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Abstract: Foundation dewatering combined with a waterproof curtain is widely applied to ensure
the safety of the foundation pit in areas with multi-aquifer–aquitard alternative strata. The buried
depth of the diaphragm wall can influence the environmental effect due to dewatering obviously.
This paper investigates the impact of the buried depth of the diaphragm wall on the groundwater
drawdown considering the anisotropic permeability of the dewatering aquifer. Numerical simulation
is conducted based on an engineering case. The ratio of penetrating depth of diaphragm wall to
thickness of dewatering aquifer (RW) and the ratio of horizontal and vertical hydraulic conductivity
of dewatering aquifer (RC) are varied. The relationship between approximate hydraulic gradient (∆i)
and RW (or RC) can be fitted by Boltzmann curve (or logarithmic curve). Effective, suggested and
control values of RW (or RC) are proposed, of which the suggested value is recommended in practical
engineering. The effective, suggested and control value of RW can be calculated by logarithmical
equation considering the value of RC.

Keywords: diaphragm wall; anisotropic permeability; foundation dewatering; groundwater draw-
down; penetrating depth

1. Introduction

The foundation pit is one major kind of underground structure in the massive con-
struction of underground space [1–4]. Gradually increased excavation area and depth
with the development of urban construction may result in environmental effects. There
are high risks during construction in multi-aquifer–aquitard alternative strata which is
rich in groundwater [5–9]. To prevent water inrush accidents and ensure the safety of
underground construction, groundwater control is essential and dewatering is a kind of
common measurement [10–12]. However, inappropriate dewatering may result in some
negative impacts, such as soil deformation [13–15], differential settlement [16–18] and
sand flow or piping phenomenon [19]. To reduce the negative impacts of dewatering,
waterproof curtains such as diaphragm walls [20,21], bored piles [22] and mixing piles [23]
are constructed before the excavation. Waterproof curtains play a good role in blocking
water seepage and extending the length of seepage distance [24,25], which can reduce the
drawdown of groundwater level and ground settlement outside the pit.

The buried depth of the waterproof curtain is essential for the environmental effect
outside the pit caused by foundation dewatering. Theoretically if the waterproof curtain
fully cuts off the dewatering aquifer, which is called full penetrating waterproof curtain, the
groundwater drawdown outside the pit is very small and the environmental effect caused
by the foundation dewatering is slight. However, with the increase of the excavation depth,
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the depth of the watertight curtain also increases. Full penetrating waterproof curtains
are faced with high construction cost and construction difficulty. Therefore, waterproof
curtains that partially cut off the dewatering aquifer, called partial penetrating waterproof
curtains, are always chosen in practical engineering [26–30].

Anisotropic permeability widely exists in rock [31], coal mines [32] and soil layers [33].
The degree of anisotropic permeability of the aquifer can be reflected by the ratio of horizon-
tal and vertical hydraulic conductivity of the aquifer. The anisotropic permeability of the
aquifer is different in different fields. For example, the value of anisotropic permeability al-
ways ranges from 2 to 4 and even as high as 10 in Shanghai [26,34], from 3 to 6 in Tianjin [35]
and from 4 to 10 in Ningbo [36,37]. The anisotropic permeability of the dewatering aquifer
may influence the groundwater seepage inside and outside the pit during dewatering with
a partial penetrating waterproof curtain. Some research also indicated that the buried depth
of the waterproof curtain and the anisotropic permeability of the aquifer can both impact
the environmental effect outside the pit [38,39]. The optimized method has been proved
effectively to analyze the soil parameters [40,41], and it also can be used for considering the
combination of these two factors in the design of dewatering. The objective of this paper is
to evaluate the recommended depth of the waterproof curtain penetrating the dewatering
aquifer considering the degree of anisotropic permeability based on an engineering case in
Shanghai, China. Firstly, the project description is introduced. Secondly, a numerical model
is established and the pumping test is used to correct the numerical model. Then, the effect
of dewatering is investigated by considering the depth of waterproof curtain penetrating
the dewatering aquifer and the degree of anisotropic permeability. Finally, the suggested
depth of waterproof curtain is proposed via considering the anisotropic permeability.

