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Abstract: The quality of input data and the process of watershed delineation can affect the accuracy
of runoff predictions in watershed modeling. The Upper Mississippi River Basin was selected
to evaluate the effects of subbasin and/or hydrologic response unit (HRU) delineations and the
density of climate dataset on the simulated streamflow and water balance components using the
Hydrologic and Water Quality System (HAWQS) platform. Five scenarios were examined with the
same parameter set, including 8- and 12-digit hydrologic unit codes, two levels of HRU thresholds
and two climate data densities. Results showed that statistic evaluations of monthly streamflow from
1983 to 2005 were satisfactory at some gauge sites but were relatively worse at others when shifting
from 8-digit to 12-digit subbasins, revealing that the hydrologic response to delineation schemes can
vary across a large basin. Average channel slope and drainage density increased significantly from
8-digit to 12-digit subbasins. This resulted in higher lateral flow and groundwater flow estimates,
especially for the lateral flow. Moreover, a finer HRU delineation tends to generate more runoff
because it captures a refined level of watershed spatial variability. The analysis of climate datasets
revealed that denser climate data produced higher predicted runoff, especially for summer months.

Keywords: SWAT; watershed delineation; climate data; UMRB; HAWQS; runoff prediction; water
components

1. Introduction

Watershed models haves become an important technology to explore the effects of
climate change and human activities on water resources and hydrological cycles [1–3]. The
ability of a model to accurately represent the spatial variability of a catchment is the key
element for the hydrological process. The accuracy required to achieve reliable simulation
results relies on both the quality of the input data and also the watershed delineation in
modeling [4–6].

The Soil and Water Assessment Tool (SWAT) ecohydrological model [7,8] is a popular
watershed model and has proven to be an effective tool for evaluating agricultural manage-
ment simulations for complex landscapes and varying climate regimes worldwide [9,10].
Studies have been conducted to evaluate the effects of watershed delineation on SWAT
simulated streamflow and other outputs [11–34]. Table 1 lists the majority of studies that
have investigated the effects of different hydrologic response unit (HRU) and/or subbasin
delineation schemes with SWAT. Over 60% of the studies were performed for watersheds
in the United States, and the majority of that subset were reported for locations in the Corn
Belt region. Other studies were conducted for watersheds in China, Ethiopia, Germany,
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India, South Korea, Tunisia and Turkey. The majority of studies reported that the delin-
eation scenarios resulted in only minor or negligible effects on SWAT-predicted streamflow
(Table 1). However, some studies described streamflow effects estimated with SWAT that
were influenced by the various simulated delineation scenarios [11,15,20,22,30–32]. Several
of these studies noted that the effects on streamflow were relatively stable for more refined
delineation schemes, but that the accuracy of the streamflow estimates declined for coarser
HRU and/or subbasin subdivisions (e.g., [11,15,20]).

SWAT-predicted effects on sediment, nitrogen or phosphorus losses were reported
to be sensitive to HRU and/or subbasin delineation effects in virtually all of the studies
that described impacts on pollutant losses (Table 1). Sediment loss was found to be very
sensitive at the landscape (HRU) level in some studies [13,14,16], indicating the transport-
limited nature of the watershed and model structure issues that need to be considered in
applications of SWAT. Chiang and Yuan [27] further assessed SWAT pollutant estimates
as a function of both different HRU/subbasin subdivisions and stream order. They found
that the impact of HRU delineation greatly increased as higher stream orders were used,
and that the use of stream orders > 3 should be avoided for best results.

The size of systems analyzed in these studies ranged from 6.2 km2/6.3 km2 to in
Indiana/Germany to 17,941 km2 in Iowa (Table 1). The level of detail incorporated in these
different assessments also varied considerably, with large ranges of HRUs and/or subbasins
used in some studies (e.g., [13,14,16,27]) versus limited detail in other studies [12,31]. For
small watersheds, the landscapes may not be complex enough to detect the runoff variation
caused by different delineation schemes. It should be also noted that flow outputs were
regarded as insensitive to different delineation schemes in some studies because sediment
or nutrient outputs are much more sensitive in those studies [17,27]. Since a large basin has
great variations of land-uses, soils or topography, it is necessary and important to evaluate
the effects on the hydrologic cycle and to balance the level of model representation and
computational limitations.

Watershed delineations were conducted in the Upper Mississippi River Basin (UMRB)
in this study. Chen et al. [35] reviewed previous SWAT applications reported for the
UMRB. Most of the SWAT applications for the UMRB relied on delineation approaches in
which the subwatershed boundaries were aligned with what are commonly referred to as
8-digit watershed boundaries [36]; e.g., see previous SWAT-based studies reported by Jha
et al. [37], Demissie et al. [38], Srinivasan et al. [39] and Qi et al. [40]. A refined delineation
scheme has been incorporated into some reported UMRB SWAT models [41–44], which
use subwatershed boundaries that are coincident with the much smaller USGS 12-digit
watersheds [36]. Panagopoulos et al. [43] stated that the use of 12-digit watersheds should
allow the model to more accurately capture key climate and topography data, relative
to a coarser 8-digit delineation. They suggested that 12-digit watersheds are preferable
for a large-scale system such as the UMRB compared to 8-digit watersheds and provided
some other recommendations for large scale SWAT modeling. However, the hydrologic
response of 8-digit and 12-digit watersheds have not been compared for the UMRB, and
it is not clear how similar delineation scheme comparisons affect other river systems of
comparable size.
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Table 1. Summary of previous SWAT studies that reported the effects of different HRU and/or subbasin delineations on SWAT output.

Study Watershed
(Area in km2) Location

Total
Delineation
Scenarios a

HRU Range b Subbasin
Range b

Simulation
Length (Years) c

Is Output Sensitive to Different Delineation Schemes?

Streamflow
Other

Hydrologic
Indicators

Sediment Nitrogen d Phosphorus d

11 Bosque River
(4297) Texas, U.S. 9 NR e 4 to 54 10 Yes NA e NA NA NA

12 f Greenhill
River (113.4) Indiana, U.S. 3 NA 1 to 8 NR No NA NA NA NA

13, 14 Pheasant
Branch (47.8)

Wisconsin,
U.S. 10 NA 47 to 986 7 No NA No g NA NA

15

Dietzholze
(81.7);

Weiherbach
(6.3); Bosque
River (4297)

Germany;
Texas, U.S. 17; 10; 10 NR

5 to 297;
3 to 78;
6 to 54

5 Yes NA NA NA NA

16 Pheasant
Branch (47.3)

Wisconsin,
U.S. 16 5 to 1569 5 to 79 4 No NA No g NA NA

17

Four river
systems (1929;
4776; 10,829;

17,941)g

Iowa, U.S. 5 to 7 NR 3 to 53 30 No NA Yes h Yes Yes

18
Dreisbach

(6.2); Smith
Fry (7.3)

Indiana, U.S. 8 or 9 NA NR 1 NA NA Yes Yes Yes

19 Nagwan River
(90.2)

Jharkhand,
India 3 NR 1 to 22 4 No NA NA NA NA

20 Big Creek
(133) Illinois, U.S. 6 9 to 352 9 to 118 12 Yes Yes Yes NA NA

21 Illinois River
(1470) Arkansas, U.S. 12 31 to 263 31 or 57 15 No NA Yes NA NA

22 Grote Nete
River (384) Belgium 6 1 to 392 1 to 65 9 Yes No Yes NA NA

23 Upper Daning
River (NR)

Chongqing,
China 7 NR 7 to 55 8 No NA Yes NA NA

24 f Station G
(17.3) Texas, U.S. 4 NR NR 7 No NA NA NA NA

25 Little Pine
Creek (56) Indiana, U.S. 2 418 or 960 15 3 No NA Yes No No

26
Five subbasins
of St. Joseph
River (2809)

Indiana and
Michigan and

Ohio, U.S.
4 NR NR NR NA No Yes Yes Yes

27 Kaskaskia
River (14,152) Illinois, U.S. 20 52 to 4245 19 to 304 48 No NA Yes Yes NA
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Table 1. Cont.

Study Watershed
(Area in km2) Location

Total
Delineation
Scenarios a

HRU Range b Subbasin
Range b

Simulation
Length (Years) c

Is Output Sensitive to Different Delineation Schemes?

