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Abstract: Sustainable management of the environment is based on the preservation of natural
resources, first of all, freshwater—both surface and groundwater—from exhaustion and contamina-
tion. Thus, development of adequate monitoring solutions, including fast and adaptive modelling
approaches, are of high importance. Recent progress in machine learning techniques provide an
opportunity to improve the prediction accuracy of the spatial distribution of properties of natural
objects and to automate all stages of this process to exclude uncertainties caused by handcrafting. We
propose a technique to construct the weighted Water Quality Index (WQI) and the spatial prediction
map of the WQI in tested area. In particular, WQI is calculated using dimensionality reduction
technique (Principal Component Analysis), and spatial map of WQI is constructed using Gaussian
Process Regression with automatic kernel structure selection using Bayesian Information Criterion
(BIC). We validate our approach on a new dataset for groundwater quality in the New Moscow
region, where groundwater is mostly used for drinking purposes. According to estimated WQI
values, groundwater quality across the study region is relatively high, with few points, less than
0.5% of all observations, severely contaminated. Estimated WQIs then were used to construct spa-
tial distribution models, GPR-BIC approach was compared with ordinary Kriging (OK), Universal
Kriging (UK) with exponential, Gaussian, polynomial and periodic kernels. Quality of models
was assessed using cross-validation scheme, according to which BIC-GPR approach showed better
performance on average with 15% higher R2 score comparing to other Kriging models. We show that
the proposed geospatial interpolation is a potentially powerful and adaptable tool for predicting the
spatial distribution of properties of natural resources.

Keywords: water quality; kriging; PCA-loading index; gaussian process regression; bayesian infor-
mation criterion

1. Introduction

It is hard to overestimate the importance of role of freshwater resources for our
planet. Global climate change and the rise of human population lead to extensive land-
use changes, expanding urbanisation and industrial activity, have already heightened
the risk of pollution of freshwater sources [1–3]. Assessment and monitoring of fresh
water resources are necessary for decision-makers at all levels regarding economic, health,
scientific, and ecological spheres of life [4–7].

Two principal approaches to the assessment of natural water bodies’ status can be
distinguished. The first one operates the concept of water reservoirs’ “vulnerability”. It
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considers features of the environment, that can affect the quality of water resources. Vulner-
ability assessment takes into account both natural characteristics (geological, hydrological)
of the environment, their ability to provide “protection” to water resources, as well as
possible contamination scenarios due to properties of pollutants [8–10]. This approach
allows to understand underlying processes and, according to them, to predict the possible
fate of contaminants. Such outlook can be treated as “preventive”, or “explainable”, and
relates more to the potential of the territory. The second approach is the assessment of the
water quality using the real existing data of water composition itself. Such data usually
include various chemical, physical, biological characteristics of water that are important
for consumption and usually measured by local governance and residential consumers.
This work is dedicated to this second type of approach and the type of available data.

Water Quality Indices (WQIs) are composite indicators of water quality that combine
complex data into an aggregate value that can be quickly and easily communicated to its
intended audience (CCME 2001). There are two main ways how to pool all measured pa-
rameters into one: (i) via expert bias, when the determinant set of water parameters in WQI
is established based on expert opinion, [11]; (ii) via data-driven approaches, helping to re-
veal the weights assigned to each parameter [12,13]. The existing body of research on water
quality assessment suggests that classical expert bias approaches poorly response to outer
dynamic processes, whether it changes in water state or in law regulation. Meanwhile, the
aggregated nature of WQIs is very attractive to both scientists and policy-makers. Applica-
tion of different multivariate statistical techniques, such as Principal Component Analysis
(PCA) and factor analysis (FA) could help to reveal the priority contaminants in water
more effectively, and, at the same time, this approaches make the process less subjective.

Another important stage in environmental assessment is the prediction of the dis-
tribution of natural systems’ patterns and characteristics. The last decade, although not
being novel by itself, machine learning (ML) techniques—modelling approaches based
on data learning—have become more popular in environmental issues. ML has been suc-
cessfully employed in various environmental modelling studies, in terms of both spatial
and temporal interpolation. For example, support vector machine (SVM) and artificial
neural network (ANN) were implemented for soil pollution index prediction [14], hybrid
solution based on SVM and spatial statistics methods successfully predicted and simulated
suspended sediment load [15], another hybrid approach, based on support vector regres-
sion, principal component analysis and back propagation ANN was developed to establish
relationships between water quality changes and lake water surface temperature [16],
integrating approach based on ANN and kriging was proposed for spatial soil organic
matter prediction [17], single-output and simultaneous ANNs showed their effectiveness
for spatial multiparameter interpolation at single- and multi-active monitoring sites [18].

