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Abstract: Lake Ziway is one of the largest freshwater lakes located in the central Ethiopian rift valley.
The lake shoreline is dominated by macrophytes which play an important role in immobilizing
run-off pollution, stabilize sediments and support biodiversity. Monitoring the spatio-temporal
changes of great lakes requires standardized methods. The aim of this study was to assess the current
and long-term trends of macrophyte distribution, surface water area and the water level of Lake
Ziway using remote sensing images from 1986 to 2016 with additional hydro-meteorological data.
A supervised image classification with classification enhancement using Normalized Difference
Aquatic Vegetation Index (NDAVI) and Normalized Difference Vegetation Index (NDVI) was applied.
The classification based on NDAVI revealed eight target classes which were identified with an overall
producer’s accuracy of 79.6%. Contemporary open water and macrophyte fringes occupied most of
the study area with a total area of 407.4 km2 and 60.1 km2, respectively. The findings also revealed
a regime shift in the mean water level of the lake and a decline in macrophyte distribution. The
long-term water surface area of Lake Ziway also decreased between 1986 and 2016. The changes
in water level could be explained by climate variability in the region and strong anthropogenic
disturbance. A decline in water level was also associated with lowered surface water area, lakeward
retreated macrophyte fringes and enhanced landward encroachment of mudflats, and resulted in a
succession of macrophytes with semi-terrestrial vegetations.

Keywords: Lake Ziway; macrophytes; water level change; image classification; land cover change

1. Introduction

The impact of anthropogenic stressors and climate change on water-level and aquatic
vegetation has been evident in recent decades [1–3] ENREF_1. The interaction between
anthropogenic stressors, land-use change, and water-level variability affects aquatic macro-
phytes to a great extent [4–7]. Aquatic macrophytes are a diverse group of photosynthetic
organisms that grow permanently or periodically in wetlands, the shoreline of lakes and
along streams [8–11]. They can be classified into four functional groups as emergent,
floating-leaved and rooted, free-floating, and submerged, based on their growth form,
morphology, and adaptation to the environment [12,13]. Macrophytes are an integral part
of aquatic ecosystems and play an important role in immobilizing pollutants, regulating
oxygen production and global carbon cycle, stabilizing sediments and protecting shore
erosion [5,11,14].

Distribution and composition of macrophyte communities are influenced by nutrient
load, and climatic and hydrological conditions such as spatial and temporal variations
of water level [7,11,15–18]. Lake water level changes provide an opening for seedling
recruitment for perennial emergent aquatic plants [19–21]. On the contrary, a low water
level causes succession and terrestrialization of aquatic ecosystems [22–25]. Climatic
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conditions such as temperature and rainfall fluctuations also affect germination rates of
aquatic vegetation [11,26–28].

Timely recording and mapping of spatio-temporal distribution and composition of
macrophytes is necessary to understand factors which influence distribution and com-
position of macrophytes [29–31]. Conventional field survey approaches for macrophyte
monitoring can give good estimates and provide reliable and reproducible taxonomic in-
formation [32–37]. However, these methods cannot capture whole-lake macrophyte cover
or their patchy distribution and are hindered by technical and logistical limitations [33,38].
Alternative approaches such as remote sensing techniques and the use of satellite imagery
can provide data covering large areas in space and time [29,30,39–43].

Different remote sensing techniques have been developed to systematize the identifi-
cation and change detection of aquatic vegetation from satellite data [44–47] and recent
advances in satellite image resolution make it possible to classify multiple species with
higher accuracy level [37,48,49]. Recent developments in specifically designed vegetation
indices for aquatic vegetation have improved identification and detection of macrophytes
from medium resolution satellite images [42,46,50,51].

Satellite images are also useful to demarcate the surface water from the surrounding
aquatic vegetation and to detect changes in the surface water area due to natural or
anthropogenic influences [52–55]. This makes it easier to delineate the distribution of
macrophytes from the surface water and to determine the relationship between macrophyte
distribution and the surface water area of lakes [56,57].

There is a continuous and rapid change in the distribution of macrophytes and the
surface water area of tropical aquatic ecosystems [58–60]. Thus, there is a need for a
comprehensive approach to detect such changes [48,53]. Changes in surface water area
and macrophyte vegetation cover from multi band satellite images can be achieved using
different methods [46,52,61]. The use of change detection techniques is especially important
to monitor the rapid hydrodynamics of tropical lakes [39,47,53]. Most tropical lakes are
under rapid change due to anthropogenic disturbances and climate change. Therefore,
understanding the change in surface water fluctuations and macrophyte distribution
is essential for lake ecosystem monitoring. Thus, the aim of this study was to assess
the current and changing trends of macrophyte distribution, surface water area and the
water level of Lake Ziway using field data, multi temporal satellite images, and hydro-
meteorological data. In addition, we investigated the relationship between distribution
and change of macrophyte cover with selected hydro-metrological parameters.