Streamflow
Other

Hydrologic
Indicators

Sediment Nitrogen d Phosphorus d

28 Daning River
(4426)

Chongqing,
China 3 NR 22 to 80 5 No NA No No NA

29 Watts Branch
(9.1) Maryland, U.S. 7 NR 21 11 No NA Yes No Yes

30 f Cedar Creek
(707) Indiana, U.S. 12 30 to 1000 17 to 43 10 Yes Yes Yes Yes Yes

31

Sarisu-Eylikler
River (1040);
Namazgah

Dam drainage
area (100.6)

Konya and
Izmit, Turkey 8; 8 7 to 18;

5 to 14 7; 5 8; 16 Yes NA NA NA NA

32 Joumine River
(418) Tunisia 5 15 to 448 1 to 123 13 Yes NA NA NA NA

33 Upper Tapi
River (10,600)

Madhya
Pradesh and
Maharashtra,

India

6 NR NR 26 No NA Yes NA NA

34

Yongdam
Reservoir

drainage area
(930.4);

Gilgelabay
River (1656)

South Korea;
Ethiopia 4; 4 99 to 446;

44 to 295
7 to 37;
5 to 45 16; 15 No Yes NA NA NA

a Some of the studies report delineation effects for non-calibrated scenarios; those results are not included here. b hydrologic response units (HRUs) were typically determined using various threshold techniques;
several of the studies did not report specific numbers of HRUs and a few also did not report numbers of subbasins. c Some studies reported separate calibration and validation periods; the simulation lengths
reported here for those studies are based on the calibration period. d Nitrogen and phosphorus represent different constituent forms reported in some studies; e.g., nitrate and mineral phosphorus [17]. e NR = not
reported; NA = not applicable. f These studies included Soil and Water Assessment Tool (SWAT) configurations based on a grid approach or other non-HRU/subbasin methods. g These three studies report that
sediment losses at the landscape (HRU) level were sensitive to shifts in HRU/subbasin delineations. h Three of these four river systems are portions of larger river basins (the 4776 km2 system is the Maquoketa
River Watershed); the sediment loss predicted at the outlet of the largest river system (17,491 km2) was not sensitive to the delineation scenarios.
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In addition to watershed delineation, climate data is of ultimate importance to achieve
a better match between observed and simulated streamflow. Since the climate spatial vari-
ability is the major driving force of hydrological process, water balance and subsequently
water quality estimations across the basin, the density of climate observations can affect
the simulation results. A comprehensive review of the literature addressing the relation
between the density of rainfall observations and the accuracy with predicted streamflow
can be found in Chaubey et al. [45] and Bárdossy and Das [46]. Chaubey et al. [45] as-
sessed the variability induced in calibrated model parameters solely due to rainfall spatial
variability. Bárdossy and Das [46] used different spatial resolutions of rainfall input in
the model calibration and found that the model performance radically worsens with an
excessive reduction of rain gauges. Given the fact that only one set of climate data can be
input per subwatershed in SWAT, it is important to assess the model performance with
denser or sparser climate data input.

In this study, SWAT models constructed by Hydrologic and Water Quality System
(HAWQS) for UMRB were used to evaluate the impact of watershed delineation and
climate data density on the runoff predictions. The objectives of this research include:
(1) exploring the variations of land-use, soil and characterization of geometric properties
due to watershed delineation; (2) evaluating the effect of watershed delineation on model
predicted streamflow and on different water components of the hydrological process; and
(3) evaluating the effect of climate data input with different densities on runoff predictions
at spatial and temporal scales.

2. Materials and Methods
2.1. Model Description and Configuration

The development of the UMRB SWAT model was set up in Hydrologic and Water
Quality System (HAWQS) platform [47]. HAWQS is a web-based interactive water quantity
and quality modeling system that employs SWAT as its core modeling engine. Details
of the SWAT modeling methods are described in the Theoretical Documentation [48].
HAWQS provides users with interactive web interfaces and pre-loaded input data and
maps, including stream network, land use and land management, soil, historical climate,
point sources, atmospheric deposition and reservoir data. The sources of these input data
are listed in HAWQS [49]. Moreover, users can specify preferred values of parameters
or climate data input instead of using the pre-defined sets, although some default values
of parameters are preliminarily calibrated in HAWQS. It is quick and convenient for
users to set up a SWAT project in HAWQS by only locating the ending Hydrologic Unit
Code (HUC) of the watershed or river basin. Then, the watershed is subdivided into
subbains/subwatersheds, and smaller drainage units referred to as hydrologic response
units (HRUs) within each subbasin. For each HRU, spatially and temporally varying
physical parameters are assumed to be homogeneous. At the subbasin level, the SWAT
project provided by HAWQS can be conducted at 8-digit, 10-digit and 12-digit HUC [50].
At the HRU level, users can apply the HRU threshold to further discretize each subbasin
considering land use and soil landscape heterogeneity.

The SWAT-based HAWQS simulations were performed from 1981 to 2005; the first
2 years served as an initialization period. Scenarios in this study were executed with the
HAWQS default input parameters. It should be noted that the Hargreaves method was
applied in the SWAT model to calculate ET, which was recommended for the UMRB [35].
The files created for UMRB SWAT model were also downloaded from HAWQS after the
initial model construction, which allows additional parameter modification using the SWAT
editor program or other external software.

2.2. Study Area

The UMRB is a headwater basin of the Mississippi River, and originates from Lake
Itasca in northern Minnesota and outlets at the confluence of the Ohio and Mississippi
Rivers near the town of Cairo in southern Illinois. It drains approximately 491,700 km2,
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which includes large portions of five states (Illinois, Iowa, Minnesota, Missouri and Wis-
consin) and small portions of three other states (Indiana, Michigan and South Dakota). The
basin outlet is often assumed to be a gauge site located near Grafton, Illinois, in SWAT
modeling studies and is located just upstream of the confluence of the Mississippi and Mis-
souri Rivers (Figure 1). Three USGS gauge sites were selected for model evaluation in this
study: St. Paul (USGS 05331000), Clinton (USGS 05420500) and Grafton (USGS 05587450)
with reported drainage areas of 95,312 km2, 221,703 km2 and 443,665 km2, respectively.
Observed flow data measured at the St. Paul, Clinton and Grafton stations were obtained
from the United States Geological Survey (USGS) Water Data Server over the same period
from 1980 to 2005 [51]. The major land use in the UMRB is cropland (44.7%), which is
dominated by rotations of corn (27.5%) and soybean (17.2%). There are smaller areas of
wheat, oats and other crops in the UMRB but those are excluded in this HAWQS modeling
framework. Other important land-use categories include forest (20.2%), grassland (16.2%),
water and wetlands (9.8%), and urban/developed areas (9.1%). The soil types range from
heavy, poorly drained clay soil to light, well-drained sands. Among those soil types, silty
loam and loam soils cover about 66% of the total UMRB area [52]. The topography is
characterized by flat to gently rolling terrain, with 55% of the area having less than a 2%
slope and an average elevation of 280 m.
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Figure 1. The location of the study area and gauge sites.

Major spatial maps applied in the model are presented in Figure 2, including a (a)
Digital elevation model (DEM) map, (b) land-use map and (c) soil map. Topographic
information is provided in the form of 30 m digital elevation model (DEM) data from
the National Elevation Dataset at a resolution of 1 arc second [53]. Agricultural and non-
agricultural land use data were derived from the Cropland Data Layer [54] and National
Land Cover Database [55]. The soil data comes from the State Soil Geographic (STATSGO)
database, which contains soil maps at a 1:250,000 scale [56].

2.3. Watershed Delineation and Climate Datasets
2.3.1. Watershed Delineation

The number of subbasins configured for a SWAT application is normally decided by
the minimum drainage area (MDA) of the river network. The smaller the MDA is, the
denser the river network becomes and the more subbasins are generated. Instead of MDA,
the delineation of the UMRB into subbasins in this study was based on 8-digit Hydrologic
Unit Codes (HUCs) and 12-digit HUCs from the Watershed Boundary Dataset (WBD). The
WBD maps the full areal extent of surface water drainage for the U.S. using a hierarchical
system of nesting hydrologic units at various scales [36]. The WBD contains eight levels
of progressive hydrologic units identified by unique 2- to 16-digit codes. The number of
digits for a respective HUC indicates the level of classification in the hydrologic unit system
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from the largest geographic area to the smallest geographic area. HUC 8 is analogous to
medium-sized river basins, while HUC 12 is a more local sub-watershed level that captures
tributary systems (Figure 3). The National Hydrography Dataset Plus (NHDPlus) is a
national geospatial surface water framework, which is also used to provide the vector
stream network connecting subbasins hydrologically in HAWQS [57].
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After the subbasins are defined in SWAT, those subbasins are apportioned into HRUs
by setting thresholds of land-use and soil type to capture relatively small areas. Two levels
of HRU thresholds (1 km2/1 km2 and 70%/70%) were tested in this study. For a large
basin like UMRB, the threshold of 1 km2 is expected to be a refined representation of the
watershed. Conversely, considering the total area of URMB, the 70% threshold is definitely
much coarser than 1 km2. Thus, the number of HRUs for 70% threshold is expected to
shrink significantly, which means the comparison between thresholds of 1 km2 and 70% is
more like the comparison between multiple HRUs and dominant HRUs.
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2.3.2. Spatial Climate Datasets

The PRISM (Parameter-elevation Relationships on Independent Slopes Model) dataset
was developed by Oregon State University’s PRISM Climate Group [58]. The high-spatial-
resolution climate map products of PRISM, created at 30-arcsec (~800 m) grid resolution,
serve as the official spatial climate datasets of the U.S. Department of Agriculture. PRISM
is an analytical tool that uses point data, a digital elevation model, other spatial datasets,
and an encoded spatial climate knowledge base to generate gridded estimates of climate
elements, such as precipitation and temperature [59].

In HAWQS, original PRISM data were processed by averaging their gridded cell
values within 8-digit watersheds or 12-digit watersheds. The mean values of the processed
climate data were assigned to the virtual gauge sites, which are located in the geometrical
center of each sub-watershed. Therefore, the density of climate data is directly affected by
the number of subbasins. To compare the effect of spatial density of climate data on runoff,
two climate datasets were used in this study (Table 2). The “PRISM” dataset represents the
original PRISM data processed for 8-digit subbasins, so there are 119 virtual gauge sites
in the study area. The alternative “PRISM*” dataset represents the original PRISM data
processed for 12-digit subbasins, resulting in 5163 virtual gauge sites in the study area.
Daily precipitation and temperature data from 1981 to 2005 were used from both climate
datasets to simulate streamflow in this study.

Table 2. Description of SWAT scenarios for UMRB.