Gaussian Process regression (GPR), known as kriging in geostatistics, is one of the
most popular ML interpolation approaches for environmental studies including soil [19,20],
water [21] and air media [22,23]. GPR is considered as a powerful and flexible predictive
tool, allows to catch the spatial distribution of data, to handle complicated non-linear
problems, and quantify the reliability of predictions [24–26]. Central concept in kriging—is
a variogram model, or, correspondingly, kernel, a plausible interpolation function for the
spatial covariances, need to be computed and fitted from the data [27,28]. In terms of
computation speed and reproducibility, kriging techniques are restrained by the necessity
to select a variogram, as well as a list of model hyperparameters, such as nugget, sill, range,
while their variations may change the interpolation results significantly [29,30]. Another
bottleneck is the computation time in case of handling data-sets with large number of
observation points [27]. Recent advances in kriging now consider the unification demand—
with that approaches to avoid the uncertainty of variogram hyperparameters, not the
data, have been proposed, mostly being based on the idea of choosing one optimal kernel.
One of the possible solutions is the suggestion and evaluation of multiple semivariogram
models with subsequent cross-validation [21,31] to choose the most suitable one, which
is even have been introduced already in GIS environments or proposed as a part of an
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independent interpolation decision tree [32]. More comprehensive solutions were proposed,
for example, Approximate Bayesian Computation (ABC), which allows to automatically
deal with kernel selection and estimation of hyper-parameters and to avoid the dependence
on dimensionality when operating large numbers of kernels with different dimensions [33],
with simultaneous comparing of competing models.

Therefore, an automated kernel selection is highlighted as a promising research di-
rection to avoid manual operations, raise robustness to obtain optimal results, speed up
calculations, especially when most of the existing solutions are still balancing between the
accuracy of interpolation and computational speed.

In this paper, we discuss the approach to water quality spatial prediction based on
the modified GPR and exploratory assessment via overall variance, on the example of
groundwater monitoring net. We believe that successful implementation of this approach
is especially important to subsurface water resources. Groundwater is directly connected
with both surface water resources and terrestrial ecosystems at the same, but hidden from
rapid observation [34]. Moreover, due to restricted access to direct measurements, ground-
water monitoring systems are often represented by relatively small observation nets, where
kriging techniques are also the most powerful. The core idea is to introduce the Water
Quality Index (WQI) that will first include the most influential environmental parame-
ters representing environmental pollution and second, take into account the variability
characteristics of these parameters that can serve as the measure for risk assessment. To
observe the patterns of spatial distribution, we developed an extension to the standard
Gaussian process regression (GPR) model based on automated composite kernel search
implemented on a greedy algorithm with the usage of Bayesian Information Criterion;
hyper-parameters selection for each elementary kernel in the optimal composite kernel
was done by standard approaches. By doing this, we exclude handcrafting in the selection
of potentially effective kernels. BIC criteria allows to find a simple kernel structure among
possible with the fewest number of parameters but with highest accuracy at the same time
according to the validation sample, compared to other variants. In contrast, without BIC
criteria there will be much more parameters which will lead to overfitting and much more
complex kernels.

The paper is organised as follows: Section 2 is devoted to the description of the
utilised experimental and computational methods which we exploit for the organisation
and processing of the dataset. In particular, we describe the details about the target re-
gion and the available dataset in Section 2.1. The details of data processing and machine
learning techniques (PCA, Gaussian processes, and Bayesian methods) are discussed in
Sections 2.3 and 2.4. The main results are presented in Section 3 and discussed in Section 4.
To be more specific, we present an automated approach for optimisation of parameters for
the kriging procedure which allows to improve significantly the quality of reconstructed
freshwater maps in comparison with popular standard tools widely used by community
(the details can be found therein). The final discussion sums up the advantages and draw-
backs of the proposed approach for freshwater quality map reconstruction and discovers
the possible directions of future research.

2. Materials and Methods
2.1. Site Description and Available Dataset

The data used in the current study was collected in the territory of The New Moscow
district, located adjacent to the city of Moscow in the Central European part of Russia. The
area of New Moscow district extends over 1480 km2, latitude and longitude ranges are
approximately from 55◦09′ to 55◦40′ N and 36◦48′ to 37◦36′ E, respectively.

The climate of the region is moderately continental. According to the data from
local weather stations (available at https://www.ncdc.noaa.gov/cdo-web/datatools/
findstation) through the period of last five years, from 2015 to 2020, across the territory of
study, the mean daily temperature in the coldest month of the year, January, was −5.4 ◦C,
while in the warmest month, July, the mean daily temperature was +17.8 ◦C. The average

https://www.ncdc.noaa.gov/cdo-web/datatools/findstation
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annual precipitation was approximately 440 mm, with circa two thirds rainfall and the rest
snow. The territory is mostly located on the verge of the southern taiga change to the zone
of temperate broad-leaf forests.

New Moscow is located in the central part of East European Plain. It is composed
by the thick sedimentary rocks covering Precambrian cristallic basement. Sedimentary
rocks include dolomite, lime, marl, sandstone. Bedrock rarely outcrops and mostly covered
by Quaternary deposits of glacial and fluvioglacial genesis with occurrence of alluvial
deposits [35]. Thus, across the region there are two main aquifers: the first is in Quaternary
sediments, with thickness in a range from 2 to 12 m. This is the main source of the drinking
water for the cities and households. The artesian basin is consists of the aquifers of coal age
composed by limestone and dolomite. In general, across the New Moscow region aquifers
are composed by different-grained, well-permeable sands and sandy loams, periodically
covered by the clay of different ages [36]. Main land-use types are as follows: forests (50%
from total area), arable land (21%) and low density discontinuous urban fabric (19%) [37].
The predominant types of natural vegetation are coniferous and broad-leaved forests,
while agricultural lands include pastures and arable land, mostly growing feed crops and
cereals. The main specific of New Moscow is that it has been rapidly urbanising during the
last decade.