2. Materials and Methods
2.1. Study Area

Lake Ziway (Figure 1) is one of the largest freshwater lakes in the central Ethiopia rift
valley. It is located within 8.0073◦ N, 38.8415◦ E coordinates and at an elevation of 1636 m
above sea level. It has a maximum of 31 km length and 20 km width, with a total surface
area of 485 km2. It has an average depth of 4 m and the maximum depth reaches up to 9 m.
The Meki and Katar rivers are the two main feeders of the lake, whereas the Bulbula River
which flows to Lake Abijat is the only outlet from Lake Ziway. The total catchment area of
the lake is up to 7025 km2. The shores of the lake are covered by different macrophytes and
semi-terrestrial vegetations.
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2.2. Ground Reference Data and Macrophyte Sampling

A ground-based field survey was conducted in the last week of September 2016 to
ensure agreement between the satellite images from October and what was seen on the
ground. October is the end of the wet season and the water level will be close to the
maximum annual water level of the lake. Field survey on the shoreline was carried out to
mark ground control points with GPS handsets (Garmin GPS 60 with an accuracy of ± 6 m)
within homogenous areas of target classes with at least 60 m × 60 m dimension [62]. A
preliminary survey was conducted to identify potential macrophyte distribution patches
around the lake. In addition, Google earth map, Google time lapse and previous studies
were used as information sources. A total of 437 ground-truth points were collected
(Figure S1) and at each sampling location multiple photos, photo numbers, and descriptive
notes were recorded. All points and necessary supplementary data were copied to a pre-
prepared Excel data sheet. All ground control points were saved as .csv and .txt formats.

Macrophytes were collected manually from different sampling locations and rinsed in
situ, blotted, pressed on cardboard and transported to the Plant Biology and Nature Man-
agement (APNA) laboratory, Vrije Universiteit, Brussels, Belgium, for identification. Identi-
fication was made at the species level using previous studies of the lake [16], photographs
and expert-based knowledge. Macrophyte species from all four functional groups were
identified. Emergent macrophytes including Phragmites australis, Typha latifolia, Cyperus
articulates, Echinochloa colona, Cyperus papyrus, Echinochloa stagnina, Schoenoplectus corym-
bosus were identified. Two floating-leaved and rooted macrophytes (Nymphaea lotus and
Nymphoides indica) were also found on some parts of the shoreline. Free floating and
submerged macrophytes observed in the lake were Pistia stratiotes and Potamogeton schwein-
furthii, respectively. Another dominant type of vegetation in the shoreline of the lake was
the semi-terrestrial Aeschynomene elaphroxylon which was distributed along different parts
of the lake.
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2.3. Hydro-Meteorological Data

The necessary hydro-meteorological data (rainfall, temperature and lake water level)
of the study site and the catchment area were acquired from the National Meteorological
Agency of Ethiopia (NMAE) and the Ethiopia Ministry of Water, Irrigation and Electricity
(MoWIE). Rainfall from different stations in the catchment of the lake was summed and
used to estimate the areal depth of the rainfall corresponding to Lake Ziway. A time series
data set from 1980–2012 was used, despite the presence of many incomplete data series for
each of the hydro-meteorological parameters considered. To assess the association between
macrophyte distribution and hydro-meteorological parameters (water level, rainfall, and
temperature), three months data prior to October (July, August, and September) were used.
We hypothesized that the three months rainfall and temperature prior to October would
influence germination or vegetative growth of macrophytes at the shorelines.

2.4. Satellite Data Acquisition and Image Pre-Processing

Landsat 8 OLI, Landsat ETM+ and Landsat 5 TM were downloaded from the United
States Geological Survey (USGS) website (https://earthexplorer.usgs.gov). Landsat 8
OLI images acquired on 6 October 2016 were used to classify the current macrophyte
and other target classes’ distribution. October is the end of the wet season in Ethiopia
and macrophytes develop to their full extent. Although a short time difference between
ground data collection and the selected satellite data acquisition was observed, the change
in aquatic vegetation growth in such a short time is not expected to create a significant
difference in macrophyte development and coverage. Only images with less than 10%
cloud cover were selected for this study. Landsat images from different years and sensors
were used to analyze the change in macrophyte coverage, semi-terrestrial vegetation, and
lake surface water area change. All acquired images were referenced in the World Geodetic
System (WGS84) datum. Details and specifications of satellite images used in this study
are presented in Table S1.