Scenarios Subbasin Number of
Subbasins

HRU Thresholds
(Land-Use/Soil)

Number of
HRUs

Climate
Dataset

Downstream
Subbasin

HUC8 8-digit 119 1 km2/1 km2 30,812 PRISM HUC07110009
HUC12 12-digit 5163 70%/70% 28,823 PRISM HUC071100090401

HUC12* a 12-digit 5163 70%/70% 28,823 PRISM* HUC071100090401
New-HUC12 12-digit 5163 1 km2/1 km2 120,454 PRISM HUC071100090401
New-HUC12* 12-digit 5163 1 km2/1 km2 120,454 PRISM* HUC071100090401

a The HUC12* and New-HUC12* scenarios were run with the denser PRISM* climate data.

2.4. Simulation Scenario

A total of five scenarios of various combinations of subbasins, HRU definitions and
climate data were simulated in this study (Table 2), including (1) two levels of subbasins
(8-digit and 12-digit HUCs), (2) two levels of HRU thresholds (1 km2 for both land-use and
soil, 70% for both land use and soil) and (3) two levels of climate data densities (PRISM and
PRISM*). In the HUC8 scenario, the SWAT model was configured for the UMRB at the 8-
digit watershed level within the HAWQS Version 1.1 platform (https://hawqs.tamu.edu/#/
(accessed on 10 February 2020)), resulting in 119 8-digit subbasins that encompass the
previously described 447,802 km2 area that drains to Grafton, IL (the outlet is the 8-digit
watershed identified as HUC07110009). HRU thresholds of 1 km2 were then applied to
the land use and soil type in each subbasin. The application of the thresholds resulted in a
total of 30,812 HRUs. Climate data processed for 8-digit subbasins, namely “PRISM”, was
selected as input.

When the SWAT model was configured for the UMRB at the 12-digit watershed level
within the HAWQS Version 1.1 platform, there are 5163 12-digit subbasins with an area
of 445,358 km2 draining to Grafton, IL (the outlet is located in the 12-digit watershed
at HUC071100090401). It should be noted that the total area of 12-digit subbasins is
not identical with the 8-digit subbasins total area. Some closed-basins are excluded in
the drainage areas to Grafton at the 12-digit subbasins level. This bias is caused by the
hydrology dataset provided by the WBD and is acceptable for such a large basin like the
UMRB. The number of subbasins delineated by 12-digit HUCs for UMRB is about 43 times
greater than the number of subbasins delineated by 8-digit HUCs. With the threshold of 1
km2, the 12-digit watershed model generated 120,454 HRUs for the UMRB, which is four
times as many as the threshold of 70%. Generally, as the HRU threshold increases, fewer
HRUs are subdivided in a subbasin as greater portions of minor land use and soil were
regrouped into the major HRUs. This is the reason why the HUC12 and HUC12* scenarios

https://hawqs.tamu.edu/#/
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with 70% threshold only have 28,823 HRUs. Even though the HUC8 scenario and the New-
HUC12 scenario have the identical HRU threshold during the process of HRU definition,
the number of HRUs in the 12-digit watershed is about four times as many as the 8-digit
watershed. This indicates that the number of HRUs can be increased significantly with the
increase in subbasins for a large basin. When simulating, all of the delineation scenarios
adopted the same set of parameters, which were preliminarily calibrated by HAWQS.

3. Results and Discussion
3.1. Land-Use, Soil and Landscape Discrepancies from Different Delineations

Delineating a particular modeled area has an impact on both terrain complexity and
topographic attributes. These characteristics are related to the input elevation, soils and
land use data. Land-use distributions from various delineations are presented in Table
3 to show the discrepancies among them. The original scenario refers to the true GIS
land-use distribution with a 0% threshold. As shown in Table 3, more minor land uses
were regrouped into major land uses as the HRU thresholds become greater. The land-
use distribution of the HUC8 scenario is the closest to the original distribution. For the
New-HUC12 scenario, changes in all land uses are as small as no more than 1% at Grafton
and St. Paul. Land-use distribution of the HUC12 scenario deviated significantly from the
original situation at three gauges due to the 70% HRU threshold. Cropland increased from
40.67% to 47.50% at St. Paul, from 29.42% to 30.80% at Clinton and from 44.69% to 50.05%
at Grafton. The percentage of the forest also increased at all three gauges in the HUC12
scenario compared to the original situation. Forest increased by 4.80%, 8.68% and 5.07% at
St. Paul, Clinton and Grafton, respectively. Urban area decreased significantly on average
by 6% for three gauge sites. It should be noticed that even though the variation of land use
is small, the redistribution areas can be great since the total drainage areas are large in this
study. St. Paul, Clinton and Grafton are reported to control drainage areas of 95,312 km2,
221,703 km2 and 443,665 km2, respectively.

Table 3. Land-use distribution (%) in different delineation scenarios for the areas that drain to (a) St.
Paul, (b) Clinton and (c) Grafton, respectively. The original scenario represents the baseline land-use
distribution with 0% threshold.

Land-Use Distribution (%) Cropland Forest Grassland Urban Area Wetland Water

(a) Drainage Area to St. Paul
Original 40.67 18.38 15.01 7.78 11.91 6.25
HUC8 40.69 18.38 15.00 7.77 11.92 6.25

HUC12/HUC12* a 47.50 23.18 10.97 2.47 10.06 5.82
New-HUC12/New-HUC12* 41.63 18.57 14.52 7.22 11.88 6.20

(b) Drainage Area to Clinton
Original 29.42 29.84 18.00 7.14 10.90 4.68
HUC8 29.43 29.85 18.00 7.13 10.90 4.69

HUC12/HUC12* 30.80 38.52 15.00 1.52 9.92 4.24
New-HUC12/New-HUC12* 29.91 30.36 17.62 6.65 10.84 4.62

(c) Drainage Area to Grafton
Original 44.69 20.15 16.30 9.08 6.65 3.14
HUC8 44.71 20.15 16.29 9.07 6.64 3.14

HUC12/HUC12* 50.05 25.22 13.75 2.89 5.44 2.65
New-HUC12/New-HUC12* 45.48 20.64 15.99 8.41 6.49 2.99

a The HUC12* and New-HUC12* scenarios were run with the denser PRISM* climate data.

There are more than 160 soil types identified for the whole UMRB with the STATSGO
database. The predominant soil types in the watershed cover 3.64%, 2.48% and 2.06%, re-
spectively. In addition, 16 other types of soil cover >1% of the UMRB land area. Hydrologic
soil groups (HSGs) serve an important role in the determination of surface runoff [60]. Soils
are classified into HSGs by national agencies based on the minimum rate of infiltration
obtained for bare soil after prolonged wetting [61]. Soils in group A are characterized by
the low runoff potential and high infiltration rates when thoroughly wet, while soils in
group D are characterized by high runoff potential and very low infiltration rates when
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thoroughly wet. Dual hydrologic soil groups (i.e., A/D, B/D and C/D) are placed in group
D based solely on the presence of a high water table. Since there are too many soil types
in the watershed, only hydrologic groups among different delineation scenarios are listed
(Table 4). When applying a 0% threshold for the soils, 69.6% of the area belongs to group B,
which represents moderately low runoff potential and moderate infiltration rates. Group
C soils form the second largest portion of soil types in the watershed, which accounts for
16.7% of the area. Group A covers 8.7% and group D covers 5.0% in the original situation.
The compositions of hydrologic soil groups for HUC-8 scenario and New-HUC12/New-
HUC12* scenario, which both used 1 km2 HRU threshold, are almost the same as the
original situation (Table 4). The biggest deviation from the original situation occurred in
the HUC-12/HUC-12* scenario when applying 70% threshold, with group A 7.7%, group
B 69.7%, group C 17.1% and group D 5.5%. The composition of the hydrologic soil groups
varied little among different delineation scenarios. Differences between the four hydrologic
groups were <1% for the whole UMRB versus the original land use distribution, for the
threshold set to 1 km2 for either the HUC8 scenario or the New-HUC12 scenario. Soils in
group A decreased from 8.67% to 7.70% compared to the original land use distribution
in response to the 70% threshold applied for the HUC12 scenario, which was the largest
discrepancy (Table 4).

Table 4. Percentages of hydrologic soil groups (%) in different delineation scenarios. The original
stands for the true soil distribution with 0% threshold.

Hydrologic Soil Group A B C D

Original 8.67 69.61 16.68 5.04
HUC8 8.67 69.58 16.71 5.04

HUC12/HUC12* 7.70 69.68 17.14 5.48
New-HUC12/New-HUC12* 8.55 69.60 16.78 5.07

The individual subbasin areas varied in size within each subdivided watershed, as
shown in Figure 3. Descriptive statistics of subbasin sizes are presented in Table 5. Areas of
8-digit subbasins varied from 1606.1 km2 to 8415.9 km2, while areas of 12-digit subbasins
varied from 18.0 km2 to 940.5 km2. The number and size of subbasins have a direct impact
on the river or main channel simulated for each subbasin. Table 5 summarizes the physical
characteristics of channels that affect water flow, and transport of sediment and nutrients.
The average length of the channel decreased from 189.3 km to 14.9 km, while the total
length of channels increased two times in 12-digit subbasins versus 8-digit subbasins.
The average width of a channel decreased sharply from 177.1 m to 18.4 m. There was
an obvious increase in the slope of the channel from 0.2% to 0.5% when the number of
subbasins increased. The maximum slope of the channel in each subbasin also increased
from 2.8% to 4.6%. This increase in slope could result from a better accounting of spatial
variation in elevation when smaller subbasins were used, which is a fundamental property
of natural terrain [62]. Studies demonstrated that the drainage density can affect the
accuracy of runoff predictions since it characterizes the scale of landscape forms [63–66].
Table 5 shows that a wider range in drainage densities of 0.002 to 0.497 was observed for
the 12-digit subbasins, as compared to a drainage density range of 0.005 to 0.145 for the
8-digit subbasins. For the whole study area, drainage density increased from 0.05 to 0.17.
Table 5 shows that drainage density increased as the number of subbasins increased. A
similar trend was also reported by Jha et al. [17]. Higher drainage density in the simulation
process implies that scenarios based on the 12-digit subbasin may be characterized by a
stronger tendency to generate runoff.
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Table 5. Area of subbasin and physical characteristics of the channel in different delineation scenarios.

