three
boundaries, the first derivative of pressure in x direction is zero and two direction velocities
are also zero.
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p.\‘ = p_\‘ =
wv=_20 wy =0 D=2

x p.=0
w,v=_0

Figure 7. The scenario of the cavity flow with the boundary conditions.

Uniform sampling method is utilized to obtain the training data and different samples
are chosen to train the model. Before t = 1, the training samples are obtained per 0.1 as
a frame and the test samples are selected at t = 1. The process of the calculation can be
demonstrated in Figure 8. The time and space coordinates are viewed as input while
pressure and velocity are seemed as output. To further investigate the Res-PINN’s accuracy,
the parameters like Re are viewed as unknown parameter (A1, A7) in loss function. The
true values of parameters are 1 and 20. The 8 hidden layers with 20 neurons each layer
are selected to construct the FC-NN structure and 400 samples per frame are obtained to
calculate the N-S equations. The predicted values can be viewed in Figure 9. Left two
panels are exact flow field while right two panels are predicted flow field. It is obvious that
the Res-PINN has a good performance in predicting the velocity and pressure. The mean
square error of flow field can be viewed in Table 2. In addition, the predicted parameters of
A1 and A, are 1 and 19.973 which are almost same with the exact values.
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Figure 8. Navier-Stokes equation informed neural network (cavity flow).
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Figure 9. Performance of the Res-PINN for solving the cavity flow.

Table 2. The mean square error between predict value and exact value in cavity flow.

Mean Square Error (Training Set) Mean Square Error (Validation Set)
u 21 %1077 41x10°°
v 52 %1077 9.8 x 1077
P 1.3 x 1072 32x1073

A classical problem of fluid-structure interaction which can also be described by
Navier-Stokes equation is proposed to verify the Res-PINN method. In Figure 10, the
incompressible flow around a circular cylinder with dynamic vortex shedding is demon-
strated. It can be assumed that the inlet condition is the free stream velocity while the outlet
condition is free pressure zone. The slide wall boundary conditions are imposed on the two
sides of the flow filed. The non-dimensional inlet velocity u = 1, cylinder diameter D =1,
and kinematic viscosity v = 0.01. The direct numerical simulation (DNS) is adopted to
calculate the N-S equation and generate the dataset [30]. The black box behind the cylinder
is the data collection and that is utilized to calculate the N-S equations. The form of 2-D
Navier-Stokes equation can be described explicitly as follow:

up + (uiy +ouy) = —px + Re M (uyy + Uyy),
Ut + (uvx + va) = _py + Re_l (vxx + vyy) (20)

where u(t, x, y) means the x-direction of the velocity field, v(t, x, y) the y-direction of the
velocity field, p(t, x, y) the pressure in the flow field. It can be assumed as: u = ¢, v = —1y
which can meet the continuity equation automatically.
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Figure 10. The incompressible flow around a circular cylinder with dynamic vortex shedding.

In this section, Latin hypercube sampling (LHS) is selected to obtain the training set.
LHS is a kind of approximate random sampling method from multivariate parameter
distribution. It belongs to stratified sampling technology and is often used in computer
experiments or Monte Carlo integration. The training data is obtained from T = 0.0 to
T = 19.9 with 0.1 interval while the validation data is obtained at T = 20. The specific
sampling method is shown in Figure 11. The time and space coordinates are selected as
input and the velocities are selected as output. In this example, the pressure is seemed
as an unknown value that need to be identified. What's more, the unknown parameters,
non-dimension coefficients, are also calculated to validate the performance the Res-PINN.
The physical-based loss functions include the conservation equation and N-S equations
are gradient computed by Adam optimizer. The structure of neural network is 9 hidden
layers with 20 neurons each layer, the Res-PINN and PINN are compared in 4000 samples.
The steam-wise u(t, x,y) and transverse-wise v(t, x,) velocity are also imposed by 1%
uncorrelated Gaussian noise to validate that the Res-PINN proposed in this paper can also
has a good performance to filter the noise. The detailed N-S equations are informed into
neural network (flow past cylinder) which can be viewed in Figure 12.
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Figure 11. The training set and validation set of the flow past cylinder.
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Figure 12. Naiver-Stokes informed neural network (flow past cylinder).

