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Abstract: In this paper, we investigated how the added mass, the hydrodynamic damping and
the drag coefficient of a Wave Energy Converter (WEC) can be calculated using DualSPHysics.
DualSPHysics is a software application that applies the Smoothed Particle Hydrodynamics (SPH)
method, a Lagrangian meshless method used in a growing range of applications within the field
of Computational Fluid Dynamics (CFD). Furthermore, the effect of the drag force on the WEC’s
motion and average absorbed power is analyzed. Particularly under controlled conditions and in the
resonance region, the drag force becomes significant and can greatly reduce the average absorbed
power of a heaving point absorber. Once the drag coefficient has been determined, it is used in a
modified equation of motion in the frequency domain, taking into account the effect of the drag force.
Three different methods were compared for the calculation of the average absorbed power: linear
potential flow theory, linear potential flow theory modified to take the drag force into account and
DualSPHysics. This comparison showed the considerable effect of the drag force in the resonance
region. Calculations of the drag coefficient were carried out for three point absorber WECs: one
spherical WEC and two cylindrical WECs. Simulations in regular waves were performed for one
cylindrical WEC with two different power take-off (PTO) systems: a linear damping and a Coulomb
damping PTO system. The Coulomb damping PTO system was added in the numerical coupling
between DualSPHysics and Project Chrono. Furthermore, we considered the optimal PTO system
damping coefficient taking the effect of the drag force into account.

Keywords: SPH; WEC; drag force; power take-off (PTO) system; DualSPHysics; numerical coupling;
multiphysics

1. Introduction

Wave energy is a potential source of clean electricity that can make a significant
contribution to the de-carbonization of the world’s electricity supply. A wide variety of
devices to harvest wave energy, known as wave energy converters (WECs), have been
designed over recent decades [1]. However, none of them have yet achieved the level
of technological development needed to be economically viable [2]. The type of WEC
studied in the current research is the heaving point absorber, one of the most investigated
types of WECs [3]. These devices typically consist of a floating buoy moved by the waves
and connected to a PTO system, which converts the float’s movement into electricity. In
order to assess the performance and survivability of wave energy converters, which are
necessary for exploiting wave energy, the related wave-induced hydrodynamic forces and
WEC motions have to be investigated. Physical experiments are widely used; nevertheless,
they have very high costs and require a high level of expertise, and scaling may become an
important issue in some cases. On the other hand, numerical methods have become very
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popular in recent years [4], mainly due to the unprecedented growth of the computational
resources available. A complete review on the numerical methods used to simulate the
hydrodynamic response of point absorbers can be found in [5].

Most studies concerning WECs employ potential flow theory based on the linearized
form of the Navier–Stokes equations. Applying linear potential flow theory allows the
numerical modeling of WECs in the time or frequency domain [6], enabling fast calculations
of the WEC’s motion. In this research, the open-source linear potential flow software
NEMOH [7] is used for the calculation of the hydrodynamic coefficients and the motion
of the WEC. Furthermore, this method needs to assume small amplitude oscillations
of the WEC and the fluid to be incompressible and inviscid and have an irrotational
motion. This results in an underestimation of the wave-induced forces on WECs under
highly-nonlinear sea states [8]. Previous simplifications are too restrictive when modeling
WECs; therefore, it may be more appropriate to employ higher fidelity models, generally
known as CFD (Computational Fluid Dynamics) methods. The most commonly used CFD
methods in hydrodynamics are mesh-based. Different point absorbers have been studied
numerically using these methods in [9,10]. Despite being very robust mathematically
and computationally, mesh-based methods face important challenges when capturing
the free surface and the rapidly-evolving nonlinearities. Due to their ability to overcome
these drawbacks, meshless CFD methods have gained attention in recent years, with the
Smoothed Particle Hydrodynamics (SPH) method being the most widely used [11–13]. In
contrast with the mesh-based methods, in SPH, the fluid is discretized in a series of points,
named particles, that move with the velocity calculated from the Navier–Stokes equations
carrying all physical properties with them [14]. The meshless Lagrangian formulation
makes the SPH method a very interesting alternative when simulating free-surface flows
with a wave–structure interaction, such as the case investigated in this work. In [15], the
hydrodynamic response of a point absorber was computed using SPH and a finite volume
solver. In [16,17], the authors exploited the capabilities of the SPH to model nonlinearities
to study the interaction between a point absorber and extreme waves. In this research, the
open-source software DualSPHysics [18] (available at www.dual.sphysics.org) is employed
to obtain the hydrodynamic and drag coefficients of different point absorbers. Furthermore,
DualSPHysics has been recently coupled [19] with Project Chrono [20], enabling the effect
of the PTO system to be included in the simulations. This software has proven to be a
valuable tool in the modeling of the wave–structure interaction in general and of floating
WECs in particular (see [17,21–24]).