Statistics

Area of Subbasin
(km2)

Length of Channel
(km)

Slope of Channel
(10−2 m/m)

Width of Channel
(m)

Drainage Density
(km/km2)

HUC8 HUC12 HUC8 HUC12 HUC8 HUC12 HUC8 HUC12 HUC8 HUC12

Amount of data 119 5163 119 5163 119 5163 119 5163 119 5163
Mean 3763.0 86.3 189.3 14.9 0.2 0.5 177.1 18.4 0.051 0.176

Median 3489.4 81.4 152.2 13.9 0.1 0.4 172.3 18.1 0.041 0.177
Minimum 1606.1 18.0 12.7 0.1 0.0 0.0 108.2 7.3 0.005 0.002
Maxmum 8415.9 940.5 801.5 153.4 2.8 4.6 292.2 78.5 0.145 0.497

Sum 447,802.2 445,357.9 22,530.3 77,046.2
Average for the UMRB 0.050 0.173

3.2. Evaluation of Monthly Streamflow at Gauge Sites

The model performance for monthly streamflow at St. Paul, Clinton and Grafton was
presented for all scenarios in terms of the Nash-Sutcliffe Efficiency (NSE), percent bias
(PBIAS), R2 and Kling-Gupta efficiency (KGE) statistics in Table 6. NSE is a normalized
statistic that determines the relative magnitude of the residual variance compared to the
measured data variance, which is widely used throughout the modeling literature [67,68].
PBIAS measures the average tendency of the simulated data to be larger or smaller than
their observed counterparts. R2 describes the degree of collinearity between simulated and
measured data. As for KGE, it is designed to be an improved criterion by incorporating
error compensation for the bias and variability components [69].

Table 6. Statistic evaluations and average monthly flow (m3/s) based on monthly flow for three gauge sites in different
scenarios from 1983 to 2005.

Scenarios NSE PBIAS R2 KGE Average Monthly Flow (m3/s)

(a) St. Paul
Observed — — — — 481.4

HUC8 0.66 12.23 0.74 0.79 422.5
HUC12 0.64 16.77 0.71 0.77 400.7
HUC12* 0.61 9.80 0.69 0.78 434.2

New-HUC12 0.64 10.27 0.70 0.80 431.9
New-HUC12* 0.59 2.85 0.68 0.78 467.7

(b) Clinton
Observed — — — — 1613.5

HUC8 0.32 29.82 0.76 0.57 1135.6
HUC12 −0.14 32.71 0.40 0.50 1085.7
HUC12* −0.14 28.02 0.38 0.51 1161.5

New-HUC12 −0.10 28.37 0.40 0.52 1155.9
New-HUC12* −0.11 23.45 0.38 0.52 1235.2

(c) Grafton
Observed — — — — 3545.8

HUC8 0.54 30.32 0.80 0.68 2470.8
HUC12 0.31 28.06 0.53 0.57 2551.0
HUC12* 0.33 23.55 0.50 0.59 2710.7

New-HUC12 0.32 25.32 0.51 0.58 2647.9
New-HUC12* 0.34 20.59 0.48 0.61 2815.7

Generally, NSE values ≥ 0.5, R2 values ≥ 0.6 and PBIAS values ≤ ±25% [67] or
≤±15% [68] can be regarded as satisfactory. Patil and Stieglitz [70] implied that simulated
values could be judged to be satisfactory with a KGE value > 0.6.

Since HAWQS was preliminarily calibrated based on several 8-digit subbasins, monthly
streamflow performance at the St. Paul gauge was satisfactory for the HUC8 scenario with
NSE 0.66, PBIAS 12.23%, R2 0.74 and KGE 0.79 based on the suggested criteria by Moriasi
et al. [67] or Patil and Stieglitz [70]. NSE at Clinton was 0.32 for the HUC8 scenario, which
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was the weakest among three gauge sites. PBIAS at Clinton was 29.82% (>25%) for the
HUC8 scenario, while R2 was 0.76 (>0.6) and KGE was 0.57 (<0.6). The uncalibrated flow
performance at Grafton can be considered acceptable for the HUC8 scenario shown in
Table 6, except that PBIAS was 30.32% (>25%). Overall, the uncalibrated flow performance
at St. Paul and Grafton can be considered acceptable for the HUC8 scenario shown in
Table 6.

The statistics of monthly streamflow at the St. Paul gauge site were satisfactory for
all 12-digit subbasin scenarios (Table 6) in terms of NSE (0.59–0.64), PBIAS (2.85–16.77%),
R2 (0.68 to 0.71) and KGE (0.77 to 0.80). PBIAS decreased slightly in most of the 12-digit
subbasin scenarios versus the HUC8 scenario at Clinton and Grafton, which indicated
an improvement of bias between observed and simulated streamflow. KGE values were
considerably strong at the URMB outlet of Grafton, as evidenced by values that were close
to 0.6 for all five scenarios. However, the values of NSE and R2 declined considerably at
the Clinton and Grafton gauges when using 12-digit subbasin scenarios (Table 6). NSE
values decreased to <0 in all 12-digit subbasin scenarios at Clinton and decreased to <0.5
at Grafton. R2 values decreased to <0.6 at Clinton and Grafton in the 12-digit subbasin
scenarios. The shift from 8-digit to 12-digit subbasins for the drainage area to Clinton
resulted in the worst simulation of monthly flow among the three gauge sites in this
study (Table 6). This is partly due to the weak representation of forest from the SWAT
parameterization, which has been reported in previous SWAT applications [71,72]. Since
the area draining to Clinton has the largest percentage of forest (29.8%) among three gauge
sites, this weakness could be magnified with finer delineation.

The last column in Table 6 provides the average monthly flow on an annual basis
for the different delineation scenarios at the three gauge sites. The average monthly flow
is underestimated for all of the scenarios compared to the observed flow data, which
is consistent with the positive PBIAS values. The average monthly flow increased for
most of the 12-digit subbasin scenarios as compared to the HUC8 scenario, except for the
HUC12 scenario at St. Paul and Clinton. The increase in flow is attributable to variation in
the number of HRUs and corresponding variation in the characteristics of HRUs. Since
the 12-digit model has considerably more HRUs than the 8-digit model, more detailed
information on the spatial variability of rainfall is captured. Although HUC8 scenario and
New-HUC12 scenario both used 1 km2 as the HRU threshold, the New-HUC12 scenario
generated 120,454 HRUs, 4 times greater than the HUC8 scenario of 30,812 HRUs. The
average monthly flow increased from the HUC8 scenario to the New-HUC12 scenario
by 2.22%, 1.79% and 7.17% at St. Paul, Clinton, and Grafton, respectively. The New-
HUC12 scenario of 12,454 HRUs had higher average monthly flows compared to the
HUC12 scenario of 28,823 HRUs. Average monthly flows increased from HUC12 scenario
to New-HUC12 scenario by 7.79%, 6.47% and 3.80% at St. Paul, Clinton and Grafton,
respectively. Similarly, streamflow increased from the HUC12* scenario to New-HUC12*
scenario. Increases in streamflow from coarse to fine watershed delineation were also
reported in previous studies [13,22]. HRU modifications that affect the distribution of
simulated land use, soils, and other landscape characteristics will have the greatest impact
on the predicted runoff [17]. The monthly streamflow decreased from the HUC8 scenario to
the HUC12 scenario at St. Paul and Clinton, which might be due to the smaller number of
HRUs for the HUC12 scenario, resulting from the 70% threshold (Table 2). In general, there
will be less information loss as the HRU definition becomes more refined. It is perceived
that this will result in more accurate model prediction [28]. However, this may not always
be the better outcome of statistics, especially regarding SWAT-predicted hydrologic results.

Time series plots of observed versus simulated streamflow on the monthly time
scale for the three gauge sites (Figure 1) in response to different delineation scenarios are
presented in Figure 4. The solid blue dots represent the measured monthly streamflow
obtained from USGS [50]. The simulated SWAT model streamflow generally tracked the
seasonal variance pattern including the peaks and recessions, although there is an obvious
underestimation of the observed streamflows for all three gauge sites (St. Paul, Clinton
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and Grafton). The St. Paul station (Figure 4a) demonstrates strong agreement between
simulated and observed monthly flows, which is consistent with the statistics criteria
presented in Table 6. Winter low flows were generally underpredicted during November
to February, especially for Clinton. Based on the enlarged picture of winter flow shown
in Figure 4, the HUC8 scenario (represented by the solid black line with hollow black
circles) usually had the lowest flow among the different scenarios, again confirming that
the 12-digit watersheds generate higher flow than 8-digit watersheds.
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3.3. Response of Hydrologic Components

Table 7 presents average annual values of hydrologic components predicted with
SWAT across the UMRB for the five different delineation scenarios, including precipitation,
evapotranspiration (ET), potential evapotranspiration (PET), surface runoff, lateral runoff,
groundwater flow and water yield. Annual values are averaged for the whole UMRB dur-
ing the period from 1983 to 2005. The results show that higher lateral flow and groundwater
flow estimates occurred for the 12-digit subbasin scenarios relative to the 8-digit subbasin
simulations. This was especially true for lateral flow, as reflected by an increase of nearly
100%. Groundwater flow for the HUC8 scenario was 18.3 mm, while it ranged from 18.6
to 19.2 mm in all 12-digit subbasin scenarios. The lateral flow for the HUC8 scenario was
24.0 mm, smaller than the 12-digit subbasin scenarios (45.0–47.9 mm), reflecting the greatest
difference of any of the estimated hydrologic components. Increases in these components
revealed that transmission gains from shallow groundwater increased as the subbasins
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decreased in size, which could be due to increases in drainage density (Table 5). The spatial
variation in elevation can be better accounted for as drainage density increases [17]. Surface
runoff and water yield decreased in the HUC12 and New-HUC12 scenarios as compared
to the HUC8 scenario but increased in the HUC12* and New-HUC12* scenarios. Predicted
sediment yields also increased, with a greater number of subbasins represented by the
12-digit scenarios. This is due to changes in channel length and slope, which affect the
deposition and degradation of sediments.