All downloaded satellite images were imported into the Semi-Automatic Classification
(SCP) Plugin for QGIS [63]. Radiance values were converted into surface reflectance based
on the image-based dark object subtraction (DOS) atmospheric correction approach [64]
in the semi-automatic plugin (SCP). A radiometric correction was also applied using the
semi-automatic plugin (SCP) to remove radiometric defects, haze and to improve the visual
impact of true and false color composites. The lake extent at the maximum inundation
zone, with aquatic and semi-terrestrial vegetation, was delineated and digitized based on
visible spectral-radiometric differences in the images and reference data from a wet season.
The images were clipped using the digitized polygons as a shape file.

2.5. Extraction of Vegetation and Water Features

Vegetation indices were used to identify the distribution of macrophytes and other
target classes. There are different mathematical combinations which were developed to
extract vegetation and water features (Table 1). Most of these involve ratios between
differences and sums of the visible and near-infrared (NIR) spectral bands. One of the most
commonly used is the Normalized Difference vegetation Index (NDVI) which has been
mostly used to capture terrestrial vegetation characteristics including growth and above
ground biomass [65]. In addition to NDVI, we have applied the Normalized Difference
Aquatic Vegetation Index (NDAVI) and the Water Adjusted Vegetation Index (WAVI) which
are designed to capture aquatic vegetation spectral response. [46,51]. Similarly, most of
the methods for extraction of water bodies were developed based on the band ratio of
near-infrared to visible band [52,66]. In this study, the delineation of lake surface water
area was performed using the Modified Normalized Difference Water Index (MNDWI) [66].
This is the modification of the Normalized Difference Water Index (NDWI) developed
by [52]. MNDWI is better than NDWI to enhance water features and reduce values of
built-up land from positive to negative. As Ziway town is close to one side of the lake,
we preferred MNDWI over NDWI. MNDWI was calculated for all images acquired from

https://earthexplorer.usgs.gov
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different periods, and water usually has positive MNDWI values. However, the influence
of turbidity and the surrounding vegetation was considered, and a threshold was set based
on the reference data. MNDWI values greater than 0.2 were set as a threshold to reclassify
MNDWI values as water. The extracted water surfaces were also visually inspected and
validated. The equations of different vegetation and water indices (Table 1) were calculated
using the band calculation tool in SCP.

Table 1. Vegetation and water indices used for water and vegetation features extraction.

Index Equation Source

Normalized Difference
Vegetation Index NDVI = ρNIR−ρRED

ρNIR−ρRED [65]

Normalized Difference
Aquatic Vegetation Index NDAVI = ρNIR−ρBLUE

ρNIR+ρBLUE [46]

Water Adjusted
Vegetation Index WAVI = (1 + L) ρNIR−ρBLUE

ρNIR+ρBLUE+L [51]

Modified Normalized
Difference Water Index MNDWI = ρGREEN−ρMIR

ρGREEN+ρMIR [66]

*ρ presents the reflectance value from each band. L = Correction factor to adjust background influence for
vegetation density. A single value L= 0.5 was adopted as no a priori data about vegetation density is available
(Bands used: Green = Band 2, Red = Band 3, NIR (near-infrared) = Band 4, MIR (middle-infrared) = Band 5).

2.6. Target Classes Separability

A region of interest (ROI) for each target class was created based on the ground
reference data. Target class separability performance of NDAVI, WAVI, and NDVI was
tested using selected regions of interest (ROIs) for each target class. The mean and standard
deviation of NDAVI, WAVI, and NDVI for each target class was extracted from selected
regions of interest (ROIs) and used to test the separability between target classes. The
separability performance of the indices was tested using the Jeffries–Matusita Distance
(J–MDIST) between classes [46,67]. Separability based on J–MDIST was calculated between
each pair of target classes for each ROI. Then the values between each pair of ROIs were
averaged to assess overall separability obtained based on NDAVI, WAVI, and NDVI. The
two best-performing indices were selected based on J–MDIST values.

2.7. Image Classification, Accuracy Assessment and Validation

A combination of unsupervised and supervised image classification was performed.
K-means clustering unsupervised classification (Figure S2) was applied, with a total of
15 clusters, using Semi-Automatic Classification (SCP) Plugin for QGIS 3.4 [63]. The
heterogeneity of the study area was considered to decide the number of clusters. The
outputs from unsupervised classification were associated with field observation data and
used to select a training region of interest (ROI) for supervised classification.