Sample net, using in this study, covers almost all territory of New Moscow. A total
of 1600 water samples were collected during 2017–2018, mostly from May to September,
from wells (1215 samples), rivers (225 samples) and springs (160 samples) in the region
(see Figure 1). Water samples were collected from the wells, rivers, or springs by using a
2-L stainless-steel container. The samples were bottled and then immediately transported
to the laboratory for chemical analysis, eliminating the need for conservation methods.

Figure 1. Location map of the study area. Different colors mark source of collected water samples—
wells colored in yellow; rivers colored in pink; and springs colored in blue. Blue lines represent main
river streams from open-source 10-m resolution data.

For each water sample, 25 parameters were measured. The pH was measured by
using a HANNA pH-meter 213. Anions (NO3, NO2, PO4, SO4 and Cl) were measured by
ion chromatography using a Dionex 1100 instrument. NH4 content was obtained on an
HACH DR2800 using colorimetric determination with Nessler’s reagent. Cation (K, Cr,
Ni, Ca, Zn, Fe, Mn, Na, Cu, Mg) contents were obtained by inductively coupled plasma
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atomic emission spectroscopy on an ICP-OES Agilent 5110 spectroscope. Mineralization
was measured by gravimetric analysis consisting of evaporation at 105 ◦C in a drying
chamber. Alkalinity was obtained by titration with 0.05 NHCl. Hardness was measured
by titration with Trilon B and eriochrome black. Despites being minor but not the least
the important advantage of this work is relatively large size of the dataset which contains
more than 1600 samples (each with 25 measured chemical parameters). We hope that it
might be useful for validation and other methodological research in community and share
it as open data [38].

2.2. Data Preparation and Methodology

In this study, an end-to-end solution for geospatial water quality assessment using
ML methods such as Gaussian Process Regression and Bayesian Information Criterion
was proposed and evaluated. Figure 2 presents a brief summary of the steps involved in
this procedure.

Figure 2. Our approach use machine learning methods for weighted WQI calculation (Steps 1 and 2)
and geospatial WQI prediction by using Gaussian process regression with automatic kernel search
(Steps 3–5).

2.3. Water Quality Index Calculation Based on PCA and Weighted Factors

In order to construct WQI we performed PCA and used the following outputs: princi-
pal components (PCs), eigenvalues, loadings, described variance. The brief description of
the theory behind PCA is given in the Section 2.3.1. Description of the approach to WQI
calculation is given in the Section 2.3.2.

2.3.1. PCA Theory

The full theory behind the PCA is quite comprehensive, so we address the reader to the
relevant literature sources for the full explanation [39–41]. In order to reveal the main ideas
of using of PCA for current study, we discuss the main outputs extracting in the analysis.
PCA is the linear unsupervised method of dimensionality reduction of multivariate data,
proposed by Hotelling [42], where original dimensions are initial (measured) variables.
PCA projects the data into new coordinate system and representing it in lower dimensions
set in a way retaining the maximum of the variation of the original data, so keeping the
most of the information.

The new set of dimensions — principal components, PCs — is mutually orthogonal, so
PCs are uncorrelated to each other. PCs are the linear combinations of the original variables
and ranked by the variance of the data along. To obtain PCs, at first, the covariance matrix
of the original data is estimated. This covariance matrix is symmetric and consists of set
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of orthogonal components—eigenvectors, or “principal directions”, expressed by their
own eigenvalues reflected to the measure of the variance related to the PC. Thus, the
first PC reflects to the maximum of the data variance and so on in the descending order.
The contributions of the each initial variables into the PC are loadings. To strengthen the
interpretability of the PCs an additional manipulation can be performed, such as Varimax
rotation [43,44]. In this purpose the variance of squared loadings is seeking to be maximized,
thus each PC has only few, non-overlapping variables with the highest loadings.

2.3.2. Construction of WQI Based on PCA

As was discussed previously, it might be found very useful to express all of the
multivariate water quality complexity in one conscientious parameter, which is WQI,
keeping as much information as possible.

A PCA model was used to assess the pollutant loads integral to water quality and to
avoid data redundancy. Raw data was filtered to eliminate anomalies: missing coordinates,
incorrect record type etc. After this initial pre-processing step, the total number of useful
samples decreased from 1600 to 1569. We decided to remove Hg, Cd, Co and Pb from the
dataset for further analysis, as their concentrations were insignificant (much lower than
toxic levels) and did not exceed the required water quality standards in Russia. Twenty-one
water quality parameters were included in the PCA model. Only those components for
which the corresponding eigenvalue was higher than or equal to 1 following Varimax
rotation, and PCs that explained at least 5% of the observed data variation were considered
for further examination. Moreover, those parameters that were correlated with other
significant parameters (correlation between two particular parameters is more than 0.6)
were eliminated only if they had the smallest loadings among correlated parameters. The
weight scores (wi) derived from PCA were used as weighted factors for the significant
variables (indicators) from the respective PCs, and the WQI was calculated by using the
Equation (1):

WQI =
S

∑
i=1

Li · wi, (1)

where S is the number of significant principal components, Li denotes the loading values
of each selected water property included in the particular principal component, and wi
denotes the weight of the corresponding component, which is defined as the part of the
described variance by each component. To scale WQI to the [0,1] range, we normalized the
weight scores (wi) to a summarized score value by using Equation (2):

wi :=
wi

∑S
i=1 wi

(2)

2.4. Machine Learning Approach for Geospatial Modelling of WQI with Automatic
Kernel Detection
2.4.1. Gaussian Process Regression: General Overview of the Methodology