Estimating the hydrodynamic coefficients of floating bodies has been done before
with CFD [25–27] and with SPH [28]. The drag coefficient has also been estimated using
SPH in [29–31], but these studies were limited only to a fixed body in a current. In this
research, three point absorbers with different float geometries are considered: one spherical
and two cylindrical. The drag coefficient for each is calculated with DualSPHysics and
validated with results from previous CFD simulations in the case of the sphere [32] or
with experimental data in the cylindrical cases [33,34]. The linear model (in the frequency
domain) has also been extended in order to take into account the effect of the drag force
by writing the drag force term from the Morison equation in its Fourier series. Finally,
the motion and absorbed power of a cylindrical heaving WEC are calculated using the
original linear model, the extended linear model and the SPH method. These results are
obtained considering two different kinds of PTO systems: a linear damper and a Coulomb
damper. In order to model the Coulomb damper PTO system with DualSPHysics, the
DualSPHysics–Project Chrono coupling was extended.

The paper is organized as follows: Section 2 describes the basic theoretical principles
of SPH and its implementation in DualSPHysics; Section 3 provides a description of the
methodology followed to obtain the hydrodynamic and drag coefficients and the modified
equation of motion that includes the effect of the drag force; Section 4 outlines the numerical
setup employed and the different test cases; Section 5 discusses the main results obtained
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using the original linear theory, the extended linear theory and DualSPHysics; finally,
Section 6 presents an overview of the conclusions.

2. Smoothed Particle Hydrodynamics—DualSPHysics

DualSPHysics applies the SPH method, which is a meshless Lagrangian method used
in a growing range of applications within the field of CFD. In SPH, the fluid is discretized
in a set of particles for which the position, velocity, density and pressure are computed by
solving the Navier–Stokes equations and by the interpolation of the values of neighboring
particles. The contribution of each of the neighboring particles depends on the inter-
particle distance and on the kernel function W, which has an area of influence defined by
the smoothing length h (see [14,18,23,35]).

2.1. Governing Equations

The Navier–Stokes equations written in their SPH notation are solved each timestep
for each of the particles. The momentum and continuity equations are given in Equations (1)
and (2), respectively. In the following equations, the physical properties of particle a are
calculated, with b representing each of its neighboring particles:

dva

dt
= −∑

b
mb

(
Pb + Pa

ρbρa
+ Πab

)
∇aWab + g (1)

dρa

dt
= ∑

b
mb(va − vb)∇aWab + δhca ∑

b
ψab · ∇aWab

mb
ρb

(2)

where m is mass, v is velocity, P is pressure, ρ is density and g is the gravity acceleration.
Wab represents the kernel function and depends on the distance between particles a and
b. In this work, a Quintic kernel [36] is applied, since this type of kernel is well suited for
general free-surface problems (see [19]). One of the main advantages of the Quintic kernel
is that the tensile instability that appears using other kernels, such as the Cubic Spline, is
avoided using the kernel adopted in this work. More information can be found in [37]. The
diffusion term introduced on the right-hand side of the continuity equation (Equation (2))
acts as a numerical noise filter, thereby improving the numerical stability and smoothing
the density and pressure field (see [38–40]). In this paper, the recently proposed density
diffusion term of [41] is applied, since it has been proven to produce more accurate results
for the pressure field near boundaries while keeping the computational cost limited. The
term ψab takes the following form:

ψab = 2(ρD
b − ρD

a )
rab
‖rab‖

(3)

where rab = ra − rb with rk being the position of particle k and ρD being the dynamic
density, equal to the difference of the total (ρT) and hydrostatic (ρH) density: ρD = ρT − ρH .