Table 7. Average annual values of hydrologic components (mm) and daily mean temperature (◦C) over the UMRB in
different scenarios during 1983 to 2005.

Scenarios Precipitation
(mm)

Daily
Temperature

(◦C)

ET
(mm)

PET
(mm)

Surface
Runoff
(mm)

Lateral
Flow
(mm)

Groundwater
Flow
(mm)

Water
Yield
(mm)

Sediment
Yield
(T/ha)

HUC8 831.2 8.05 620.4 958.6 141.9 24.0 18.3 212.4 0.85
HUC12 830.7 8.03 626.8 957.0 133.4 45.0 18.6 205.1 1.77
HUC12* 831.1 8.01 617.4 959.6 143.3 46.1 18.8 216.8 1.89

New-HUC12 830.7 8.03 621.0 958.0 136.2 47.1 19.0 210.9 1.61
New-HUC12* 831.1 8.01 611.5 960.9 146.8 47.9 19.2 223.0 1.73

To investigate the spatial variation of hydrologic components, Figure 5 depicts outputs
for the HUC8 scenario versus the New-HUC12 scenario, respectively. The results are
presented at the respective subbasin scale for both scenarios. Considerably more spatial
details are observable in the 12-digit subbasins compared to 8-digit subbasins. A distinct
area with a long ribbon shape came out as compared to the HUC8 scenario, showing lower
surface runoff (Figure 5a). Surface runoff is related to soil type, where soils with higher
infiltration rates (A and B hydrologic soil groups) tend to generate lower runoff. This
indicated that more soil characteristics were captured by 12-digit subbasins than 8-digit
subbasins when delineating the watershed. The steeper areas in the northern and northeast
parts of the basin showed higher lateral flow than the flatter areas in the middle subbasins
(Figure 5b). Unlike surface runoff, groundwater flow was higher in regions of higher
infiltration (Figure 5c). This is why the ribbon-shaped area showed lower surface runoff
but higher groundwater flow within the 12-digit subbasins (Figure 5a,c). With respect to
water yield, it is a composite value related to surface runoff, lateral flow, groundwater flow,
etc. Water yield did not show obvious spatial characteristics in the comparison between
8-digit and 12-digit subbasins (Figure 5d). Overall, the results demonstrate that not only
does the landscape position matter in simulation, but that the spatial distribution of land
use and soils is also important.

Many SWAT studies report analyses of the effects of land-use change [73], and dozens
of these studies describe how simulated streamflow varies as a function of land-use
change [74–76]. The shifts in average annual values of key hydrologic components in re-
sponse to different land-use types simulated during 1983 to 2005 are presented in Figure 6.
The highest PET and ET levels were predicted for the water bodies; i.e., lakes or ponds. ET
estimated for forest was greater than the other non-water land uses. In the SWAT hydro-
logic process, water areas do not generate runoff to the streamflow. Cropland and urban
areas were predicted to produce more surface runoff than other land-uses. The average
annual amount of surface runoff for the forest was the lowest. Differences in the surface
runoff between land-uses were primarily caused by the runoff curve number (RCN), a
factor used to estimate surface runoff in the SCS curve number procedure [77]. The forest
curve number was lower than cropland, which reflected the effects of the forest canopy
and ground cover, and resulted in a decrease in surface runoff. Wetland was predicted to
generate the largest lateral flow in all of the scenarios, while grassland was predicted to
produce the highest groundwater flow. Lateral flow was obviously greater for the HUC12
scenarios relative to the HUC8 scenario for all land uses. This is in accordance with the
variation of lateral flow for the whole UMRB in Table 7. Among all land use types, the
predicted water yield was lowest for forest. In summary, comparisons among the different
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land uses indicated that forest will consistently result in the lowest levels of generated
runoff, which was also reported in Owuor et al. [78] and Shang et al. [79].

Water 2021, 13, x FOR PEER REVIEW 18 of 27 
 

 

 
Figure 5. Spatial output of annual averages during 1983 to 2005 for Hydrologic Unit Code (HUC) 8 scenario within 8-digit
subbasins (left) and for New-HUC12 scenario within 12-digit subbasins (right): (a) surface runoff; (b) lateral flow; (c)
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The investigation of land use showed that cropland resulted in a relatively overall
stronger water production capacity (Figure 6c,e,f). Although the change of land-use
percentage is small, the total changed land area can be considerable for a large basin like
the UMRB. Thus, the streamflow performance for different stations can be very different
in response to the impact of the division of the basin into subbasins and accompanying
HRUs. To conclude, the changes in land use and soil characteristics at the HRU level, due
to the implementation of HRU thresholds, can have a great influence on simulated surface
runoff. Average annual flow decreased at the St. Paul and Clinton gauges but increased
at Grafton station for the HUC12 scenario compared to the HUC8 scenario. This may be
partly due to the fact that land-use compositions are different for the areas draining to
three gauges (Table 3). To be specific, the percentage of cropland at Grafton is the highest
among three gauges.

3.4. Effect of the Spatial Density of Climate Dataset on Runoff

In this section, the effects of spatial density of the climate datasets (including precipi-
tation and temperature) on hydrologic processes are presented. Two climate datasets were
used in this study (Table 2). The PRISM dataset was referred to as a processed dataset,
which was averaged from original gridded-PRISM data to the 8-digit watersheds. Similarly,
the PRISM* dataset provided average daily climate data at the 12-digit watershed level.
More descriptions of the climate datasets are shown in Section 2.3. The PRISM* dataset
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resulted in increases of SWAT-predicted streamflow relative to the PRISM climate data on
an average annual basis at the three gauge sites (Table 6). From the HUC12* scenario to
the HUC12 scenario, monthly streamflow increased by 8.36%, 6.98% and 6.26% at St. Paul,
Clinton and Grafton, respectively. Similarly, average monthly streamflow increased by
8.29%, 6.86% and 6.34% at the three gauge sites. On average, monthly streamflow increased
by 8.32%, 6.92% and 6.30% at St. Paul, Clinton and Grafton, respectively, from denser
climate data to sparser climate data.

From the view of the entire basin, differences in average annual precipitation and
daily temperature are quite small (Table 7). Among the five scenarios, average annual
precipitation ranged from 830.7 mm to 831.2 mm, and the daily mean temperature ranged
from 8.01 ◦C to 8.03 ◦C. In the comparisons of HUC12 versus HUC12* scenario and New-
HUC12 versus New-HUC12* scenario, ET decreased by 9.4 mm and 9.5 mm from the
sparser dataset (PRISM) to the denser dataset (PRISM*). Differences in PET between the
two climate datasets are increments of 2.6 mm and 2.9 mm (Table 7). Surface runoff, lateral
flow, groundwater flow and water yield also increased to varying degrees between the
results obtained with PRISM versus PRISM*. Among these hydrologic components, larger
increases were predicted for surface runoff and water yield as compared to lateral runoff
and groundwater flow. Surface runoff increased by 9.9 mm for the HUC12 scenario relative
to the HUC12* scenario and 10.7 mm from the New-HUC12 scenario to the New-HUC12*
scenario. With respect to water yield, increases between the two sets of scenarios were up
to 11.7 mm and 12.1 mm, respectively. In contrast, lateral runoff only increased by 1.1 mm
and 0.8 mm, and groundwater increased by just 0.2 mm (in both cases), for the scenarios
executed with PRISM*- versus the PRISM -based scenarios.

Figures 7a and 8a show the spatial variations in the precipitation and daily mean
temperature for the 1983 to 2003 period for the HUC12 scenario with the PRISM dataset,
which had 119 virtual gauges. Average annual precipitation was found to vary widely
across the study area from <600 mm in the northwest part of the basin to >1000 mm in
the southeast area of the basin. The average mean temperature varied from <4 ◦C in the
north to >12 ◦C in the south. Figures 7b and 8b depict the absolute changes that were
predicted for the PRISM dataset relative to PRISM* dataset in precipitation (mm) and
mean temperature (◦C). There was no distinct geographic pattern regarding the absolute
changes of annual precipitation between the denser dataset and sparser dataset. Highs
and lows of absolute changes are distributed in the study area randomly. In some 12-
digit subbasins, annual precipitation with PRISM* was <40 mm versus PRISM. In other
subbasins, annual precipitation with PRISM* was 40 mm > than PRISM. This can be
explained by the calculation method used in SWAT for the precipitation and temperature
data input, which was weighted on an areal basis using Thiessen polygons. Thiessen
polygons are irrelevant to the geographical characteristics but are related to the number
and size of subbasins. Similarly, differences in daily mean temperature between the two
datasets did not show an obvious relationship with land-use, soil or landscape.