To perform geospatial modeling of multiple water properties from the collected
dataset, we referred to the Gaussian Process Regression (GPR) framework [45], more com-
monly known as kriging in geostatistics. A Gaussian process is completely determined by
its mean µ(·) and covariance (kernel) k(·, ·) functions:

f (x) ∼ GP(µ(x), k(x, x′)),

µ(x) = E f (x),

k(x, x′) = E [( f (x)− µ(x))( f (x′)− µ(x′))],

where x ∈ R2 is a vector of d input parameters. In our case, d = 2 and x represents a vector
of spatial coordinates. Let us consider a simple GPR model with additive Gaussian noise:

y(x) = f (x) + ε,
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where ε ∼ N (0, σ2). Given the training data X = (x1, . . . , xN)
ᵀ ∈ Rn×d, y = (y1, . . . , yn)

ᵀ ∈
Rn, where n is the number of samples and (·)ᵀ denotes a transpose, the predictive distribu-
tion at the unobserved point x∗ is given by

f̂ (x∗) ∼ N (µ̂, σ̂2),

µ̂(x∗) = µ(x∗) + k∗Σ(y− µ(X)),

σ̂2(x∗) = k(x∗, x∗)− kT
∗Σ−1k∗,

Σ = K + σ2 I,

(3)

where I is an identity matrix, K = k(X, X) = k(xi, xj), i, j = 1, . . . , N is a spatial covariance
matrix between all of the training points, k∗ = k(X, x∗) is a spatial covariance between
training points and the single prediction point and µ(X) = µ(xi), i = 1, . . . , n is the mean
function calculated at the training points. The particular choice of the kernel function
depends on the assumptions about the model and a particular application, e.g., widely
used Gaussian kernel (corresponding to Gaussian variogram). Kernel hyper-parameters are
usually optimized using Maximum Likelihood Estimation (MLE) [46] or its variations.

Figure 3 shows an example of GPR using Gaussian kernel with a constant mean
function over the observations sampled from the sigmoid function with random noise. The
predictive variance increases at points with missing observations, and increases signifi-
cantly outside of the interpolation region with the mean failing to capture the true function
trend. This emphasizes the need for a better method to select kernel hyper-parameters.

0 1 2 3 4 5 6 7 8
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Data Model
Data Observed
Predicted

Figure 3. Gaussian Process Regression (red dashed line depicts the predictive mean and orange
fill depicts the standard deviation intervals) with noisy measurements (blue dots) of the sigmoid
function (solid green line) using Gaussian kernel and constant mean function.

2.4.2. Hyper-Parameters Selection Using Bayesian Information Criterion

Common approaches to hyper-parameter optimisation are Maximum Likelihood Esti-
mation (known model, continuous parameters), and Cross-Validation (model is unknown,
discrete parameters). Typically, one could select multiple combinations of different ker-
nels, perform MLE for each of them and then compare the models using cross-validation
to choose the best overall model. In our work we follow the approach from [47] using
Bayesian Information Criterion (BIC), which considers kernel function as a combination of
a small number of base covariance functions using sum and product operations, and can
be represented as:

BIC = −2 · Log-likelihood + m · log n,

Log-likelihood = −n
2
· log 2π − n

2
· log |Σ| − 1

2
· (y− µ)TΣ−1(y− µ)

(4)
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where n is the number of samples, m is the total number of optimised parameters, and
Σ is defined as in the Equation (3). To construct the optimal kernel, we consider a basic
set of operations, such as plus and multiplication, and apply them to the following kernel
functions: polynomial (Equation (5)), Gaussian (Equation (6)), periodic (Equation (7)) and
exponential (Equation (8)). Thus, the final automatically constructed kernel, for example,
can be the multiplication of the polynomial kernel on Gaussian, plus periodic, etc. Optimal
kernel structures can include the multiplication of the same types of elementary kernels.
The best kernel is a combination (structure) of the elementary kernels with optimized
parameters that gives the minimal BIC value. This way, we are able to model a variety of
stationary kernels and control the accuracy by selecting basic kernels and boundary values
for their hyper-parameters. The main goal for introducing such boundary values is to avoid
over-fitting and ensure the robustness of the performance of the obtained optimal kernel
(composition of the basic kernels). Moreover, we aim to reduce the model complexity by
decreasing the number of tuned hyper-parameters in the optimal kernel.

kpoly(x, x′| θ1, θ2, θ3) = θ1

(
d

∑
i=1

θ2xix′i + θ3

)deg

(5)

kgaussian(x, x′| θ4, `) = θ4 exp

(
− 1

2

d

∑
i=1

(xi − x′i)
2

`2
i

)
(6)

kperiodic(x, x′| θ5, s, T) = θ5 exp

(
−1

2

d

∑
i=1

1
si

sin2
(

π

Ti
(xi − x′i)

))
(7)

kexp(x, x′| θ6, l) = θ6 exp

(
−

√√√√1
2

d

∑
i=1

(xi − x′i)
2

l2
i

)
(8)

where d = 2 for our task (coordinates), polynomial was taken of degree 2; θ1, θ4, θ5, θ6
are the variances; θ2, `, l and s—length scales; θ3—bias; T—period. In our experiments
all of the kernels were considered isotropic and we applied the following constraints
during hyper-parameter optimization: T1 = T2 = T ∈ [1, 10], s1 = s2 = s ∈ [0.1, 10] and
`1 = `1 = ` ∈ [0.1, 10], other parameters were left unconstrained.