Πab represents the artificial viscosity term, proposed in [14]:

Πab =


−αcabµab

ρab
if vab · rab < 0

0 if vab · rab > 0
(4)

where vab = va − vb, vk is the velocity of particle k, muab = hvab·rab
r2

ab+η2 , cab = 0.5(ca + cb) is

the mean speed of sound, η2 = 0.1h2 and α is a coefficient tuned for proper dissipation
(see [18]). The artificial viscosity term, Πab, is added in the momentum equation based
on the Neumann–Richtmeyer artificial viscosity with the aim of reducing oscillations
and stabilizing the SPH scheme, following the work in [14]. DualSPHysics code uses
this numerical viscosity; however, more physical treatments need to be implemented in
the future in order to properly identify the turbulence by using the K-Epsilon model or
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Sub-Particle Scale model. Throughout this paper, α is set to be equal to 0.01 (as in [21,42])
or 0.00 (in the case of inviscid simulations). Since the fluid is weakly-compressible in
DualSPHysics, an equation of state is used to calculate the fluid pressure as a function of
the density instead of solving a Poisson-like equation. The speed of sound cs is artificially
lowered such that a reasonable time step can be employed while ensuring that density
variations are kept lower than 1% during the simulation.

Pa =
c2

s ρ0

γ

( ρa

ρ0

)γ

− 1

 (5)

where γ = 7 is the polytropic constant and ρ0 is the reference fluid density.

2.2. Boundary Conditions

In DualSPHysics, the boundaries are described by a set of particles for which the
same equations (Equations (1) and (2)) as used for fluid particles are solved. However,
the particles belonging to the boundary do not move according to the forces acting on
them: boundary particles remain either fixed or move according to a predefined movement.
These boundary conditions are called Dynamic Boundary Conditions (DBC) and have
the advantage of being able to deal with complex geometries and being computationally
efficient. However, due to excessive repulsive forces near the boundary between a structure
and the fluid, a gap appears of the order of magnitude of the smoothing length h (see [43]).
Furthermore, at this same boundary, unphysical values of pressure are observed. These
issues are dealt with in the modified DBC (mDBC) implementation recently added to
DualSPHysics, as described in [43]. For each boundary particle of mDBC, a ghost node
is mirrored into the fluid. Boundary particles then receive the properties of the fluid at
the position of the ghost node. The density is calculated using a first-order consistent SPH
interpolation, as proposed in [44]. The mDBC method has proven to show results with more
realistic physical values for pressure at the boundaries and a significant reduction in the size
of the gap between the fluid and boundary without a significant extra computational cost.

2.3. Floating Bodies

DualSPHyics has the capability to accurately simulate fluid-driven objects, as de-
scribed and validated in [23,45], and is used extensively in this paper. The force per unit
mass acting on one boundary particle k of the floating body is calculated by summing
the contributing forces exerted on this boundary particle k by fluid particles a within the
compact support of the kernel:

fk = ∑
a

fka (6)

where fk is the force per unit mass acting on boundary particle k of the floating body and
fka is the force per unit mass acting on boundary particle k exerted by fluid particle a,
calculated with Equation (1) [46]. Once the force acting on the floating body is computed,
the body’s motion can be determined, assuming it is rigid:

M
dV
dt

= ∑
k

mk fk (7)

I
dΩ

dt
= ∑

k
mk(rk − R)× fk (8)

where M is the body’s total mass, I is the moment of inertia, V is the velocity, Ω is the
rotational velocity, R is the centre of mass, mk is the mass of floating boundary particle k
and rk is the position of floating particle k. Equations (7) and (8) are integrated over time in
order to compute the velocity vk of the floating particle:

vk = V + Ω× (rk − R) (9)
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2.4. Coupling Dualsphysics—Project Chrono

Project Chrono is an open-source software package that enables the numerical mod-
eling of mechanical constraints and collisions between objects [20]. It has recently been
successfully coupled to DualSPHysics [19,47] and is used in this case for the modeling of
the PTO system of a WEC.

Linear damping was already implemented in the coupling, which is applied here for
the simulation with a linear damping PTO system (see Equation (10)).