The supervised classification was performed using the Semi-Automatic Classification
(SCP) Plugin Version [63] for QGIS 3.4 [68]. NDVI and NDAVI generated from the original
satellite data bands in Landsat 8 OLI were used as input datasets in combination with
the original bands. In SCP, the user is required to create training polygons or regions of
interest (ROI) for each class and we created eight macro classes (target classes). Based on
the unsupervised classification and the vegetation indices, the four dominant macrophytes
(Phragmites, Echinochloa, Cyperus, and Typha) were each identified as a macro class. The rest
of the macrophytes were assigned as a mixed macrophytes class. Additionally, mudflat,
water, and semi-terrestrial vegetation were included as separate target classes. More than
80 training samples or ROIs were selected for each class using the ROI Pointer in SCP.
Selection of the training samples was performed based on the region growing algorithm
in SCP, which selects pixels which are similar to the reference data pixel or the seed. The
parameter spectral distance in the region growing algorithm was set from 0.001 to 0.04
depending on the target class. The minimum and maximum width was 40 and 100 pixels,
respectively. This included only spectrally homogeneous areas in each training site. The
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ROIs were selected and validated using the ground truth data from field survey, the results
from unsupervised classification, vegetation indices and true and false color composites.
After validation of all the training samples, the maximum likelihood classifier (MLC)
algorithm was used to conduct the supervised classification. Classification enhancement
was applied using the band calculation tool in the SCP based on the NDVI and NDAVI
datasets to minimize confusion between classes. Subsequently, the final classification map
(NDVI based and NDAVI based) and a classification report which consists of the area
distribution of each target class was generated.

To validate the representation of classified target classes, accuracy assessment was
performed. An error matrix which compares the classification output from the satellite
images with reference data was prepared. In this study, more than 400 ROIs of up to
30 pixels in size were created at random points. The created ROIs were interpreted and
assigned to respective target class using the reference data, color composites and vegetation
indices (NDVI and NDAVI). Finally, the confusion matrix which shows the producer’s and
the user accuracy was generated.

2.8. Change Detection

The change in area distribution of four major classes, namely open water, macrophytes
(all groups together), semi-terrestrial vegetation, and mudflats between 1986 and 2016 was
assessed. We have applied NDAVI and MNDWI to calculate the area distribution of the
four major classes. The MNDWI and NDAVI maps were converted into a pseudo color
image and a threshold was set for each class using the reference data from 2016 as a base
map. The MNDWI and NDAVI maps were reclassified based on the thresholds and visual
interpretation of Google time lapse images and topographic maps from different years.
The accuracy of the thresholds set was assessed based on the reference data and image
from 2016.

2.9. Statistical Analysis

The Mann–Kendall (MK) test, which is a non-parametric test used to investigate
monotonic trends [69,70] without assuming any type of distribution, was used in order to
detect trends for in situ-measured long term hydro-meteorological data. We used Pettit’s
homogeneity test [71] to detect change points of the time series water level dataset. Pettit’s
test is also a non-parametric test mostly used to detect a break (a shift in the means of a
dataset) at a certain period. Spearman correlation was used to analyze the relationship
between macrophytes distribution area and NDAVI with selected hydro-meteorological
parameters (rainfall, temperature, water level and lake surface area). The statistical tests
were performed in XLSTAT Version 2017.5, Addinsoft inc., New York, NY, USA [72].

3. Results
3.1. Macrophyte Vegetation Types and Target Class Separability

Based on the field survey, macrophyte vegetation types from all four functional
macrophyte groups were identified. The majority of identified macrophyte vegetation were
emergent macrophytes including Typha latifolia, Phragmites australis, Cyperus articulates,
Echinochloa colona, Cyperus papyrus, Echinochloa stagnina and Schoenoplectus corymbosus. Two
floating-leaved and rooted macrophytes (Nymphaea lotus and Nymphoides indica) were
also found in some parts of the shoreline. Free floating and submerged macrophytes
observed in the lake were Pistia stratiotes and Potamogeton schweinfurthii, respectively.
Another dominant type of vegetation in the shoreline of the lake was the semi-terrestrial
Aeschynomene elaphroxylon which was distributed along different parts of the lake.

We have identified four dominant emergent macrophyte classes (Typha, Cyperus, Phrag-
mites and Echinochloa) separately and the rest were categorized as mixed macrophytes class.
In addition, semi-terrestrial vegetation, mudflat and water were included as target classes.
As we used medium resolution satellite images, the sparser submerged macrophytes could
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not be differentiated from the surface water of the lake and were included as part of the
open water.

An assessment using WAVI, NDVI and NDAVI based on the regions of interest (ROIs)
distinguished eight target classes. The average and standard deviation J-MDIST values
for WAVI, NDVI and NDAVI were 1.88 ± 0.041, 1.90 ± 0.046 and 1.93 ± 0.06, respectively
(Figure 2). The average separability performance of NDAVI and NDVI was greater than
WAVI. NDAVI performed better in delineating Phragmites, Cyperus and Typha from the
open water. Moreover, it performed better to separate mixed macrophytes and Echinochiloa
from mudflat. Additionally, NDVI was better at delineating the semi-terrestrial vegetation
from other classes. Therefore, two vegetation indices (NDAVI and NDVI) with better
separability performance were used for supervised classification.
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3.2. Image Classification and Accuracy

A supervised classification from Landsat 8 OLI images acquired in October 2016
was performed. The final classification maps based on NDVI and NDAVI showed the
distribution of eight target classes in the study area (Figure 3a,b). The four mono-specific
emergent macrophytes and additional four target classes covered a total area of 484.4 km2

(Table 2). Water was the major target class which occupied 84.3% (NDVI based) and 84.1%
(NDAVI based) of the total area (Table 2, Figure 3a,b). All groups of macrophytes covered
around 13% (NDAVI based) and 12.4% (NDVI based) of the total area.