The procedure of fitting Gaussian Process is quite expensive O(n3), where n is the
number of training data points. Hence, instead of brute-force search of the best kernels, a
greedy search was implemented in the current study. Greedy search in general means that
the extension with the lowest BIC is selected for each extension of the current kernel. The
main advantage of this approach is that it does not require any handcrafting of potentially
effective kernels but instead enables an automatic search for the best kernel structure and
hyper-parameter optimisation.

2.4.3. Universal and Ordinary Kriging

To compare our method with baseline geospatial modelling techniques we per-
formed Ordinary Kriging (OK) and Universal Kriging (UK) using the GPy library. Since
it only allows to perform Gaussian Process Regression and not kriging as is, we draw a
connection between these methods as follows: (a) basic kernel functions kpoly, kgaussian,
kperiodic, kexp correspond to respectively named variograms, (b) GPR with a constant
mean function µ(x) = µ corresponds to OK, and (c) GPR with linear mean function
µ(x) = β0 + β1x1 + β2x2 corresponds to UK with linear trend. Hyper-parameters of the
kernel and mean functions are optimized using MLE approach during the training phase.

2.5. Approach to Geospatial Modelling

First, we converted the spatial coordinates from EPSG:4326 (latitude, longitude) for-
mat to EPSG:32637 (UTM zone 37 N) format and scaled them down to the [0,10] range.
Some measurements of the water quality measurements were taken spatially far from the
main investigated area (Moscow region). Thus, to filter outliers, we performed clustering
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of the water sampling locations using the density-based DBSCAN method [48] with neigh-
bourhood size ε = 1.0. The parameter ε allows to tune the size of a cluster and serves as
the measure of the permissible distance to the point to be included into the cluster. After
clustering and removing of the outliers, we again re-scaled the coordinates to the [0,10]
range. Finally, it was decided to use the data only from the major class (wells, 1215 data
points). Totally, 391 data points were removed from the dataset (37 data points out of them
were removed by DBSCAN) and 1178 data points left for further investigation. WQI was
calculated (methodology is presented in Section 2.2) for each data sample and a rectangular
100 × 100 grid was used for geospatial modelling and mapping. The boundaries of the
selected grid were defined by the minimum and maximum coordinates of the kept water
sampling locations.

2.6. Validation Procedure

To validate our model, we applied a standard cross-validation scheme with 5 random
splits into training and testing data sets of relative size 90% and 10%, respectively. For each
training/testing split, we (a) fit the model to the training data, then, (b) predict the values
of WQI for the test data point locations and (c) subsequently calculate the root mean square
error (RMSE) and the coefficient of determination R2:

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (9)

RMSE =

√
∑n

i=1(ŷi − yi)2

n
(10)

where ŷi, yi are the predicted and observed values, respectively, and y is the average across
the observed values.

The RMSE is a good comparative statistic for assessing model output, as it provides a
global indication of how similar the interpolated values are to the observed or measured
data point values [49]. When analysing the RMSE statistics, a small RMSE value indicates
that the interpolated values for the output model are more similar to the observed data
point values, whereas a large RMSE value suggests that the interpolated model values are
less similar to the observed data points. Thus, RMSE was used here to determine how well
the model fits the observed data values, with low RMSE values indicting a high degree of
model accuracy [50,51].

2.7. Software

All the calculations were carried out in Python programming language using the
following libraries: scikit-learn, [52], GPy, [53] and Folium.

3. Results and Discussion
3.1. PCA-Based Weighted Water Quality Index

We applied PCA to reveal the significant contaminants among samples and calculate
weighted-loads of tested parameters in WQI. In total, we observed five PCs with loads
above 1 and a cumulative variance of about 61% (see Table 1). Then, we eliminated the
parameters of each PC that were correlated significantly with others and had the lowest
loading’s among them (see Figure 4). Finally, our WQI includes only non-correlated
parameters with loadings greater than 0.3 to the contributed PCs. Varimax rotation was
used for PCA calculation and helped us to reveal the PCs with the exact chemical properties
of water, which were clearly interrelated and signalled specific types of pollution. As an
example, the chemical indicators usually linked with organic pollution were coupled to
PC3, whereas parameters of water mineralization were coupled to PC1 (please see Table 1).
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Table 1. Chemical components loading attributed to each PCs based on the PCA with Varimax rotation.

Principal Components Comp1 Comp2 Comp3 Comp4 Comp5

Eigenvalues 6.116 2.057 1.856 1.543 1.237
Variance (%) 29.12 9.79 8.84 7.35 5.89
Cumulative variance (%) 29.12 38.92 47.76 55.10 61.00