2. Project Description
2.1. Engineering Overview

Figure 1 presents a plan view of the foundation pit of a certain metro line station in
Shanghai. The pit is divided into two parts: the standard part (Zone-I) and the shield end
well part (Zone-II). The length of Zone-I and Zone-II is 85.1 m and 16.3 m, and the width is
22.7 m and 27.1 m, respectively. The excavation depth (DE) of Zone-I is 17.44 m and that
of Zone-II is 19.50 m. A diaphragm wall with a thickness of 0.8 m is constructed as the
waterproof curtain. The buried depth of the diaphragm wall (DW) in Zone-I is 30.8 m, and
34.2 m in Zone-II. Four pumping wells inside the pit and two observation wells outside the
pit are arranged, which is shown in Figure 1.
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Figure 1. Plan view of foundation pit and layout of pumping and observation wells (recreated based on [42]).

2.2. Engineering Geology and Hydrogeology

The soil layers from top to bottom are sandy silt with silty clay (labelled as 21), sandy
silt (23–1), mucky clay (4), silty clay (51), silt (52), silty clay (6), mealy sand (71), fine sand
(72), silty clay with mealy sand (81) and silty clay (82). The soil profile and properties of
soil layers are presented in Figure 2.
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Figure 2. Soil profile and properties of soil layers. 

The hydrogeology of the project is multi-aquifer–aquitard alternative strata. The aq-
uifer system of the project includes a phreatic aquifer (labelled as Aq01), and a confined 
aquifer I (labelled as AqI) and II (AqII). The aquitard layer is labelled as AdI to AdIII. 
Detailed information of the aquifers is described as follows: 

(1) Aq01: the burial depth of the groundwater level of Aq01 is −0.5 to −1.0 m (a nega-
tive value implies that it is below ground surface); it lies within the Layers 21 and 23-1 and 
it is affected by rainfall, spring tides and surface water. The water inflow rate of a single 
well is 0.48–30 m3/d, and the hydraulic conductivity is 0.01–0.85 m/d; 

(2) AqI: the burial depth of the groundwater level of AqI layer is −10.0 to −3.0 m and 
it lies within the Layers 51 and 52. The water inflow rate of a single well is 5–15 m3/d, and 
the hydraulic conductivity is 0.26–0.78 m/d; 

(3) AqII: the burial depth of the groundwater level of AqII layer is −6.0 to −4.0 m; it 
lies within the Layers 71 and 72. The water inflow rate of a single well is 36–48 m3/d, and 
the hydraulic conductivity is 0.18–4.1 m/d [43]. 

  

Figure 2. Soil profile and properties of soil layers.

The hydrogeology of the project is multi-aquifer–aquitard alternative strata. The
aquifer system of the project includes a phreatic aquifer (labelled as Aq01), and a confined
aquifer I (labelled as AqI) and II (AqII). The aquitard layer is labelled as AdI to AdIII.
Detailed information of the aquifers is described as follows:

(1) Aq01: the burial depth of the groundwater level of Aq01 is −0.5 to −1.0 m (a
negative value implies that it is below ground surface); it lies within the Layers 21 and
23-1 and it is affected by rainfall, spring tides and surface water. The water inflow rate of a
single well is 0.48–30 m3/d, and the hydraulic conductivity is 0.01–0.85 m/d;

(2) AqI: the burial depth of the groundwater level of AqI layer is −10.0 to −3.0 m and
it lies within the Layers 51 and 52. The water inflow rate of a single well is 5–15 m3/d, and
the hydraulic conductivity is 0.26–0.78 m/d;

(3) AqII: the burial depth of the groundwater level of AqII layer is −6.0 to −4.0 m; it
lies within the Layers 71 and 72. The water inflow rate of a single well is 36–48 m3/d, and
the hydraulic conductivity is 0.18–4.1 m/d [43].