In addition to comparing the spatial distribution of precipitation and temperature,
mean monthly values for selected hydrologic components across the UMRB in response
to the different scenarios are presented in Figure 9. As shown in Figure 9a, precipitation
amounts across the different scenarios were very close, which demonstrated that precipi-
tation changed little both on an annual basis and monthly basis as a function of different
densities of climate datasets. The PRISM* dataset generated lower ET as compared to
the PRISM dataset across the year from January to December (Figure 9b). With respect
to surface runoff and water yield, the higher levels generated by the PRISM* data are
very obvious, especially during the May to September growing season (Figure 9c,d). The
cumulative difference between PRISM and PRISM* during the growing season accounted
for 75% of the total annual difference on average. To conclude, there are distinct seasonal
variations between the monthly differences. The PRISM* dataset, which has denser gauges,
tended to generate more runoff during the summer months, as compared to the PRISM
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dataset. Figure 9 further shows that the New-HUC12* scenario resulted in the highest
runoff among the different scenarios in most months.
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4. Conclusions

The SWAT model was developed for the UMRB using the data provided by the
HAWQS platform to analyze the hydrologic response to watershed delineations and the
density of climate data. Five delineation scenarios combined with two levels of subbasins (8-
digit HUC and 12-digit HUC), two levels of HRU thresholds (1 km2/1 km2 and 70%/70%)
and two levels of climate data (PRISM and PRISM*) were simulated. The same set of
default parameters generated within HAWQS was used for all five delineation scenario
simulations, which included some “partial built-in calibration” for some UMRB 8-digit
subbasins in HAWQS. The results of the analyses lead to the following conclusions.

1. The hydrologic response can be varied in different parts of the area for a large
basin when changing delineation schemes, since the watershed delineation affects the
landscape position, land-use distribution and soil distribution spatially. Results showed
that groundwater flow and surface runoff are more sensitive to the areas with soils of higher
infiltration rates, and the steeper areas generated a greater amount of lateral runoff than flat
areas when applying denser delineation schemes. The statistics of monthly streamflow at
St. Paul were satisfactory for all scenarios. However, several evaluation criteria of monthly
streamflow declined considerably at the Clinton and Grafton gauges when using 12-digit
subbasin scenarios.

2. The hydrologic cycle changed in the shift from 8-digit to 12-digit subbasin. The
average length of channels and width of channels decreased in the 12-digit subbasins versus
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8-digit subbasins, while the average slope of channels and drainage density increased.
For the whole study area, average slope of channels increased from 0.2% to 0.5%, and
drainage density increased from 0.05 to 0.17. This resulted in higher lateral flow and
groundwater flow estimates for the 12-digit subbasin scenarios relative to the 8-digit
subbasin simulations. This was especially true for lateral flow, as reflected by an increase
of nearly 100% from 8-digit to 12-digit subbasins. Predicted sediment yields also increased
with a greater number of subbasins represented by the 12-digit scenarios. This is due
to changes in channel length and slope, which affect the deposition and degradation of
sediments.

3. A finer HRU delineation can result in increased streamflow because it captures
a refined level of rainfall spatial variability. The New-HUC12 scenario generated higher
averages of monthly streamflow than the HUC12 scenario at three gauge sites during
the period from 1983 to 2005, because the New-HUC12 scenario had a finer delineation
with 120,454 HRUs. Similarly, streamflow increased from the HUC12* scenario to the
New-HUC12* scenario. Although the evaluation statistics of monthly flow are not always
improved with a finer delineation, the magnitude of simulated streamflow increased and
was closer to the observed flow in the finer watershed delineation scenarios for this UMRB
study.

4. Denser climate data resulted in a SWAT-predicted increase in streamflow. Monthly
streamflow increased on average by 8.32%, 6.92% and 6.30% at the St. Paul, Clinton and
Grafton, respectively, from the PRISM* to the PRISM dataset. Spatial deviations in rainfall
of no more than 60 mm and in temperature of <0.8 ◦C were observed between these two
climate datasets. Spatial deviations in climate data input led to a 9 mm decrease in ET,
10 mm increase in surface runoff and 12 mm increase in water yield for the entire UMRB.
There are distinct seasonal variations between monthly differences of surface runoff and
water yield. The cumulative difference between PRISM and PRISM* during the growing
season accounted for 75% of the total annual difference on average. The PRISM* dataset,
which has denser gauges, tended to generate more runoff during the summer months as
compared to PRISM dataset.

The New-HUC12* scenario had the finest watershed delineation and denser climate
data, so it produced the highest streamflow at all three gauge sites. This indicated that
the New-HUC12* scenario captured the most spatial information. In this study, it is not
aimed at the better choice between 8-digit and 12-digit subbasins, or at the best HRU
threshold, but at the hydrologic response to different delineations for a large basin like
UMRB. The extension of this work involves the investigation of more local hydrology
stations at a tributary to further assess the hydrologic response of the delineation schemes.
Those local stations can stand for various smaller drainage areas contained within the
overall large basin. It is also of interest to calibrate and validate 8-digit and 12-digit models
separately and explore the portability for sensitive parameters. Above all, this study
provides modelers insights to know how watershed delineation affects hydrologic cycle
and to balance the level of model representation and the computational limitations.

Author Contributions: Conceptualization, M.C., Y.C. and P.W.G.; software, R.S.; formal analysis,
M.C. and P.W.G.; writing—original draft preparation, M.C.; writing—review and editing, P.W.G., Y.C.
and R.S. All authors have read and agreed to the published version of the manuscript.

Funding: This study was financially supported by the NSFC-MWR-CTGC Joint Yangtze River Water
Science Research Project (No. U2040213).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: This research was inspired and partially funded during the initial development
by the U.S. Department of Energy initiative (DESC0016438), “A Hierarchical Evaluation Framework
for Assessing Climate Simulations Relevant to the Energy-Water-Land Nexus”, U.S. Department



Water 2021, 13, 422 21 of 23

of Energy (DESC0016605), “An Integrated Assessment of Regional Climate-Water-Energy-Land-
Decision Modeling”, and National Science Foundation initiative (1761772), “An Integrated Big Data
Framework for Water Quality Issues in the Upper Mississippi River Basin”. We also thank the
technical support from HAWQS.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Teshager, A.D.; Gassman, P.W.; Schoof, J.T.; Secchi, S. Assessment of impacts of agricultural and climate change scenarios on

watershed water quantity and quality, and crop production. Hydrol. Earth Syst. Sci. 2016, 20, 3325–3342. [CrossRef]
2. Nazari-Sharabian, M.; Taheriyoun, M.; Ahmad, S.; Karakouzian, M.; Ahmadi, A. Water Quality Modeling of Mahabad Dam

Watershed–Reservoir System under Climate Change Conditions, Using SWAT and System Dynamics. Water 2019, 11, 394.
[CrossRef]

3. Babaei, H.; Nazari-Sharabian, M.; Karakouzian, M.; Ahmad, S. Identification of Critical Source Areas (CSAs) and Evaluation of
Best Management Practices (BMPs) in Controlling Eutrophication in the Dez River Basin. Environments 2019, 6, 20. [CrossRef]

4. Chaplot, V.; Saleh, A.; Jaynes, D.B. Effect of the accuracy of spatial rainfall information on the modeling of water, sediment, and
NO3–N loads at the watershed level. J. Hydrol. 2005, 312, 223–234. [CrossRef]

5. Ning, J.; Gao, Z.; Lu, Q. Runoff simulation using a modified SWAT model with spatially continuous HRUs. Environ. Earth Sci.
2015, 74, 5895–5905. [CrossRef]

6. Nazari-Sharabian, M.; Taheriyoun, M.; Karakouzian, M. Sensitivity analysis of the DEM resolution and effective parameters of
runoff yield in the SWAT model: A case study. J. Water Supply Res. Technol. AQUA 2020, 69, 39–54. [CrossRef]

7. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment—Part 1: Model
development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [CrossRef]

8. Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol.
Process. 2005, 19, 563–572. [CrossRef]

9. Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications,
and future research directions. Trans. ASABE 2007, 50, 1211–1250. [CrossRef]

10. Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ.
Qual. 2014, 43, 1–8. [CrossRef] [PubMed]

11. Mamillapalli, S.; Srinivasan, R.; Arnold, J.G.; Engel, B.A. Effect of Spatial Variability on Basin scale Modeling. In Proceedings
of the Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, NM, USA, 21–25
January 1996.

12. Manguerra, H.B.; Engel, B.A. Hydrologic parameterization of watersheds for runoff prediction using SWAT. J. Am. Water Resour.
Assoc. 1998, 34, 1149–1162. [CrossRef]

13. FitzHugh, T.W.; Mackay, D.S. Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model.
J. Hydrol. 2000, 236, 35–53. [CrossRef]

14. FitzHugh, T.W.; Mackay, D.S. Impact of subwatershed partitioning on modeled source and transport-limited sediment yields in
an agricultural nonpoint source pollution model. J. Soil Water Conserv. 2001, 56, 137–143.