Parameters loadings
NH4 0.0794 0.0041 0.5602 0.0279 −0.0603
HCO3 −0.0363 0.5385 0.0041 0.0229 0.0137
Alkalinity −0.0364 0.5386 0.0041 0.0228 0.0136
pH −0.1731 0.3074 0.2065 −0.0889 −0.1959
Hardness of water 0.2960 0.2583 −0.1245 −0.0123 0.0035
Cr 0.0076 −0.0764 −0.0718 0.5049 0.1270
Cu −0.1188 0.0103 0.0489 0.2093 0.4262
Fe −0.0179 0.0199 −0.0408 0.6504 −0.0269
Mn 0.0557 0.0913 0.1145 0.4557 −0.1452
Ni 0.2217 −0.1376 −0.0030 −0.1010 −0.0475
Zn −0.0368 0.1017 −0.1915 0.0638 0.1721
SO4 0.1987 −0.0145 −0.1570 −0.0894 0.3695
Cl 0.5033 −0.1380 0.0726 0.0079 −0.1002
NO3 0.0666 −0.1398 −0.0800 −0.1048 0.5048
NO2 0.0518 −0.0645 0.1705 0.1495 0.0442
PO4 0.0223 −0.0059 0.6047 −0.0642 0.1163
Mineralization 0.3729 0.1255 0.0228 −0.0215 0.1407
Ca 0.2973 0.2457 −0.1414 −0.0098 −0.0152
Mg 0.2552 0.2604 −0.0634 −0.0169 0.0540
Na 0.4440 −0.0817 0.1863 0.0101 −0.0330
K −0.1235 0.1455 0.2777 −0.0010 0.5150

In fact, each PC contributed to a series of chemical parameters in the tested dataset.
For example, the PC1 was linked to the chloride content, overall mineralization and
sodium content of water (with loading’s greater than 0.3). However, all three of these
parameters were correlated: r(Na & Cl) = 0.856; r(Cl & Mineralization) = 0.819; and
r(Na & Mineralization) = 0.800. Thus, the final shortlisted parameters from these PCs were
a subset of the co-correlated parameters to prevent overlooked results and include only
Cl. A similar case with co-correlated parameters was observed in parameters attributed
to PC2. The PC2 revealed three main characteristics of water pollution: hydrocarbon-
ates (HCO3), alkalinity and pH. At the same time, only HCO3 & Alkalinity were char-
acterized by r as 1.0 , while two other parameters revealed low values of co-correlaton
R2(pH & HCO3) = 0.227, r(pH & Alkalinity) = 0.228 and were included in the shortlisted
parameters. All correlations among significant parameters for PC3, PC4 and PC5 were
low (see Figure 4); thus, all parameters with loads > 0.3 (Table 1) were used for the WQI
calculation. In detail, r(NH4 & PO4) = 0.437 in PC3, r(Cr & Fe) = 0.336, r(Cr & Mn) = 0.097
and r(Mn & Fe) = 0.353. The last PC, PC5, consisted of four significant parameters with
extra low co-correlations: r(Cu & SO4) = 0.0642, r(K & NO) = 0.1376, r(K & SO4) = 0.1637,
r(Cu & NO3) = 0.0571, r(SO4 & NO3) = 0.2970 and r(Cu & K) = 0.1769.

Finally, our WQI was presented as a combination of 12 parameters with different
normalized weighted factors:

WQI = 0.2912 · (Cl) + 0.0979 · (pH + Alkalinity) + 0.0884 · (NH4 + PO4)+

+0.0735 · (Cr + Fe + Mn) + 0.0589 · (Cu + SO4 + K + NO3)
(11)



Water 2021, 13, 400 11 of 19

Alkalinity
Ca Cl Cr Cu Fe HCO3
Hardness
K Mg Mineraliz
Mn NH4
NO2
NO3
Na Ni PO4
SO4
Zn pH

Alkalinity
Ca
Cl
Cr
Cu
Fe

HCO3
Hardness

K
Mg

Mineraliz
Mn

NH4
NO2
NO3

Na
Ni

PO4
SO4

Zn
pH 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

NH4
HCO3
Alkalinity
pH Cr Cu Fe Mn SO4
Cl NO3
PO4
Mineraliz
Na K

NH4
HCO3

Alkalinity
pH
Cr
Cu
Fe
Mn

SO4
Cl

NO3
PO4

Mineraliz
Na

K
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) (b)

Figure 4. The correlation heatmap for chemical parameters in tested freshwater samples. Figure (a) present correlation
coefficient) between all measured chemical parameters, while figure (b) present correlation coefficient only for parameters
with significant PCA loading. Initial number of water quality parameters for WQI constriction was reduced from twenty-one
to fifteen after PCA.

All the parameters (concentrations) in the Equation (11) should be scaled to [0,1]. The
resulting WQI after applying the Equation (11) should be again re-scaled to [0,1] before us-
ing it for the geospatial modeling. The distribution of the calculated WQIs among the tested
samples is presented in the Figure 5. The mean WQI was 0.24 in the tested locations, and
the median was 0.22. These values signalled that less than 0.4% of the tested samples were
actually characterized as highly polluted, with a WQI > 0.75. Distribution of WQIs across
the spatial coordinates—latitude and longitude—does not show any significant trends.
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Figure 5. The overall distribution of WQI in sample points. (A) The graph presents the number
of sample points with observed WQI and the mean value of the WQI. (B) Pie chart of statistical
distribution of WQI for tested samples. (C) Distribution of points with estimated WQI across the
study area, lower WQI values are corresponding to good groundwater quality, and higher—to poor
groundwater quality. (D) Ratio of WQI to spatial coordinates: X—Latitude, Y—Longitude.