FPTO,l(t) = −BPTO,lv(t) (10)

where BPTO,l is the linear PTO system damping coefficient and v(t) is the WEC’s heave
velocity. The DualSPHysics–Project Chrono model is here extended with the Coulomb
damping model, applying the force described in Equation (11), where BPTO,c is the PTO
damping coefficient for a Coulomb damping PTO system.

FPTO,c(t) = −BPTO,csign(v(t)) (11)

where BPTO,c is the Coulomb damping coefficient.

3. Methodology

In this study, both linear potential flow theory as well as the SPH method are applied.
Therefore, this section begins with a brief overview of the linear potential flow theory. Next,
we describe how the hydrodynamic coefficients can be computed using DualSPHysics.
Finally, we describe how the equation of motion based on linear potential flow theory was
modified to take into account the effect of the drag force. A schematic overview of the
applied theories and equations used in the current study for the calculation of the motion
and the average absorbed power of the studied WECs is given in Figure 1.

Figure 1. Schematic overview of the applied theories and equations in the current study.

In the calculation of the hydrodynamic coefficients and the equation of motion in
the present study, we assume linear potential flow theory [6], which is a subset of linear
wave theory that allows the fluid velocity, vw, to be expressed as the gradient of the time
dependent velocity potential Φ (Equation (12)).

vw = ∇Φ (12)

Potential flow theory makes some essential assumptions: (i) the fluid is inviscid, (ii) the
fluid is incompressible and (iii) the flow is irrotational [3]. Furthermore, it is assumed that
the motion amplitude of the WEC is much smaller than the wavelength. It is assumed that
all time-dependent variables oscillate with the same wave angular frequency ω, enabling
the separation of the time dependence from the time-independent velocity potential Φ,

Φ(x, y, z, t) = <
{

Φ̂(x, y, z)eiωt
}

(13)
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where Φ̂ is the complex amplitude of the velocity potential. Due to application of the
principle of superposition, linear potential flow theory allows the separation of the total
velocity potential into the following components (Equation (14)):

Φt(x, y, z) = Φi + Φd +
6

∑
i

Φr (14)

where Φt is the total velocity potential, Φi is the incident wave velocity potential, Φd is
the diffracted wave velocity potential and ∑6

i Φr is the sum of the radiated wave velocity
potentials for each degree of freedom (DoF) of the WEC. In the current study, only one
DoF for each WEC is modeled: namely the heave motion. Since the oscillatory motion of
the waves and the WEC is considered to be harmonic, all forces and displacements can be
decomposed into their spatial and temporal dependencies [6]. Therefore, the WEC’s heave
displacement can be written as

ξ(t) = <
{

ξ̂(ω)eiωt
}

(15)

where ξ̂ is the complex amplitude of the WEC’s heave displacement. Applying Newton’s
second law of motion and writing all terms in its complex amplitudes results in the
following equation (see [6]):

−ω2mξ̂ = F̂e + F̂r + F̂hs + F̂PTO (16)

where F̂e is the complex amplitude of the excitation force, F̂r is the complex amplitude
of the radiation force, F̂hs is the complex amplitude of the hydrostatic force and F̂PTO is
the complex amplitude of the PTO system force. It is here assumed that the PTO system
is a linear damping PTO system, following Equation (10). Equation (16) can be further
rewritten, following the same approach as in [6]:

−ω2mξ̂ = F̂e − iωB33ξ̂ + ω2 A33ξ̂ − K33ξ̂ − iωBPTO,l ξ̂ (17)

where B33 is the heave component of the hydrodynamic damping, A33 is the heave com-
ponent of the added mass, K33 is the hydrostatic spring stiffness or hydrostatic coefficient
equal to K33 = ρgAd with Ad being the cross-sectional area at the undisturbed sea level,
and BPTO,l is the PTO system damping coefficient for a linear PTO system without a spring
coefficient. From Equation (17), the complex amplitude of the device’s heave motion can
be obtained,

ξ̂ =
F̂e

−ω2(m + A33) + K33 + iω(B33 + BPTO,l)
(18)

Equation (18) is further extended to include the effect of the drag force in Section 3.2.
Equation (18) can be used to calculate the average absorbed power Pav [6]:

Pav =
1
T

∫ T

0
BPTO,lv(t)2 dt =

1
2

BPTO,lω
2|ξ̂|2 (19)

