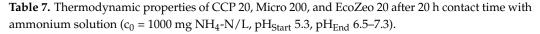


Correction


Correction: Wasielewski, S., et al. Evaluation of Different Clinoptilolite Zeolites as Adsorbent for Ammonium Removal from Highly Concentrated Synthetic Wastewater. *Water* 2018, 10, 584

Stephan Wasielewski 1,*, Eduard Rott 10, Ralf Minke 1 and Heidrun Steinmetz 20

- Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Bandtaele 2, 70569 Stuttgart, Germany; eduard.rott@iswa.uni-stuttgart.de (E.R.); ralf.minke@iswa.uni-stuttgart.de (R.M.)
- Chair of Resource-Efficient Wastewater Technology, Faculty of Civil Engineering, University of Kaiserslautern, Paul-Ehrlich-Str. 14, 67663 Kaiserslautern, Germany; heidrun.steinmetz@bauing.uni-kl.de
- * Correspondence: stephan.wasielewski@iswa.uni-stuttgart.de; Tel.: +49-711-685-65425

Error in Table

In the original article [1], there was a mistake in Table 7 as published. An evaluation error was noted in the thermodynamic study section. The corrected Table 7 appears below. The authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original article has been updated.

CLI	Temperature	Free Reaction Enthalpy	Free Standard Enthalpy	Molar Standard Entropy
	T	$\Delta \mathrm{G}^0$	$\Delta { m H}^0$	ΔS^0
	[K]	[kJ/mol]	[kJ/mol]	[J/(K mol)]
CCP 20	283	-15.0	-16.9	-6.8
	295	-15.0		
	307	-14.8		
Micro 200	283	-13.9	-9.1	17.6
	295	-14.3		
	307	-14.2		
EcoZeo 20	283	-13.7		
	295	-14.3	-4.7	32.7
	307	-14.4		

Citation: Wasielewski, S.; Rott, E.; Minke, R.; Steinmetz, H. Correction: Wasielewski, S., et al. Evaluation of Different Clinoptilolite Zeolites as Adsorbent for Ammonium Removal from Highly Concentrated Synthetic Wastewater. *Water* 2018, 10, 584. *Water* 2021, 13, 402. https://doi.org/10.3390/w13040402

Received: 19 January 2021 Accepted: 27 January 2021 Published: 4 February 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Text Correction

There was an error in the original article. A correction has been made to the following lines. **Page 1, line 24:** The process was "exothermic".

Page 5, line 24: A bracket was omitted in Equation (4). This should be corrected as follows:

$$q_{eq} = \frac{\left(c_0 - (c_0 - c_B) - c_{eq}\right) \times (\frac{V_P}{1000}\right)}{m}$$

Page 12, lines 11–14: Due to the changed values of the thermodynamic study, the interpretation in the text must be adjusted as follows:

"The free standard enthalpy ΔH_0 of all three sorbents was negative, indicating an exothermic reaction. The standard molar entropy ΔS_0 , which was positive for Micro 200 and EcoZeo 20, indicates that the ammonium adsorption is a directional process, decreasing

Water 2021, 13, 402 2 of 2

slightly as the temperature increases. However, the negative molar standard entropy of CCP 20 indicates that the sorption process was random."

Page 12, line 23–25 and page 13, lines 1–5: Due to the changed values of the thermodynamic study, the interpretation in the text must be adjusted as follows:

"Similar to the results published by other researchers (ΔH^0 : -49.384, -22.34, -5.43, -15.38 kJ/mol [14,19,45,46]), which indicate that adsorption of ammonium is exothermic, a slightly exothermic adsorption was found for the CLIs tested in this study ($\Delta H0$ ranging from -4.7 (EcoZeo 20) to -16.9 kJ/mol (CCP 20)). Furthermore, results reported with negative values of $\Delta S0$ (-156.1, -74.42, -43.03, -49.34, J/(K mol) [14,19,45,46]) indicate decreasing ammonium uptake due to increasing randomness. In contrast to this, a strongly directed adsorption process, as indicated by positive ΔS^0 values ranging between 32.7 (EcoZeo 20) and 17.6 J/(K mol) (Micro 200), was achieved with the investigated materials of this study."

Page 14, line 29: The adsorption process observed was "exothermic".

The authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original article has been updated.

Reference

1. Wasielewski, S.; Rott, E.; Minke, R.; Steinmetz, H. Evaluation of Different Clinoptilolite Zeolites as Adsorbent for Ammonium Removal from Highly Concentrated Synthetic Wastewater. *Water* **2018**, *10*, 584. [CrossRef]