3.2. Geospatial Modeling

In this research, we proposed and validated technique based on GPR and kernel
structure selection using BIC. The optimal kernel structure obtained by the BIC method
was found to be a sum of Gaussian and periodic kernels (see Equation (12)). The optimized
hyper-parameters can be found in Table 2 with `1 = `2 = `, s1 = s2 = s, T1 = T2 = T
(isotropic case).

k∗(x, x′) = θ4 exp

(
− 1

2

2

∑
i=1

(xi − x′i)
2

`2

)
+ θ5 exp

(
−1

2

2

∑
i=1

1
s

sin2
(π

T
(xi − x′i)

))
(12)
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Table 2. The optimal kernel parameters for the tested Gaussian kernel with periodical kernels.

Parameter Value

Gaussian kernel variance, θ4 0.0367
Gaussian kernel length scale, l 4.86

Periodic kernel variance, θ5 0.0204
Periodic kernel period, T 5.67

Periodic kernel length scale, s 0.1

To validate our approach and compare it to baseline methods (OK and UK with
different kernels), we applied the cross-validation scheme with 5 different train/test splits
(90% and 10% train/test split). Table 3 shows corresponding R2 and RMSE values obtained
for different cross-validation splits. From the Table 3 it can be noticed that on the 2-nd
split our proposed Kriging with BIC method gives much better results comparing to
other approaches. Results, close to our Kriging with BIC approach were obtained by the
exponential kernel in average, however on the second split Kriging with BIC outperformed
exponential kernel, thus being more robust. The worst result represented by the negative
coefficient of determination values was obtained by using the polynomial kernel. In general,
the coefficient of determination can also be negative. The negative values of the coefficient
of the determination indicate an inappropriate model which means that a simple averaging
will give better interpolation results than by using the proposed model. The length scale
of the kernels fitted in the standard methods is 1, while the variance for Gaussian kernels
varies in range from 0.0032 to 0.0054. The variance for exponential kernel is 0.04. It can
be seen, that our approach with optimal kernel selection gave the best R2 compared to
the standard kriging methods. RMSE for our model was comparable to other methods,
however, the standard deviation of errors on the different validation data subsets was
minimal compare to the other approaches which make our proposed method beneficial. In
the case of RMSE assessment, it is also important to compare the obtained RMSE values
with the average value for WQI in the tested dataset. As can be seen, the average value of
WQI was 0.24 (Figure 5A); therefore, the calculated RMSE 0.065 indicated that proposed
GPR model coupled with BIC is suitable for modelling. Finally, Figure 6 shows the results
of geospatial modelling of WQI values and corresponding uncertainty maps, obtained by
different approaches. The results clearly demonstrate the advantages of automatic kernel
selection using BIC, allowing to recognize the local pollutant areas.

Table 3. Performance evaluation of selected models. Results of cross-validation of the obtained
models on 5 different train/test splits.

1 2 3 4 5 Mean std

Kriging with BIC R2 0.729 0.487 0.609 0.641 0.702 0.637 0.098
approach RMSE 0.060 0.072 0.071 0.062 0.059 0.065 0.0063

Ordinary Kriging R2 0.580 −0.075 0.599 0.625 0.575 0.461 0.300
Gaussian kernel RMSE 0.068 0.076 0.056 0.060 0.059 0.064 0.0085

Universal Kriging R2 0.610 0.014 0.604 0.646 0.622 0.499 0.271
Exponential kernel RMSE 0.070 0.077 0.056 0.060 0.058 0.064 0.0088

Universal Kriging R2 0.544 −0.052 0.600 0.631 0.590 0.463 0.289
Gaussian kernel RMSE 0.071 0.076 0.055 0.059 0.058 0.064 0.0093

Universal Kriging R2 −11.205 −9.316 −11.042 −6.693 −9.860 −9.623 1.820
Polynomial kernel RMSE 0.129 0.113 0.109 0.097 0.103 0.110 0.0122

Universal Kriging R2 0.415 −0.038 0.579 0.637 0.593 0.437 0.278
Periodic kernel RMSE 0.080 0.076 0.057 0.059 0.058 0.066 0.0114
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Figure 6. Geospatial prediction of Water quality index and uncertainty maps based on differ-
ent techniques: (A)—GPR coupled with BIC; (B)—Ordinary kriging with Gaussian variogram;
(C)—Universal kriging, Exponential variogram + linear drift; (D)—Universal kriging, Gaussian
variogramm + linear drift.

From obtained results, we can see, that the spatial distribution of estimated WQI is
not uniform, which can be explained by two main reasons: natural and artificial. e.g., as
was described in Section 3.1 the ions of Cl and Na, Mineralization, and HCO3, Alkalinity,
pH mainly contribute to overall variance according to the PCA. We can suggest, that the
driving factor of high variability of these characteristics is the aquifer composition itself
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and basic rocks interacting with waters. The occurrence of trace elements (heavy metals),
phosphate, nitrates (PC3, PC4, PC5 loadings) can also significantly contribute to low WQI.
Their presence in waters can be explained by various reasons, but more likely, they are
associated with the agricultural activity since all of the listed parameters are contained in
macro- and micronutrients, and livestock wastes. Additionaly, Quaternary horizons, in
general, are highly permeable, so they are exposed to the high risk of contamination by
filtrates and pollutants’ further spread.