2.3. Pumping Test

To prevent uprush by the underlying confined aquifer, groundwater level inside the
pit should be lowered which can be calculated by the following equation [44]:

Ps

Pw
=

∑ hi × γsi
hp × γw

≥ Fs (1)

where Ps is the overburden pressure between the bottom surface of the foundation pit and
the top surface of the underlying confined aquifer (kPa); Pw is the uplift force of artesian
water in the initial state (kPa); hi is the thickness of each layer of soil between the bottom



Water 2021, 13, 418 4 of 15

surface of foundation pit and top surface of the underlying confined aquifer (m); hp is
the difference between the groundwater level and top surface of the confined aquifer (m);
γsi is the unit weight of each soil layer between the bottom surface of the foundation pit and
the top surface of the underlying confined aquifer (kN/m3); γw is the unit weight of water
(kN/m3); and Fs is the safety coefficient, which is considered as 1.10 in this study [44].

In this case, drawdown of AqII in Zone-I and II should be larger than 3.38 m and
7.14 m. To ensure the safety of construction and evaluate the dewatering effect on environ-
ment, the pumping test was conducted after the construction of the diaphragm wall. The
placement of the pumping and observation wells are shown in Figure 1 and the structure
and burial depth of the wells are shown in Figure 3. The pumping test contains two steps
of dewatering, of which the pumping time and discharge rate is shown in Table 1.
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Table 1. Arrangement of pumping test.

Pumping
Well

Observation
Well

First-Step Dewatering Second-Step Dewatering

Pumping
Time (d)

Discharge
Rate (m3/d)

Pumping
Time (d)

Discharge
Rate (m3/d)

P1, P2
OB1, OB2

0–3 169.1 12–15 223.5
3–11 42.3 15–27 61.3

P3, P4
0–3 96.3 12–15 229.7

3–11 30.6 15–27 41.9

3. Numerical Analysis
3.1. Numerical Theory

The calculation method of software in the numerical simulation is a kind of finite
different method [13,26,45], which is three-dimensional (3D) groundwater seepage model.
The basic equation of 3D groundwater seepage model is:

∂

∂xi
(Kij

∂H
∂xj

)− q = Ss
∂H
∂t

(2)

where Kij = hydraulic conductivity of different direction, i, j = axes of x, y, z in Cartesian
coordinate system, H = hydraulic head of groundwater, q = external source/sink flux,
t = time, and Ss = specific storage, Ss ≈ γwmv, γw = unit weight of water, mv = soil coefficient
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of volume compressibility. Based on Terzaghi’s 1D consolidation theory, if the total vertical
pressure is constant during the withdrawal or recharge of groundwater from an aquifer,
the following equation could be applied:

∆H = −∆σ′
γw

(3)

where ∆σ′ = change of effective stress.

3.2. Model Setup

The plan size of the numerical model is required to be larger than the influence radius
of dewatering. The length and width of the numerical model is 1670 m, and the depth is
66.7 m, which is the buried depth of the bottom face of layer AdIII. Figure 4 shows the
three-dimensional model domain and the grid mesh. The number of nodes and elements
in each plane is 1126 and 1148, respectively. The mesh size inside the foundation pit is
5 m × 5 m, and that is gradually enlarged to about 100 m × 100 m at the boundary of the
model. The plan view of local enlarged mesh inside the foundation pit is presented in
Figure 5. Figure 6 shows the profile of section II-II. The soil layer related to the construction
is subdivided into 21 layers vertically. The total number of nodes and elements of the
numerical model are 24,772 and 24,108, respectively.
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The placement of the diaphragm wall, pumping and observation wells is shown in
Figure 5 according to the actual engineering case. Points G11, G12, G21 and G22 were
added for further discussion of the simulation results. The initial groundwater level of
Aq01, AqI and AqII layer is −0.5 m, −1.0 m and −2.8 m respectively. The groundwater
level of four lateral boundaries is set as fixed hydraulic head boundary, which is equal to
the initial groundwater level. The bottom boundary is set as the confining boundary.