Among macrophytes, Typha was dominant with a total distribution of 3.5% (NDAVI
based) and 2.8% (NDVI based). In contrast, Phragmites covered the smallest area with
only 1.7% (NDAVI based) and 1.4% (NDVI based). The total area under the class mixed
macrophytes was reduced from 2.9% (NDVI based) to 2.4% when we applied NDAVI based
classification. Similarly, the area covered with Mudflat was reduced from 1.8% (NDVI
based) to 1.4% (NDAVI based) classification. Echinochloa and Cyperus also showed small
increment in total area when NDAVI based classification was used. NDAVI delineated
both Typha and Phragmites from water and Mudflat better than NDVI. In contrast, the
distribution of semi-terrestrial vegetation was reduced from 1.5% to 1.4% when NDAVI
based classification was applied (Table 2, Figure 3a,b). The confusion matrix (Table S2)
presented the classification accuracy for NDAVI and NDVI based supervised classification.
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Table 2. Distribution of dominant emergent macrophytes and other target classes from Lake Ziway and the surrounding
based on Normalized Difference Aquatic Vegetation Index (NDAVI) and NDVI classification inputs.

Target Classes
NDAVI Based Classification NDVI Based Classification

Pixel Sum Area (%) Area (Km2) Pixel Sum Area (%) Area (Km2)

Mudflat 8075 1.5 7.3 9689 1.8 8.7
Mixed Macrophytes 12,920 2.4 11.6 15,612 2.9 14

Phragmites 9152 1.7 8.2 7537 1.4 6.8
Echinochloa 19,380 3.6 17.4 18,842 3.5 17

Cyperus 10,228 1.9 9.2 9690 1.8 8.7
Typha 18,303 3.4 16.5 15,073 2.8 13.6
Water 452,733 84.1 407.4 453,810 84.3 408.3

Semi-terrestrial Vegetation 7537 1.4 6.8 8075 1.5 7.3

Total 538,328 100 484.4 538,328 100 484.4

The overall producer’s accuracy for NDVI based classification was 72.5% and it was
improved to 79.6% for NDAVI based classification. The NDAVI based classification showed
a better performance in distinguishing Phragmites with a producer’s accuracy of 81.8%,
compared to NDVI based classification with a producer’s accuracy of 70.0%. Similarly,
NDAVI based classification improved producer’s accuracy for Echinochloa, Cyperus, Typha
and water to 74.5%, 79.5%, 79.7% and 88.4 compared to NDVI based classification with
a producer’s accuracy of 68.1%, 72.2%, 70.7% and 84.5%, respectively. The producer’s
accuracy value for semi-terrestrial vegetation decreased from 88.8% (NDVI based) to
85% (NDAVI based). The producer’s accuracy difference between NDAVI based and
NDVI based supervised classification for each target class favored NDAVI, except for
semi-terrestrial vegetation (Figure 4).

The mixed macrophytes class was the most overestimated target class and showed
the lowest producer’s accuracy with only 58.2% (NDVI based) and 73.2% (NDAVI based)
classification. Visual interpretation of the classified images showed a logical pattern of
macrophytes and semi-terrestrial vegetation around the lake. The distribution of Phragmites
at the inner edge of the lake followed by Typha or Cyperus and Echinochiloa represents the
observed orientation of the macrophyte vegetation during the field survey. The largest
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distribution of semi terrestrial vegetation around the northern part of the lake was also
mapped correctly.
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Figure 4. The producer’s accuracy difference between NDAVI based and NDVI based supervised
classification for each target class.

3.3. Hydro-Meteorological Parameters Trend and Regime Shift

The non-parametric Mann-Kendall test revealed a decreasing trend in the long-term
water level of the lake (S= −146, p = 0.044) between 1980 and 2012. Analysis of regime
shift using the Pettit homogeneity test showed a regime shift in the mean water level of the
lake (K= 160, p = 0.029) that occurred in 2003 (Figure 5a). The average water level above
the local benchmark before and after the regime shift were 1.085 and 0.779 m, respectively.
Mann-Kendell trend analysis also indicated a decreasing trend in the water level of the lake
in October (S = −154, p = 0.039). However, the long-term rainfall at Lake Ziway catchment
area (Figure 5b) did not show a monotonic trend (S = 6, p = 0.149), although there was a
shift towards less rainfall since 2001–2010. Similarly, there was no monotonic trend in the
mean annual temperature (S = 59, p = 0.270) between 1980 and 2012.