3.3. PCA-Weighted Approach in WQI Construction

The WQI was proposed for the first time in 1965 by Horton [54]; nowadays, its
variations are widely used in ecological studies. The implementation of weighted factors
for quality index construction is currently becoming very popular in environmental science.
This procedure was applied earlier in the environmental sustainability index [55] and the
Langat River water quality index [56]. Nevertheless, the large diversity of approaches
to WQI development shows a list of vulnerabilities of the idea, and many details remain
unclear: the high diversity of types of water resources on the global scale that cannot be
described by the same measure, the consequent diverse number of parameters used [12],
and, finally, the high level of subjectivity. For these reasons, most existing WQIs are not
universal and may be used only in case studies [57]. As a suggestion, the WQI should be
based on an algorithm, thus excluding subjectivity, including parameters with maximum
loads into general variability, thus being adaptive, so policy-makers, water users and
managers may be able to implement it according to local object features and purposes.

Application of different multivariate statistical techniques, such as PCA, helps to
summarise complex or multi-dimensional issues in view of supporting decision-makers,
and make the process less subjective [58]. The goal of the PCA is to reveal how different
variables change in relation to each other, or how they are associated. This is achieved
by transforming correlated original variables into a new set of uncorrelated variables
using the covariance matrix, or its standartized form—the correlation matrix. The new
variables are linear combinations of the original ones and are sorted into descending order
according to the amount of variance they account for in the original set of variables. The
proposed PCA-weighted WQI, which involves the most influential parameters, allows
us to model the comprehensive environmental situation in the region. Obviously, this
simplification is a logical step toward the description such complicated object as water
resources, convenient for use in both scientific and practical applications. In the case of the
New Moscow area with 1569 sampling points, our PCA-based approach helps to reveal
the 12 crucial parameters of water quality (Cl, pH, Alkalinity, NH4, PO4, Cr, Fe, Mn, Cu,
SO4, K, and NO3) instead of the 25 parameters initially measured. All selected parameters,
alone and in mixtures, may negatively affect human health. For example, pH is a crucial
water-quality parameter that affects water chemistry, including alkalinity, speciation and
solubility. Alkalinity in groundwater exceeding 200 mg/L gives an unpleasant taste and,
thus, limits acceptance as potable water. Health concerns regarding sulphates in drinking
water have been raised because of the reports that diarrhoea, catharsis, dehydration and
gastro-intestinal irritation may be associated with the ingestion of water containing higher
levels of sulphate.

A similar PCA-weighted approach has also been proposed by [59] for the water
quality index. The authors applied the PCA with Varimax rotation to select the most
important features of water quality and reduced the original dataset from 13 parameters
to 9. These authors used all important features of water quality; however, unlike our
approach, included even co-correlated parameters, which in practice meant overestimation
of the final values.

In addition, we can highlight at least one possible disadvantage of the proposed
approach, which may be connected with the required data sizes for PCA. For example,
ref. [60] recommended that at least 150 cases are needed to obtain satisfactory results
by using this method. At the same time, not every study of water quality assessment
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includes more than 150 collection points (as examples, [61,62]) due to high installation,
operational, and maintenance costs for each sampling representative of the whole water
system conditions.

3.4. Automatic Approach to Geospatial Mapping

It is a well-known fact that water legislation worldwide requires adequate and rig-
orous monitoring on different spatial and temporal scales, including different ecosystem
components; usually, these monitoring programs are time-consuming and costly. A process
and tool that can be used to perform an accurate and automatic geospatial interpolation of
locally collected data are in high demand.

In this research, we propose an advanced method for geospatial modelling based on
Gaussian Process Regression and Bayesian Information Criterion. The proposed approach
allowed us to detect multiple local foci of environmental contamination, compared with
the commonly used ordinary kriging and universal kriging, which were less accurate and
effective for solving our particular problem (Figure 6).

Our approach permits determination of the most realistic spatial distribution of the
WQI due to the application of an automatically constructed kernel algorithm, which consists
of basic non-linear kernels. Actually, when it comes to the end-to-end implementation in
operational data processing chains, like geospatial modelling, it is mandatory to invest in
models that are both accurate and robust but also require minimal user intervention for
fitting parameters. An automatic kernel search helps to solve the problem of manual hyper-
parameter and kernel structure selection. According to the applied cross-validation, our
model showed lack of over-fitting and provided an accurate prediction on the test dataset
according to the used metrics. Recently, this approach of automatic kernel selection was
used successfully in several cases, e.g., the estimation of chlorophyll-a concentrations from
remote sensing data, [63], delineation referents of city centres from topographic data [64],
soft-sensor modelling for algal bloom monitoring [65]. However, to date, it has not been
transferred to geological modelling.

4. Conclusions

We developed an end-to-end framework that allowed us to automatically reconstruct
the geospatial distribution of WQI with high accuracy. Our approach states the clear
methodology from the step of initial data pre-processing and construction of the generaliz-
ing Water Quality Index using PCA to the automatic kernel structure search for geospatial
mapping. We apply and show the feasibility and robustness of our proposed methodology
in the case of WQI estimation in the New Moscow region. The novel approach of an
automatic kernel structure search was adapted and applied in this framework, and this
approach allowed us to achieve detailed results for geological modelling, compared with
ordinary and universal kriging methods. Overall, our proposed methodology opens up
wide possibilities for solving similar problems in which it was demonstrated in this paper,
in the most accurate and efficient way. Despite being a minor but not the least, important
advantage of this work is the relatively large size of the dataset which contains more than
1600 samples (each with 25 measured chemical parameters). We hope that it might be
useful for validation and other methodological research in community and share it as open
data [38].
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