15. Haverkamp, S.; Srinivasan, R.; Frede, H.G.; Santhi, C. Subwatershed Spatial Analysis Tool: Discretization of a Disturbed
Hydrologic Model by Statistical Criteria. J. Am. Water Resour. Assoc. 2002, 38, 1723–1733. [CrossRef]

16. Chen, E.; Mackay, D.S. Effects of distribution-based parameter aggregation on a spatially distributed agricultural nonpoint source
pollution model. J. Hydrol. 2004, 295, 211–224. [CrossRef]

17. Jha, M.; Gassman, P.W.; Secchi, S.; Gu, R.; Arnold, J. Effect of watershed subdivision on swat flow, sediment, and nutrient
predictions. J. Am. Water Resour. Assoc. 2004, 40, 811–825. [CrossRef]

18. Arabi, M.; Govindaraju, R.S.; Hantush, M.M.; Engel, B.A. Role of Watershed Subdivision on Modeling the Effectiveness of best
management practices with SWAT. J. Am. Water Resour. Assoc. 2006, 42, 513–528. [CrossRef]

19. Tripathi, M.P.; Raghuwanshi, N.S.; Rao, G.P. Effect of watershed subdivision on simulation of water balance components. Hydrol.
Process. 2006, 20, 1137–1156. [CrossRef]

20. Muleta, M.K.; Nicklow, J.W.; Bekele, E.G. Sensitivity of a distributed watershed simulation model to spatial scale. J. Hydrol. Eng.
2007, 12, 163–172. [CrossRef]

21. Migliaccio, K.W.; Chaubey, I. Spatial distributions and stochastic parameter influences on SWAT flow and sediment predictions. J.
Hydrol. Eng. 2008, 13, 258–269. [CrossRef]

22. Rouhani, H.; Willems, P.; Feyen, J. Effect of watershed delineation and areal rainfall distribution on runoff prediction using the
SWAT model. Hydrol. Res. 2009, 40, 505–519. [CrossRef]

23. Gong, Y.; Shen, Z.; Liu, R.; Wang, X.; Chen, T. Effect of Watershed Subdivision on SWAT Modeling with Consideration of
Parameter Uncertainty. J. Hydrol. Eng. 2010, 15, 1070–1074. [CrossRef]

24. Arnold, J.G.; Allen, P.M.; Volk, M.; Williams, J.R.; Bosch, D.D. Assessment of different representations of spatial variability on
SWAT model performance. Trans. ASABE 2010, 53, 1433–1443. [CrossRef]

25. Kalcic, M.M.; Chaubey, I.; Frankenberger, J. Defining Soil and Water Assessment Tool (SWAT) hydrologic response units (HRUs)
by field boundaries. Int. J. Agric. Biol. Eng. 2015, 8, 69–80. [CrossRef]

http://doi.org/10.5194/hess-20-3325-2016
http://doi.org/10.3390/w11020394
http://doi.org/10.3390/environments6020020
http://doi.org/10.1016/j.jhydrol.2005.02.019
http://doi.org/10.1007/s12665-015-4613-2
http://doi.org/10.2166/aqua.2019.044
http://doi.org/10.1111/j.1752-1688.1998.tb05961.x
http://doi.org/10.1002/hyp.5611
http://doi.org/10.13031/2013.23637
http://doi.org/10.2134/jeq2013.11.0466
http://www.ncbi.nlm.nih.gov/pubmed/25602534
http://doi.org/10.1111/j.1752-1688.1998.tb04161.x
http://doi.org/10.1016/S0022-1694(00)00276-6
http://doi.org/10.1111/j.1752-1688.2002.tb04377.x
http://doi.org/10.1016/j.jhydrol.2004.03.029
http://doi.org/10.1111/j.1752-1688.2004.tb04460.x
http://doi.org/10.1111/j.1752-1688.2006.tb03854.x
http://doi.org/10.1002/hyp.5927
http://doi.org/10.1061/(ASCE)1084-0699(2007)12:2(163)
http://doi.org/10.1061/(ASCE)1084-0699(2008)13:4(258)
http://doi.org/10.2166/nh.2009.042
http://doi.org/10.1061/(ASCE)HE.1943-5584.0000283
http://doi.org/10.13031/2013.34913
http://doi.org/10.3965/j.ijabe.20150803.951


Water 2021, 13, 422 22 of 23

26. Her, Y.; Frankenberger, J.; Chaubey, I.; Srinivasan, R. Threshold Effects in HRU Definition of the Soil and Water Assessment Tool.
Trans. ASABE 2015, 58, 367–378. [CrossRef]

27. Chiang, L.; Yuan, Y. The NHDPlus dataset, watershed subdivision and SWAT model performance. Hydrol. Sci. J. 2015, 60,
1690–1708. [CrossRef]

28. Wang, G.; Chen, L.; Huang, Q.; Xiao, Y.; Shen, Z. The influence of watershed subdivision level on model assessment and
identification of non-point source priority management areas. Ecol. Eng. 2016, 87, 110–119. [CrossRef]

29. Wang, Y.; Montas, H.J.; Brubaker, K.L.; Leisnham, P.T.; Shirmohammadi, A.; Chanse, V.; Rockler, A.K. Impact of Spatial
Discretization of Hydrologic Models on Spatial Distribution of Nonpoint Source Pollution Hotspots. J. Hydrol. Eng. 2016, 21, 1455.
[CrossRef]

30. Pignotti, G.; Rathjens, H.; Cibin, R.; Chaubey, I.; Crawford, M. Comparative Analysis of HRU and Grid-Based SWAT Models.
Water 2017, 9, 272. [CrossRef]

31. Ozdemir, A.; Leloglu, U.M.; Abbaspour, K.C. Hierarchical approach to hydrological model calibration. Environ. Earth Sci. 2017,
76, 318. [CrossRef]

32. Aouissi, J.; Benabdallah, S.; Lili Chabaâne, Z.; Cudennec, C. Valuing scarce observation of rainfall variability with flexible
semi-distributed hydrological modelling—Mountainous Mediterranean context. Sci. Total Environ. 2018, 643, 346–356. [CrossRef]

33. Munoth, P.; Goyal, R. Effects of area threshold values and stream burn-in process on runoff and sediment yield using QSWAT
model. ISH J. Hydraul. Eng. 2019, 1–9. [CrossRef]

34. Tegegne, G.; Kim, Y.; Seo, S.B.; Kim, Y. Hydrological modelling uncertainty analysis for different flow quantiles: A case study in
two hydro-geographically different watersheds. Hydrol. Sci. J. 2019, 64, 473–489. [CrossRef]

35. Chen, M.; Gassman, P.W.; Srinivasan, R.; Cui, Y.; Arritt, R. Analysis of alternative climate datasets and evapotranspiration
methods for the Upper Mississippi River Basin using SWAT within HAWQS. Sci. Total Environ. 2020, 720, 137562. [CrossRef]

36. United States Geological Survey. Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD), 4th ed.; U.S.
Geological Survey: Reston, VA, USA, 2013; Volume 11, p. 63.

37. Jha, M.; Arnold, J.G.; Gassman, P.W.; Giorgi, F.; Gu, R.R. Climate change sensitivity assessment on Upper Mississippi River Basin
streamflows using SWAT. J. Am. Water Resour. Assoc. 2006, 42, 997–1015. [CrossRef]

38. Demissie, Y.; Yan, E.; Wu, M. Assessing Regional Hydrology and Water Quality Implications of Large-Scale Biofuel Feedstock
Production in the Upper Mississippi River Basin. Environ. Sci. Technol. 2012, 46, 9174–9182. [CrossRef] [PubMed]

39. Srinivasan, R.; Zhang, X.; Arnold, J. SWAT ungauged: Hydrological budget and crop yield predictions in the Upper Mississippi
River Basin. Trans. ASABE 2010, 53, 1533–1546. [CrossRef]

40. Qi, J.; Zhang, X.; Wang, Q. Improving hydrological simulation in the Upper Mississippi River Basin through enhanced freeze-thaw
cycle representation. J. Hydrol. 2019, 571, 605–618. [CrossRef]

41. Kling, C.L.; Panagopoulos, Y.; Rabotyagov, S.S.; Valcu, A.M.; Gassman, P.W.; Campbell, T.; White, M.J.; Arnold, J.G.; Srinivasan,
R.; Jha, M.K.; et al. LUMINATE: Linking agricultural land use, local water quality and Gulf of Mexico hypoxia. Eur. Rev. Agric.
Econ. 2014, 41, 431–459. [CrossRef]

42. Panagopoulos, Y.; Gassman, P.W.; Arritt, R.W.; Herzmann, D.E.; Campbell, T.D.; Jha, M.K.; Kling, C.L.; Srinivasan, R.; White, M.;
Arnold, J.G. Surface water quality and cropping systems sustainability under a changing climate in the Upper Mississippi River
Basin. J. Soil Water Conserv. 2014, 69, 483–494. [CrossRef]

43. Panagopoulos, Y.; Gassman, P.W.; Jha, M.K.; Kling, C.L.; Campbell, T.; Srinivasan, R.; White, M.; Arnold, J.G. A refined regional
modeling approach for the Corn Belt—Experiences and recommendations for large-scale integrated modeling. J. Hydrol. 2015,
524, 348–366. [CrossRef]

44. Panagopoulos, Y.; Gassman, P.W.; Kling, C.L.; Cibin, R.; Chaubey, I. Water Quality Assessment of Large-scale Bioenergy Cropping
Scenarios for the Upper Mississippi and Ohio-Tennessee River Basins. J. Am. Water Resour. Assoc. 2017, 53, 1355–1367. [CrossRef]

45. Chaubey, I.; Haan, C.T.; Grunwald, S.; Salisbury, J.M. Uncertainty in the model parameters due to spatial variability of rainfall. J.
Hydrol. 1999, 220, 48–61. [CrossRef]

46. Bardossy, A.; Das, T. Influence of rainfall observation network on model calibration and application. Hydrol. Earth Syst. Sci. 2008,
12, 77–89. [CrossRef]

47. Hydrologic and Water Quality System. A National Watershed and Water Quality Assessment Tool; U.S. Environmental Protection
Agency: Washington, DC, USA. Available online: https://epahawqs.tamu.edu (accessed on 1 July 2020).

48. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009:
United States: Texas Water Resources Institute. 2011. Available online: https://swat.tamu.edu/media/99192/swat2009-theory.
pdf (accessed on 1 December 2020).