Water 2021, 13, x FOR PEER REVIEW 11 of 21 

Figure 5. (a) Long term water level trend and regime shift. The red line represents mean water level before the regime 
shift and the green line shows mean water level after the regime shift; (b) long term mean annual rainfall in lake Ziway 
catchment area. The black line shows no monotonic trend in mean annual rainfall. 

3.4. Change Detection of Target Classes 
The change in the surface water area of Lake Ziway and the surrounding 

macrophytes, semi-terrestrial vegetation and mudflat was assessed. The surface water 
area changed between different periods and the overall change between 1986 and 2016 
showed a decreasing trend, except between 1986 and 1995 which showed an increasing 
trend (422.2 km2 to 426.3 km2) on four occasions (Figure 6a). The minimum surface water 
area of Lake Ziway was 407.4km2 which was observed in 2016.  

Figure 6. Change in area distribution of (a) surface water area (b) macrophytes (c) semi-terrestrial vegetation and mudflat 
in different periods in and around Lake Ziway. 

The maximum reduction of the surface water area of the lake was observed between 
1994 and 2014. During this period the lake surface water area decreased by 18 km2. The 
overall surface water area change from 1986 to 2016 was 14.3 km2 (3.3%) (Figure 7). A 

200

400

600

800

1000

1200

1400

1600

1800

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

An
nu

al
 ra

in
fa

ll 
(m

m
)

Yearb

400

405

410

415

420

425

430

1986 1991 1996 2001 2006 2011 2016

A
re

a 
(k

m
2 )

Year

a

40

50

60

70

80

1986 1991 1996 2001 2006 2011 2016

A
re

a 
(k

m
2 

)

Year

b

0

2

4

6

8

10

1986 1991 1996 2001 2006 2011 2016

A
re

a 
(k

m
2 )

Year

Mudflat Semi-terrestrial vegetation

c

a 

Figure 5. (a) Long term water level trend and regime shift. The red line represents mean water level before the regime
shift and the green line shows mean water level after the regime shift; (b) long term mean annual rainfall in lake Ziway
catchment area. The black line shows no monotonic trend in mean annual rainfall.
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3.4. Change Detection of Target Classes

The change in the surface water area of Lake Ziway and the surrounding macrophytes,
semi-terrestrial vegetation and mudflat was assessed. The surface water area changed
between different periods and the overall change between 1986 and 2016 showed a decreas-
ing trend, except between 1986 and 1995 which showed an increasing trend (422.2 km2 to
426.3 km2) on four occasions (Figure 6a). The minimum surface water area of Lake Ziway
was 407.4 km2 which was observed in 2016.
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Figure 6. Change in area distribution of (a) surface water area (b) macrophytes (c) semi-terrestrial vegetation and mudflat
in different periods in and around Lake Ziway.

The maximum reduction of the surface water area of the lake was observed between
1994 and 2014. During this period the lake surface water area decreased by 18 km2. The
overall surface water area change from 1986 to 2016 was 14.3 km2 (3.3%) (Figure 7). A
decreasing trend was also observed in macrophyte distribution (Figure 6b). The total
area reduced from 67.4 km2 in 1986 to 60.1 km2 in 2016 (Figure 7). On the contrary,
semi-terrestrial vegetation and mudflat showed an overall increasing trend between 1986
and 2016 (Figure 6c). The mudflat increased from 2.3 km2 to 7.3 km2 in the specified
period, whereas semi-terrestrial vegetation increased from 4.6 km2 to 8.7 km2 in the same
period (Figure 7). The current distribution of the four major target classes (NDAVI based)
generated using Landsat OLI image from October 2016 is presented in Figure 8.
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Figure 7. Overall change in area distribution of four major target classes between 1986 and 2016
in and around Lake Ziway based on NDAVI and Modified Normalized Difference Water Index
(MNDWI) classification.
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Landsat 8 OLI image from October 2016.