An optimal value for BPTO,l can be calculated, leading to the maximal average ab-
sorbed power [48]:

BPTO,l,opt =

√
B2

33 +

(
ω(m + A33)−

K33

ω

)2
(20)

3.1. Determination of Hydrodynamic Coefficients Using DualSPHysics

The added mass, hydrodynamic damping and drag coefficient are estimated in Dual-
SPHysics by running a forced motion test. The test consists of the WEC heaving according
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to a fixed sinusoidal motion in still water. The heave motion and heave velocity of the
WEC can be described as follows:

z(t) = asin(ωt) (21)

v(t) = aωcos(ωt) (22)

where a is the heave amplitude of the WEC with a forced heave motion.
Following potential flow theory, the total vertical force Fz acting on the heaving WEC,

as the sum of the hydrodynamic, hydrostatic, drag and PTO system force, is expressed as

Fz(t) = (A33ω2 − ρgAd)asin(ωt)− B33ωacos(ωt) + Fv(t) (23)

where Fv(t) is the viscous force, written as the semi-empirical Morison equation [49,50]:

Fv(t) = −
1
2

ρAdCdv(t)|v(t)| = −1
2

ρAdCd(ωa)2cos(ωt)|cos(ωt)| (24)

where Cd is the drag coefficient. The viscous force Fv(t) can be approximated by writing
out its Fourier series and retaining only the first term: Equation (25). It is preferred to retain
only the first term since this allows the modification of the equation of motion depending
on only one single frequency. This is justified since the second appearing term of the drag
force’s Fourier series has a magnitude five times lower than the first frequency component.
The same approach was used in [51].

Fv(t) ≈ −
4

3π
ρAdCd(ωa)2cos(ωt) (25)

Now, the force Fz(t) from Equation (23) can be written as a sum of a sine and a cosine,
containing only one frequency component:

Fz(t) = (A33ω2 − ρgAd)asin(ωt) + (−B33ωa− 4
3π

ρAdCd(ωa)2)cos(ωt) (26)

One way of estimating the hydrodynamic coefficients is to apply the least-square
method when comparing the theoretical total force with Equation (23) with the total force
acting on the WEC, calculated with DualSPHysics, FSPH(t). However, since multiple
coefficients have to be estimated, we chose to apply Fourier analysis. A similar approach
was followed in [25,26,28,52]. The coefficients of the Fourier series of the force Fz(t)
(Equation (26)) acting on the heaving WEC can be used to calculate the hydrodynamic
coefficients.

b1 =
2
T

∫ T

0
FSPH(t)sin(ωt) (27)

A33 =
b1 + ρgAda

ω2a
(28)

Equation (28) assumes that the cross-sectional area of the WEC, Ad, is constant. This is
true for a cylinder, but not for, e.g., a sphere, where the varying cross-sectional area causes
non-linear static Froude–Krylov forces (see [32,53]). The two main non-linearities affecting
point absorber WECs in the resonance region are the drag forces and the non-linear Froude–
Krylov forces, the latter being a purely geometrical effect [32,53,54]. Therefore, the heave
amplitude of the spherical WEC was kept low in order to limit these non-linear Froude–
Krylov forces.

a1 =
2
T

∫ T

0
FSPH(t)cos(ωt) (29)

B33 = − a1

ωa
(30)
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Equation (30) is only applicable when the fluid is inviscid. The first simulations were
performed in an inviscid fluid by setting the artificial viscosity coefficient in DualSPHysics
equal to zero: α = 0.0. This does not lead to numerical instabilities of the water particles
at the water surface since the density-diffusion term is applied [41]. Once the inviscid
simulations are finished, the derived hydrodynamic damping coefficient B33 can be used
in viscous simulations to estimate the drag coefficient Cd:

Cd = − a1 + B33ωa
4

3π ρAdω2a2
(31)