3.3. Soil Parameters

Initial soil parameters in Figure 2 are applied in the numerical model to simulate the
pumping test. Then the soil parameters are inversed by fitting the results of the simulation
to the observed data. When the results fit well enough and the maximum deviation between
the measured data and simulated data is less than 5%, the parameters are thought to be
appropriate for use in the simulation process. The final soil parameters determined by the
aforementioned steps are tabulated in Table 2.

Table 2. Parameters used in numerical simulation.

No. Hydrogeological
Strata

Thickness
(m) γ (kN/m3) e Kh (m/d) Kv (m/d) SS (m−1)

1 Aq01 8.8 19 0.80 4.00 × 10−3 2.00 × 10−3 3.50 × 10−3

2 AdI 4 17.4 1.25 2.32 × 10−3 9.05 × 10−5 8.51 × 10−5

3 Aq02 13.2 18.9 0.84 5.80 × 10−2 6.70 × 10−3 1.15 × 10−3

4 AdII 4 19.4 0.94 8.80 × 10−5 1.20 × 10−5 1.67 × 10−4

5 AqI 10.8 18.9 0.77 4.91 2.45 3.14 × 10−3

6 AdII 25.9 18.3 0.92 2.32 × 10−3 9.90× 10−4 8.01 × 10−3

Diaphragm wall 1.00 × 10−10 1.00 × 10−10 1.00 × 10−9

3.4. Model Verification

The comparison between measured data and simulated data is shown in Figure 7. As
shown in Figure 7, the simulated groundwater drawdown decreases synchronously with
the measured data. For the first step of dewatering, groundwater drawdown of observation
wells OB1 and OB2 was 1.93 m and 1.74 m respectively, and that for simulated data was
about 1.99 m and 1.72 m, of which the deviation is 3.1% and 1.2%. For the second step of
dewatering, the final drawdown of wells OB1 and OB2 was 3.23 m and 3.20 m, and the
simulated data was 3.30 m and 3.22 m. The deviation of the final drawdown was 2.2% and
0.63% respectively. These results demonstrate that the simulated results fit the measured
data reasonably.
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3.5. Simulation Results

To analyze the effect between the buried depth of the diaphragm wall and the
anisotropic permeability of the dewatering aquifer, the penetrating depth of the diaphragm
wall into the dewatering aquifer (D) and the ratio of horizontal and vertical hydraulic
conductivity in dewatering confined aquifer (RC) are varied. The thickness of the dewater-
ing confined aquifer (Ta) is set as 10.8 m in this case. D ranges from 0 to 10.8 m with an
increment of 1.2 m, and RC changes from 1 to 10 with an increment of 1.

Figure 8a shows the groundwater drawdown and ground settlement with different
values of D when RC equals 2. Groundwater drawdown outside the pit is obviously
smaller than that inside the pit. The groundwater drawdown and ground settlement after
dewatering of point G12, which is 5 m away outside the diaphragm wall is shown in
Figure 8b. With the increasing of D, groundwater drawdown at point G12 decreases from
5.03 m (D = 0 m) to 3.53 m (D = 9.6 m). Ground settlement at point G12 decreases from
19.5 mm (D = 0 m) to 13.70 mm (D = 9.6 m). Both groundwater drawdown and ground
settlement decrease gently initially and then change quickly.
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value of RC when D is 4.8 m. Groundwater drawdown at point G12 is 4.71 m when RC is 2 
and 4.25 m when RC is 10. Due to the decrease of vertical hydraulic conductivity, water 
supply from the boundary is more difficult which results in the decrease of groundwater 
drawdown and reduction of ground settlement outside the pit. The ground settlement at 
point G12 is 18.6 mm when RC is 1 and 15.7 mm when RC is 10. Moreover, comparing the 
change of groundwater drawdown and ground settlement outside the pit under different 
value of D and RC, the influence of D on the groundwater drawdown outside the pit is 
much larger than that of RC. 
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Figure 9a presents the groundwater drawdown and ground settlement with different
value of RC when D is 4.8 m. Groundwater drawdown at point G12 is 4.71 m when RC is 2
and 4.25 m when RC is 10. Due to the decrease of vertical hydraulic conductivity, water
supply from the boundary is more difficult which results in the decrease of groundwater
drawdown and reduction of ground settlement outside the pit. The ground settlement at
point G12 is 18.6 mm when RC is 1 and 15.7 mm when RC is 10. Moreover, comparing the
change of groundwater drawdown and ground settlement outside the pit under different
value of D and RC, the influence of D on the groundwater drawdown outside the pit is
much larger than that of RC.
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Therefore, the supply volume from outside to inside the pit decreases, which results in 
decreased drawdown outside the pit obviously. Due to the drawdown inside the pit being 
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4. Discussion
4.1. Groundwater Drawdown at Two Sides of Diaphragm Wall