3.5. Effect of Hydro-Meteorological Parameters on Macrophytes Distribution

We investigated the effect of different hydro-meteorological parameters on the macro-
phyte distribution area and NDAVI values of macrophyte vegetation. Spearman correlation
showed a positive significant correlation between the macrophyte distribution area and the
surface water area (r = 0.736, p = 0.014, n = 16). A similar significant positive correlation was
observed between NDAVI values and the surface water area (r = 0.518, p = 0.017, n = 16).
The average July-September rainfall also showed a significant positive correlation with
macrophyte distribution area (r = 0.621, p = 0.031, n = 12) and NDAVI (r = 0.536, p = 0.042,
n = 12). A non-significant positive correlation (r = 0.354, p = 0.443, n = 12) was observed
between the surface water area and the average July-September rainfall. There was little
or no correlation between selected hydro-meteorological parameters with macrophyte
distribution area and/or NDAVI values (Table S3).
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4. Discussion
4.1. Mapping Distribution of Macrophytes Using Remote Sensing

The use of remote sensing in combination with field survey is a useful approach to
monitor aquatic ecosystems periodically. In this study, we used Landsat 8 OLI images
to map the distribution of macrophytes in a tropical lake, Lake Ziway and achieved an
overall classification accuracy of 79.6% (NDAVI based) and 72.5% (NDVI based). The
high spectral similarity and a short ecotone between macrophyte communities make it
difficult to achieve a higher accuracy using medium resolution images [37]. In addition,
the intermingled presence of Mudflat and water in the field of view reduces the reflectance
of macrophyte communities [46]. Suggestions to improve classification accuracy relied
on better spatial resolution of images whereas less emphasis was given to changes as a
result of a difference in spectral bands and indices [54,73]. The use of spectral bands and
indices for classification enhancement was suggested [74,75]. In this study, we have applied
supervised classification with classification enhancement using spectral bands and indices
(NDVI and NDAVI) which ensured an overall producer’s accuracy better than some of the
previous studies [45,50]. We found an acceptable classification accuracy from a moderate
resolution image and target classes with a close spectral profile [45,76]. Macrophytes with
sparse canopy, especially situated at the edge towards the open water such as Phragmites,
had lower reflectance compared to species with luxurious canopy. In such cases, the use of
spectral bands such as the blue band in Landsat 8 OLI, is useful to discriminate mudflat
and water from vegetation, better than red band [73]. Thus, NDAVI performed better than
NDVI in delineating sparse canopy vegetation with high water and mudflat background.
Moreover, the classification enhancement based on reference data, spectral bands and
indices helped to reclassify wrongly assigned pixels and minimized the confusion between
target classes.

4.2. Macrophyte Distribution Was Associated with Rainfall and Surface Water Area

Eco-hydrological factors that influence the distribution of macrophytes include sea-
sonal periodicity in rainfall, the extent of inundation and moisture gradient [18,27,77]. In
Lake Ziway, the macrophyte distribution area and NDAVI exhibited a positive association
with both the average July to September rainfall and lake surface water area. Most aquatic
vegetation has a persistent seed bank, which can stay for more than a year and can show
seed dormancy during dry seasons [11,15]. One of the main factors that determines the
extent of germination pattern after extended seed dormancy is rainfall [78]. The extent of
rainfall influences the emergence of seedlings from seeds in the sediment. These scenarios
are noticeable in seasonally flooded wetlands in arid and semi-arid regions [11,25,79].

The water depth of inundated areas related to rainfall intensity also determines
macrophyte distribution. The rainfall between July and September inundated seasonally
receded shorelines and increased the water depth in the study site [59] and provides a
favorable condition for floating and floating-leaved and rooted macrophytes. Moreover,
macrophytes such as Schoenoplectus and Cyperus articulatus show maximum standing crops
in highly inundated regions [26,77,80]. A wider inundated area with high standing crop and
shoot densities will see a rise in percentage vegetative ground cover and result in a higher
reflectance in the near-infrared region, and higher NDAVI [43,81]. Therefore, the change in
NDAVI showed the variation in the extent of newly emerged healthy macrophytes at the
landward edge following the rainy season. The lag between peak of vegetation spectral
indices and cumulative rainfall was also evident as discussed in previous studies [43,82,83].

4.3. Anthropogenic Disturbances and Climate Variability Affected Lake Ziway’s Water Level

Long term water level fluctuations are due mainly to climatic conditions or a sustained
anthropogenic disturbance [60,84,85]. In our study, the long-term water level of Lake
Ziway showed a decreasing trend, similar to that of neighboring Ethiopian rift lakes, in
the past three decades [86–88]. The change in water level of the lake was minimal until the
beginning of the 21st century and has shown an abrupt regime shift since 2003. Although
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the long-term annual rainfall of the watershed did not show a monotonic decreasing trend,
the extreme drought which occurred in 2002 and 2003 [89], and the June to September
seasonal rainfall variability in the watershed [88,90], could attribute for the observed
change. Moreover, before the 1980s the water balance for Lake Ziway was between river
flows, evaporation and rainfall [59,88]. However, water abstraction and supplying rivers
diversion for irrigation has become an additional factor since the 1980s. Although, the
annual water abstraction was only around 28 × 106 m3 until 1998, the introduction of
large scale floriculture and horticulture farms in the catchment increased the volume of
water withdrawn from the lake [59,86]. The floriculture industry which occupied less
than 50 hectares before 2003 increased to 2000 hectare in 2006 and reached 3000 hectares
in 2015 [91]. The majority of these farms were located in the Ethiopian rift valley and
more than 50 farms were pumping water from Lake Ziway and doubled the amount of
water abstraction [92,93]. Diversion of the feeder Meki and Katar rivers for irrigation also
affected the water balance [94]. A similar scenario was observed in Lake Naivasha after the
introduction of floriculture [60]. According to [85,95] a change from a smooth and gradual
to a drastic regime shift may result from large external factors such as water abstraction
and flood gate regulation. Thus, the abrupt change in mean water level observed at Lake
Ziway in 2003 could be a result of the extreme drought that occurred in the region and of
an extensive water abstraction and river diversion.