49. Hydrologic and Water Quality System. v1.0: Inputs. Texas A&M AgriLife Research 017. Available online: https://hawqs.tamu.
edu/content/docs/HAWQS-Input-Database-Citation.pdf (accessed on 1 July 2020).

50. United States Geological Survey. Hydrologic Unit Maps; U.S. Department of the Interior; U.S. Geological Survey: Reston, VA, USA,
2014.

51. United States Geological Survey. Surface-Water Daily Data for the Nation; U.S. Department of the Interior; U.S. Geological Survey:
Reston, VA, USA, 2019.

52. Demissie, Y.; Yan, E.; Wu, M.; Zhang, Z. Watershed Modeling of Potential Impacts of Biofuel Feedstock Production in the Upper Mississippi
River Basin; Report ANL/EVS/AGEM/TR-12-07; Argonne National Laboratory: Argonne, IL, USA, 2012.

http://doi.org/10.13031/trans.58.10805
http://doi.org/10.1080/02626667.2014.916408
http://doi.org/10.1016/j.ecoleng.2015.11.041
http://doi.org/10.1061/(ASCE)HE.1943-5584.0001455
http://doi.org/10.3390/w9040272
http://doi.org/10.1007/s12665-017-6560-6
http://doi.org/10.1016/j.scitotenv.2018.06.086
http://doi.org/10.1080/09715010.2019.1670107
http://doi.org/10.1080/02626667.2019.1587562
http://doi.org/10.1016/j.scitotenv.2020.137562
http://doi.org/10.1111/j.1752-1688.2006.tb04510.x
http://doi.org/10.1021/es300769k
http://www.ncbi.nlm.nih.gov/pubmed/22827327
http://doi.org/10.13031/2013.34903
http://doi.org/10.1016/j.jhydrol.2019.02.020
http://doi.org/10.1093/erae/jbu009
http://doi.org/10.2489/jswc.69.6.483
http://doi.org/10.1016/j.jhydrol.2015.02.039
http://doi.org/10.1111/1752-1688.12594
http://doi.org/10.1016/S0022-1694(99)00063-3
http://doi.org/10.5194/hess-12-77-2008
https://epahawqs.tamu.edu
https://swat.tamu.edu/media/99192/swat2009-theory.pdf
https://swat.tamu.edu/media/99192/swat2009-theory.pdf
https://hawqs.tamu.edu/content/docs/HAWQS-Input-Database-Citation.pdf
https://hawqs.tamu.edu/content/docs/HAWQS-Input-Database-Citation.pdf


Water 2021, 13, 422 23 of 23

53. United States Geological Survey. National Elevation Dataset-NED. Available online: http://nationalmap.gov/elevation.html
(accessed on 1 October 2010).

54. United States Department of Agriculture; National Agricultural Statistics Service (NASS). Land—Cropland Data Layer (Agricul-
tural). Available online: http://nassgeodata.gmu.edu/CropScape/ (accessed on 1 October 2010).

55. Fry, J.; Xian, G.; Jin, S.; Dewitz, J.; Homer, C.; Yang, L.; Barnes, C.; Herold, N.; Wickham, J. Completion of the 2006 National Land
Cover Database for the Conterminous United States. PE&RS 2011, 77, 858–864.

56. Soil Survey Staff. Natural Resources Conservation Service, United States Department of Agriculture. U.S. General Soil Map
(STATSGO2). Available online: https://sdmdataaccess.sc.egov.usda.gov (accessed on 1 October 2010).

57. United States Environmental Protection Agency. National Hydrography Dataset Plus-NHDPlus. 2010. Available online:
http://epa.gov/waters. (accessed on 1 October 2010).

58. PRISM Climate Group. Parameter-Elevation Regressions on Independent Slopes Model (PRISM); Oregon State University: Corvallis,
OR, USA. Available online: http://prism.oregonstate.edu (accessed on 1 October 2010).

59. Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive
mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 2008, 28,
2031–2064. [CrossRef]

60. Abraham, S.; Huynh, C.; Vu, H. Classification of Soils into Hydrologic Groups Using Machine Learning. Data 2020, 5, 2. [CrossRef]
61. United States Department of Agriculture. Part 630 Hydrology, National Engineering Handbook. Chapter 7: Hydrologic Soil

Groups; 2009. Available online: https://directives.sc.egov.usda.gov/viewerFS.aspx?id=2572 (accessed on 1 December 2020).
62. Horton, R.E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology.

Geol. Soc. Am. Bull. 1945, 56, 275–370. [CrossRef]
63. Montgomery, D.R.; Dietrich, W.E. Source areas, drainage density, and channel initiation. Water Resour. Res. 1989, 25, 1907–1918.

[CrossRef]
64. Tucker, G.E.; Catani, F.; Rinaldo, A.; Bras, R.L. Statistical analysis of drainage density from digital terrain data. Geomorphology

2001, 36, 187–202. [CrossRef]
65. Lin, Z.; Oguchi, T. Drainage density, slope angle, and relative basin position in Japanese bare lands from high-resolution DEMs.

Geomorphology 2004, 63, 159–173. [CrossRef]
66. Jha, M. Level of Watershed Subdivision for Water Quality Modeling, Retrospective Theses and Dissertations. Master’s Thesis,

Iowa State University, Ames, IA, USA, 2002.
67. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic

quantification of accuracy in watershed simulations. Trans. ASABE 2007, 3, 885–900. [CrossRef]
68. Moriasi, D.N. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58,

1763–1785. [CrossRef]
69. Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria:

Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [CrossRef]
70. Patil, S.D.; Stieglitz, M. Comparing spatial and temporal transferability of hydrological model parameters. J. Hydrol. 2015, 525,

409–417. [CrossRef]
71. Yang, Q.; Almendinger, J.E.; Zhang, X.; Huang, M.; Chen, X.; Leng, G.; Zhou, Y.; Zhao, K.; Asrar, G.R.; Srinivasan, R.; et al.

Enhancing SWAT simulation of forest ecosystems for water resource assessment: A case study in the St. Croix River basin. Ecol.
Eng. 2018, 120, 422–431. [CrossRef]

72. Yang, Q.; Zhang, X. Improving SWAT for simulating water and carbon fluxes of forest ecosystems. Sci. Total Environ. 2016,
569–570, 1478–1488. [CrossRef] [PubMed]

73. Iowa State University. Center for Agricultural and Rural Development, SWAT Literature Database for Peer-Reviewed Journal
Articles. Available online: https://www.card.iastate.edu/swat_articles/ (accessed on 1 December 2020).

74. Schilling, K.E.; Chan, K.; Liu, H.; Zhang, Y. Quantifying the effect of land use land cover change on increasing discharge in the
Upper Mississippi River. J. Hydrol. 2010, 387, 343–345. [CrossRef]

75. Garmendia, E.; Mariel, P.; Tamayo, I.; Aizpuru, I.; Zabaleta, A. Assessing the effect of alternative land uses in the provision of
water resources: Evidence and policy implications from southern Europe. Land Use Policy 2012, 29, 761–770. [CrossRef]

76. Rajib, A.; Merwade, V. Hydrologic response to future land use change in the Upper Mississippi River Basin by the end of 21st
century. Hydrol. Process. 2017, 31, 3645–3661. [CrossRef]

77. Soil Conservation Service, United States Department of Agriculture. National Engineering Handbook, Section 4, Hydrology; United
States Department of Agriculture: Washington, DC, USA, 1972.

78. Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Groundwater recharge rates
and surface runoff response to land use and land cover changes in semi-arid environments. Ecol. Process. 2016, 5, 16. [CrossRef]

79. Shang, X.; Jiang, X.; Jia, R.; Wei, C. Land Use and Climate Change Effects on Surface Runoff Variations in the Upper Heihe River
Basin. Water 2019, 11, 344. [CrossRef]

http://nationalmap.gov/elevation.html
http://nassgeodata.gmu.edu/CropScape/
https://sdmdataaccess.sc.egov.usda.gov
http://epa.gov/waters.
http://prism.oregonstate.edu
http://doi.org/10.1002/joc.1688
http://doi.org/10.3390/data5010002
https://directives.sc.egov.usda.gov/viewerFS.aspx?id=2572
http://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
http://doi.org/10.1029/WR025i008p01907
http://doi.org/10.1016/S0169-555X(00)00056-8
http://doi.org/10.1016/j.geomorph.2004.03.012
http://doi.org/10.13031/2013.23153
http://doi.org/10.13031/trans.58.10715
http://doi.org/10.1016/j.jhydrol.2009.08.003
http://doi.org/10.1016/j.jhydrol.2015.04.003
http://doi.org/10.1016/j.ecoleng.2018.06.020
http://doi.org/10.1016/j.scitotenv.2016.06.238
http://www.ncbi.nlm.nih.gov/pubmed/27401278
https://www.card.iastate.edu/swat_articles/
http://doi.org/10.1016/j.jhydrol.2010.04.019
http://doi.org/10.1016/j.landusepol.2011.12.001
http://doi.org/10.1002/hyp.11282
http://doi.org/10.1186/s13717-016-0060-6
http://doi.org/10.3390/w11020344

	Introduction 
	Materials and Methods 
	Model Description and Configuration 
	Study Area 
	Watershed Delineation and Climate Datasets 
	Watershed Delineation 
	Spatial Climate Datasets 

	Simulation Scenario 

	Results and Discussion 
	Land-Use, Soil and Landscape Discrepancies from Different Delineations 
	Evaluation of Monthly Streamflow at Gauge Sites 
	Response of Hydrologic Components 
	Effect of the Spatial Density of Climate Dataset on Runoff 

	Conclusions 
	References