The test cases discussed in this paper all have a high Reynolds number (Re), meaning
that the drag coefficient mainly depends on the pressure distribution surrounding the WEC
and not on the distribution of the wall shear stresses (see [55] (Chapter 9)). In order to obtain
an accurate pressure distribution, it is essential to apply the mDBC method instead of DBC.
It is described in [53] that the total drag can be separated into a scale-independent and a
scale-dependent (or viscous) drag component. Viscous effects depend on the Reynolds
number and do not scale with Froude scaling. On the other hand, there is form drag and
vortex-induced drag, which is independent of scale (Figure 2). Since artificial viscosity is
used in the DualSPHysics simulations throughout this paper, it is expected that the viscous
drag component is not modeled correctly. However, it follows from [53] that the viscous
drag term only covers a small part of the total drag (1–4%), whereas the vortex-induced
drag covers 18–19% of the total drag. Vortex shedding is generated by high pressure
and velocity gradients close to regions of high wall curvature [53]. Vorticity is modeled
in DualSPHysics since the software supports flow rotationality and there is numerical
(artificial) viscosity. The presence of these vortices is proven later in the present study
(see Figure 3). Vortices surrounding the heaving WEC disrupt the dynamic pressure field,
causing a loss in heave amplitude. Furthermore, in [4], it was concluded that pressure or
form drag is the main contributor of drag forces, caused by flow separation and vortex
shedding, whereas skin friction drag was considered negligible.

Figure 2. Schematic overview of different drag forces acting on the Wave Energy Converter (WEC).
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Figure 3. Vorticity in DualSPHysics surrounding a heaving cylindrical WEC in regular waves with H = 0.16 m, T = 1.5 s,
BPTO,l = 1100 Ns/m (left), compared to experimental measurements of the heaving WEC, as performed in [56] (right).

3.2. Derivation of the Equation of Motion and the Optimal Damping Coefficient Including the
Effect of Drag Forces

After the drag coefficient has been determined with DualSPHysics, it can be used in
potential flow theory. The aim of this section is to derive a modified equation of motion
including the effect of the drag force. Furthermore, a modified equation for the value of
BPTO,l,opt is derived, since it has been proven that the drag coefficient has an influence on
the optimal linear PTO damping coefficient of a heaving WEC (see [34,56]).

3.2.1. Linear Damping PTO System

The PTO force from a linear damping PTO system is written as follows in the
time domain:

FPTO,l(t) = −BPTO,lv(t) (32)

The complex amplitude of the linear damping PTO system force is given by

F̂PTO,l(ω) = −iωBPTO,l ξ̂ (33)

In order to obtain a modified equation of motion and a new estimate for the optimal
damping coefficient taking into account the effect of the drag force, defined in Equation (24),
this force has to be written in the frequency domain. In a first step, it is assumed the
WEC is oscillating in still water. The drag force contains a quadratic term, which can
be approximated as follows by calculating its Fourier series and retaining only the first
frequency component (see also [51]):

v(t) = <
{

iωξ̂eiωt
}

(34)

⇒ v(t) = −ω|ξ̂|sin(ωt) (35)

− v(t) · |v(t)| ≈ − 8
3π

(ω|ξ̂|)v(t) (36)

⇒ −v(t) · |v(t)| ≈ <
{
− 8

3π
(ω|ξ̂|)iωξ̂eiωt

}
(37)

Filling in the result of Equation (37) in the drag force gives

Fv(t) = −
1
2

ρAdCdv(t) · |v(t)| (38)

⇒ Fv(t) = <
{
− 4

3π
ρAdCd(ω|ξ̂|)iωξ̂eiωt

}
(39)
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Equation (39) results in the following expression for the complex amplitude of the
drag force:

F̂v = − 4
3π

ρAdCd(ω|ξ̂|)iωξ̂ (40)

⇒ F̂v = −ĉ f iωξ̂ (41)

In this case, ĉ f is a real number; this will not be the case when the fluid is no longer
still. Equation (41) can now used in the equation of motion:

−ω2mξ̂ = F̂e + F̂r + F̂hs + F̂PTO + F̂v (42)

⇒ −ω2mξ̂ = F̂e + ω2 A33ξ̂ − iωB33ξ̂ − K33ξ̂ − iωBPTO,l ξ̂ − iωĉ f ξ̂ (43)

ξ̂ =
F̂e

(−ω2(m + A33) + K33) + iω(B33 + BPTO,l + ĉ f )
(44)

Equation (38) is, however, only true if the water surrounding the WEC is standing
still, which is no longer the case when the WEC is moving in waves. In the formula of the
drag force, the relative velocity difference v′(t) = v(t)− v0(t) has to be used, which is the
difference between the WEC’s velocity v(t) and the vertical velocity of the surrounding
water particles v0(t) (see Equation (45)).

v0(t) = −
Hπ

T
sin(ωt)e−kzb (45)

where H is the wave height, k is the wave number and zb is the depth at which the vertical
fluid particle velocity is calculated, taken as half of the draft in current research.