4.4. Anthropogenic Disturbances and Water Level Fluctuations Caused Land Cover Change

A shift in water level of shallow lakes disrupts ecosystem functioning and causes
a change between clear and turbid stable states which in turn alter the distribution of
macrophytes’ growth form and diversity [15,24,42]. This is mostly observed in littoral
habitats which can be easily affected by moderate water level fluctuations [17,96]. In Lake
Ziway, a decreasing trend in macrophyte distribution was considerably associated with a
decline in the surface water area, whereas the semi terrestrial vegetation and the mudflat
distribution increased over the last 30 years. A shift in water level causes a shoreline
recession and a shift of the distribution of macrophytes towards the open water [21].
As the water level drops, changes occur in the distribution and diversity of shoreline
macrophytes. If a decline in the water level of a lake is continuous with slow recovery and
refill time, native macrophytes may be replaced by invasive aquatic and semi terrestrial
species [36,85,97]. Our study showed a decline in the surface water area and in macrophyte
distribution. In contrast, the distribution of Aeschynomene elaphroxylon, a semi-terrestrial
form of vegetation, expanded around the lake. The species was observed only in some
parts of the lake prior to the early 2000s [16].

A similar change in the distribution of Aeschynomene elaphroxylon was observed in
Lake Chad [96]. Aeschynomene elaphroxylon grows after native emergent macrophytes
receded from the shoreline as a result of an extended decline in water level [96,97]. The
higher dominance of tolerant emergent macrophytes and the low species diversity at Lake
Ziway also indicated the impact of water level change [16,31]. A decline in water level
coupled with the dominance of emergent macrophytes and advancement of the littoral
zone indicates an ongoing ecological succession towards a marsh [21,97,98]. Mudflats
increase at the outer fringe (landward) and not towards the inner fringe (lakeside). The
recession of the water and increased mudflat area enhanced shoreline encroachment for
agriculture. This was reflected in the digitized total area at the maximum inundation
shoreline which was encroached upon by agricultural land.

5. Conclusions

Our study showed the use of remote sensing imagery with field data to explore the
ongoing and long-term spatio-temporal changes in Lake Ziway. The overall moderate
classification accuracy obtained from a moderate resolution image and target classes
with a close spectral profile were deemed acceptable. Therefore, the results obtained
in this study indicated the potential of freely available medium resolution Landsat and
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similar satellite images to monitor the spatio-temporal changes of tropical great lakes in
a reproducible and continuous manner. The findings also showed a decline in long-term
water level of the lake and distribution of macrophytes. Despite the absence of a long-term
monotonic decreasing trend in annual rainfall, a regime shift in water level of the lake
corresponded to two consecutive years of severe drought in the region. Moreover, the long-
term change in water level and macrophyte distribution in Lake Ziway was also associated
with strong anthropogenic disturbances. The beginning of extensive water abstraction and
river diversion for large scale floriculture and irrigation farms was observed in the same
period with a decline in lake water level. Thus, the ongoing climate change in the region
coupled with strong anthropogenic disturbances may explain the observed progressive
water level and macrophytes change. Macrophyte distribution has also been associated
with water level and hydro-meteorological factors. As a result, there was a continuous
ecological succession along the shores of the lake because of water level fluctuation. A
decline in macrophyte distribution resulted in the extension of semi-terrestrial vegetation,
land cover change and encroachment of mudflats by agriculture. A comprehensive analysis
of the water balance and aquatic vegetation in future research can reveal the full extent of
the current change.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-444
1/13/4/396/s1, Figure S1: Collected Ground truthing points on Lake Ziway and the surrounding,
Figure S2: Unsupervised classification map of Lake Ziway, Table S1: Details and specifications of
satellite images used in this study, Table S2: Confusion matrix of NDAVI based and NDVI based
classification for eight target classes from Lake Ziway and the surrounding. The number of correctly
classified pixels are indicated in Bold. The values in the parentheses are the Kappa coefficients Table
S3: Spearman correlation between selected Hydro meteorological parameters with average NDAVI
values, macrophytes distribution area and surface water area.
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