A conclusion of our prediction for 2-D N-S equation and compares with the work
utilized by PINN is presented in Table 3. It can be viewed that the Res-PINN has a strong
performance to identify the N-S equations under clean data and noise data. It can be
viewed that, in the case of clean training data, the error in predicting A; and A; is 0%, and
0.61% respectively, which compared to the 0.078%, and 4.67% calculated by PINN. Under
the noise data, the identified results are also show that Res-PINN has a good ability to
predict the accuracy solution of the N-S equations. When the training data are polluted
with 1% uncorrelated Gaussian noise, the unknown parameters predicted by our work is
0% and 1.08%, which compared to the 0.17%, and 5.70% obtained by PINN for A; and A,,
respectively. The magnitude of mean square errors in the velocity is reach to 107°.

Table 3. The Correct NS equation versus with the identified NS equation.

Correct N-S eqaution up + (uttx +0uy) = —px +0.01(1xx + uyy),
vt + (uvy + ovy) = —py 4+ 0.01(vxx + vyy)
Identified N-S equation with clean data (PINN) up +0.999(uux + vuy) = —px + 0.01047 (1xx + 1uyy),
vt +0.999(uvy + vvy) = —py + 0.01047 (vxy + vyy)
Identified N-S equation with clean data (Res-PINN) ug + 1.000(uex + ouy) = —px + 0.01006(1exx + 11y ),
vt 4 1.000(uvy + vvy) = —py + 0.01006(vxy + vyy)
Identified N-S equation with noise data (PINN) up +0.998(uity + vity) = —px +0.01057 (1xx + ttyy),
vt 4 0.998(uvy + vvy) = —py + 0.01057 (vxx + vyy)
Identified N-S equation with noise data (Res-PINN) up +1.000(uux + vuy) = —px + 0.01011 (sxx + 11yy),
vt +1.000(uvy + vvy) = —py + 0.01011(vxy + vyy)

In addition, the predicted results against real instantaneous flow field at a certain
time with clean data and noise data can be demonstrated in Figures 13 and 14. It can be
viewed that the prediction of the stream-wise velocity and transverse-wise velocity is pretty
accuracy, the biggest errors in entire flow filed for stream-wise velocity and transverse-wise
velocity are 0.98% and 3.1% in clean data while that are 0.99% and 3.1% in noise data,
respectively. It is noteworthy that the Res-PINN also enjoys the ability to reconstruct the
whole pressure field p(t, x,y) although the training data on the pressure field is absent. A
strange phenomenon that the difference in magnitude between the predicted pressure and
exact, although the distribution of the pressure filed is almost same. It is validated by the
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law of the N-S equation due to the pressure field is only recognizable up to a fixed value.
For the incompressible flow, the absolute value of the pressure is of no great important.
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Figure 13. 2D predicted versus exact flow information at test time (with clean data).
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Figure 14. 2D predicted versus exact flow information at test time (with noise data).
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5. Conclusions

This paper firstly proposed the Res-PINN method to predict the fluid dynamics
problems. Compared to the traditional deep learning method, the Res-PINN simulates
the fluid flows based on physical models rather than purely data. To investigate the
performance of Res-PINN, Burger’s equations and Navier-Stokes equations are selected
and different scenarios (cavity flow and flow past cylinder) are adopted. The specific
conclusions can be summarized as follows:

(1) The Burger’s equation predicted by the Res-PINN and that predicted by the traditional
deep learning are compared and the results show that the Res-PINN has better
performance in calculating and predicting the flow fields. The Res-PINN can well
predict the results under only 1000 samples.

(2) The Navier-Stokes equations predicted by PINN and that predicted by Res-PINN are
contrasted and the results demonstrate that the Res-PINN can ensure the better at
accuracy. The magnitude of mean square errors of problems reach to 107°.

(3) the Res-PINN can well calculate the inverse parameters in partial differential equa-
tions. The errors of the inverse parameters are 0.98% and 3.1% in clean data while
0.99% and 3.1% in noisy data, it demonstrates that can well solve the inverse problem
even in the noisy data.
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