G11 with G12, and G21 with G22 are two groups of points at two sides of the di-
aphragm wall, of which the distance from diaphragm wall is 5 m. Figure 10 shows the
groundwater drawdown at two sides of the diaphragm wall when RC is 10 with different
RW, which is defined as the ratio of D to Ta.
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With the increasing of RW, the seepage path lengthens and the blocking effect is more.
Therefore, the supply volume from outside to inside the pit decreases, which results in
decreased drawdown outside the pit obviously. Due to the drawdown inside the pit being
required to stay the same, the drawdown inside the pit (G11 and G21) varies slightly. For
example, the drawdown of G11 ranges from 9.52 m (RW = 88.9%) to 8.73 m (RW = 0), and
the variation is 0.79 m. Drawdown of G12 ranges from 4.91 m (RW = 88.9%) to 7.80 m
(RW = 0), and the variation is 2.89 m. Moreover, the effect of dewatering is dissymmetry in
the rectangle foundation pit. The ground drawdown outside the pit along the short side
(e.g., G12) is larger than that along the long side (e.g., G22) [46,47].

Approximate hydraulic gradient at two sides of the diaphragm wall (∆i) is defined
as the quotient of the division of the difference in groundwater drawdown by seepage
distance between the group of observation wells outside and inside the pit. Due to the
seepage distance between G11 and G12 the well is a curve bypassing the bottom of the
diaphragm wall, which is difficult to simulate accurately. Therefore, approximate seepage
distance is calculated as the polyline length, which starts from the middle of the well filter
outside the pit to the bottom of the diaphragm wall, and then to the middle of the well
filter inside the pit. In the discussion process, ∆i between observation well G11 and G12,
and G21 and G22 is calculated.

4.2. Penetrating Depth of Diaphragm Wall

Figure 11 presents the relationship between ∆i and RW when RC changes from 1 to 10.
All the curves can be fitted by the Boltzmann curve, which is widely used in the simulation
of different fields [48,49] and can be divided into three parts: initial gradual part (Part-
I), middle sharp part (Part-II) and final gentle part (Part-III). With the increasing of RW,
∆i increases gradually, due to the blocking effect of the diaphragm wall on the groundwater
seepage being stronger. When D is larger than the filter length of pumping well, drawdown
inside the pit changes little while drawdown outside decreases sharply, and this results
in the sharp increase of ∆i in Part-II. When RW keeps increasing, since the difference of
drawdown at two sides of diaphragm wall keeps constant while the seepage distance is
much longer, ∆i increases gently at the Part-III.
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However, the fitted curve is different when comparing RC ranges from 4 to 10 with
RC ranges from 1 to 3. Part-III is not so specific when RC ranges from 1 to 3, since the
permeability anisotropy is not obvious enough. Vertical hydraulic conductivity is close to
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the horizontal conductivity and the water supply from outside is relatively easy, which
shortens the seepage distance relatively. When RC ranges from 4 to 10, Part-III can be
distinguished obviously, due to the difficulty of vertical seepage.

Figure 12 presents the relationship between ∆i and RW when RC is 10 on section I-I
and II-II, which is fitted by the Boltzmann curve. The x-coordinate of the maximum and
minimum value of the second derivative of the curve is defined as the effective and control
value of RW, which are the demarcation points of the three parts. With the increase of RW,
∆i also increases due to the blocking effect of the diaphragm wall. Since DW is above the
bottom of the pumping wells filter, the increase of ∆i is gradual. When DW is over the
effective value, ∆i increases quickly, and the x-coordinate of the largest acceleration point
(the contra-flexure point) is defined as the suggested value. If RW is over the control value,
drawdown at G11 increases and that at G12 decreases, while the seepage distance also
increases and this results in the little increment of ∆i.
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As is shown in Figure 12, the effective, suggested and control value of RW is 36.2%,
48.0% and 59.9% for section I-I, and 35.9%, 50.6% and 65.4% for section II-II, respectively. By
a comprehensive consideration of ∆i on two sections, the effective, suggested and control
value of RW is 37%, 51% and 66% when RC is 10.

4.3. Ratio of Horizontal and Vertical Hydraulic Conductivity

The relationship between ∆i and RC when RW changes from 0 to 88.89% is shown in
Figure 13. ∆i increases with the increase of RC at all curves, because the permeability in
vertical direction reduces and water supply from outside to inside is less. Therefore, the
difference value of drawdown on the two sides of the diaphragm wall increases. When
RW is less than 33.33%, the increment of ∆i is slight and the acceleration is slow. Since the
buried depth of the diaphragm wall is above the filter of the pumping wells, the blocking
effect is not obvious and drawdown at the two sides of the diaphragm wall varies little.
When RW is larger than 33.33%, the blocking effect of the diaphragm wall is obvious and
the variation of ∆i increases obviously.
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Figure 13. Relationship between ∆i and RC when RW changes from 0 to 88.89%: (a) section I-I; (b) section II-II.

Figure 14 presents the relationship between ∆i and RC when RW is 77.78%, of which
all the relationship can be fitted by logarithmic curve. Groundwater supply from outside
to inside requires flow from the bottom of the diaphragm wall, which means vertical
permeability is important for the seepage process. Because of the large value of RC and low
vertical hydraulic conductivity, groundwater supply becomes difficult and ∆i increases.
The acceleration of ∆i decreases, and due to the decrease of vertical hydraulic conductivity
is limited.
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Figure 14. Relationship between ∆i and RC when RW is 77.78%.
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Three regions are divided on the curve: poor effect region (Region-I), general effect
region (Region-II) and good effect region (Region-III). The x-coordinate of demarcation
points of three parts are defined as the effective value and control value, which represents
the variation degree of ∆i as 60% and 85%.

When RC is smaller than the effective value, ∆i is small. The groundwater drawdown
outside the pit is large and the environmental effect due to foundation dewatering is
adverse. When RC is over the control value, water supply is difficult and the environment
effect is good. If RC of the dewatering aquifer in the engineering field is small, some
measurements can be adopted to increase RC to control the environment effect. By com-
prehensive consideration of economy and construction technology, the suggested value
should be recommended. The suggested value is defined as the x-coordinate of midpoint of
effective and control value. The effective, suggested and control value of RC is 3.4, 4.8 and
5.2 for section I-I, and those values are 4.0, 5.4 and 6.8 for section II-II when RW is 77.78%.

4.4. Relationship Between RW and RC

To determine the common relationship between control, suggested and effective RW
and RC, all cases are conducted and the relationship is shown in Figure 15. The control and
suggested value of RW decreases with the increase of RC, while the effective value of RW
increases with the increase of RC. All the relationships between RW and RC can be fitted
by the logarithmic function, of which the characteristic is that the curve changes quickly
firstly and the acceleration decreases. By the fitted equation, it is convenient to calculate
the control, suggested and effective value of RW according to different values of RC.
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effect is good. If RC of the dewatering aquifer in the engineering field is small, some meas-
urements can be adopted to increase RC to control the environment effect. By comprehen-
sive consideration of economy and construction technology, the suggested value should 
be recommended. The suggested value is defined as the x-coordinate of midpoint of ef-
fective and control value. The effective, suggested and control value of RC is 3.4, 4.8 and 
5.2 for section I-I, and those values are 4.0, 5.4 and 6.8 for section II-II when RW is 77.78%. 

4.4. Relationship Between RW and RC 

To determine the common relationship between control, suggested and effective RW 
and RC, all cases are conducted and the relationship is shown in Figure 15. The control and 
suggested value of RW decreases with the increase of RC, while the effective value of RW 
increases with the increase of RC. All the relationships between RW and RC can be fitted by 
the logarithmic function, of which the characteristic is that the curve changes quickly 
firstly and the acceleration decreases. By the fitted equation, it is convenient to calculate 
the control, suggested and effective value of RW according to different values of RC.  
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For example, if the engineering is located at the place where the anisotropic permea-
bility is not obvious, such as RC is 1.5, the control, suggested and effective value of RW for 
section I-I is 80.1%, 55.8% and 31.6% respectively. Those values are 93.9%, 63.9% and 
34.2% for section II-II. Therefore, RW is recommended to be approximately 64% when RC 
is 1.5. As per the dissymmetry effect of the foundation pit mentioned above, control and 
suggested value of RW on section II-II is larger than that on section I-I, since the drawdown 
outside the diaphragm wall on section II-II is larger and drawdown inside the diaphragm 
wall is close.  

Figure 15. Relationship between control, suggested and effective RW and RC: (a) section I-I; (b) section II-II.

For example, if the engineering is located at the place where the anisotropic perme-
ability is not obvious, such as RC is 1.5, the control, suggested and effective value of RW
for section I-I is 80.1%, 55.8% and 31.6% respectively. Those values are 93.9%, 63.9% and
34.2% for section II-II. Therefore, RW is recommended to be approximately 64% when RC
is 1.5. As per the dissymmetry effect of the foundation pit mentioned above, control and
suggested value of RW on section II-II is larger than that on section I-I, since the drawdown
outside the diaphragm wall on section II-II is larger and drawdown inside the diaphragm
wall is close.



Water 2021, 13, 418 13 of 15

5. Conclusions

This paper investigates the reasonable buried depth of diaphragm walls considering
the anisotropic permeability of the dewatering aquifer for the control of groundwater draw-
down outside the pit during foundation dewatering. The relationship among approximate
hydraulic gradient at two sides of the diaphragm wall (∆i), the ratio of the penetrating
depth of diaphragm wall and the thickness of the dewatering aquifer (RW), the ratio of
horizontal and vertical hydraulic conductivity in dewatering confined aquifer (RC) are
analyzed by numerical simulation based on an engineering case in Shanghai. The following
conclusions can be obtained from this study:

(1) ∆i increases with the increasing of RW, due to the increased blocking effect of the
diaphragm wall. The relationship between ∆i and RW can be fitted by the Boltzmann curve,
which can be divided into three parts: initial gradual part, middle sharp part and final
gentle part. The suggested value of RW is defined as the x-coordinate of the contra-flexure
point of the curve. By comprehensive considering of ∆i on two sections along the long and
short sides of the foundation pit, the suggested value of RW is 51% when RC is 10.

(2) ∆i increases with the increasing of RC, because the smaller vertical permeability
makes the supply of groundwater from outside to inside the pit more difficult. The
relationship between ∆i and RC can be fitted by the logarithmic function, which also can
be divided into three parts: poor effect part, general effect part and good effect part. X-
coordinate of demarcation points of three parts are defined as the effective and control value
of RC. The suggested value of RC is defined as the midpoint of effective and control value.

(3) If RC is small, measurements should be adopted to increase RC to the suggested
value. By a comprehensive considering of ∆i on two sections along the long and short sides
of the foundation pit, suggested value of RC is 5.4 when RW is 77.78%.

(4) The relationship between the control, suggested and effective value of RW with RC
is fitted by logarithmic function, and these values of RW can be calculated by the values of
RC. By comprehensive consideration of the two sections along the long and short sides of
the foundation pit, the suggested value of RW ranges from 48% to 65% when RC ranges
from 1 to 10.

(5) This study proposes an optimized method to search suggested RW and RC, which
can be used in foundation pit dewatering engineering in layered soil to obtain well dewater-
ing effects and reduce environmental effects. Certainly, the specific value of suggested RW
and RC may change in different engineering projects considering the different geometrical
characteristics and hydrogeological strata in different place.
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