The relative velocity difference is written as a function of the WEC’s velocity v(t) in
order to simplify further results:

v′(t) = <
{

αviωξ̂eiφα eiωt
}

(46)

where αv is the ratio of the amplitude of v′(t) to the amplitude of v(t) and φα is the
phaseshift between v′(t) and v(t). Harmonic decomposition is applied in a similar manner
as in Equation (36):

− v′(t) · |v′(t)| ≈ − 8
3π

(αvω|ξ̂|) · v′(t) (47)

⇒ −v′(t) · |v′(t)| ≈ <
{
− 8

3π
(αvω|ξ̂|)αveiφα iωξ̂eiωt

}
(48)

The Equation (48) is now used to represent the viscous force in the time and frequency
domain.

Fv(t) = −
1
2

ρAdCdv′(t)|v′(t)| = <
{
− 4

3π
ρAdCdα2

v(ω|ξ̂|)eiφα iωξ̂eiωt
}

(49)

⇒ F̂v = − 4
3π

ρAdCdα2
v(ω|ξ̂|)eiφα iωξ̂ (50)

⇒ F̂v = −ĉ f · iωξ̂ (51)

with
ĉ f =

4
3π

ρAdCdα2
v(ω|ξ̂|)eiφα (52)
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Equation (50) is the complex amplitude of the viscous force written as a function of
the complex amplitude of the WEC’s heave motion ξ̂. This force can be introduced in the
equation of motion of the WEC:

ξ̂ =
F̂e

(−ω2(m + A33) + K33 −=(ĉ f )ω + iω(B33 + BPTO,l +<(ĉ f )))
(53)

Note that αv and φα are not known in advance since they depend on ξ̂, so an iterative
procedure has to be followed to solve Equation (53).

Once a solution for ξ̂ is found, ĉ f can be calculated from Equation (52), and an updated
value of the optimal damping coefficient of the heaving WEC can be calculated:

BPTO,l,opt =

√√√√(B33 +<(ĉ f ))2 +

(
ω(m + A33)−

K33 −=(ĉ f )ω

ω

)2

(54)

3.2.2. Coulomb Damping PTO System

In case a hydraulic PTO system is applied, the PTO system force can be approximated
as a Coulomb damping system [48]:

FPTO,c(t) = −BPTO,csign(v(t)) (55)

where BPTO,c is the Coulomb damping coefficient. The first frequency component of the
Fourier series of this PTO system force can be used as approximation in the frequency
domain (see Equation (56)). F̂PTO,c is written in such a way that it resembles the complex
amplitude of the linear PTO system force (see Equation (33)):

F̂PTO,c = −
4

πω|ξ̂|
BPTO,ciωξ̂ (56)

The second frequency component, at 3ω, has an amplitude of one-third of the first
frequency component. However, it can be proven that this second-frequency component
(and all other higher-order frequency components) does not change the average absorbed
power of the WEC (see also later in Section 5). Therefore, only the first frequency component
of FPTO,c(t) is retained below. This now means that FPTO,c(t) can be written as the linear
damping PTO system force with an equivalent damping coefficient BPTO,l,eq:

BPTO,l,eq =
4

πω|ξ̂|
BPTO,c (57)

This BPTO,l,eq is then used in Equation (53). Since BPTO,l,eq depends on the WEC’s
heave amplitude |ξ̂|, an iterative approach is followed to solve the Equation (53). The value
for BPTO,c leading to the maximum average absorbed power Pav, BPTO,c,opt, can then be
estimated as

BPTO,c,opt =
π

4
ω|ξ̂| · BPTO,l,opt (58)

with BPTO,l,opt from Equation (54).

4. Test Cases and Numerical Setup

The methods used to determine Cd described in Section 3.1 are applied to three
different WECs:

• A heaving sphere with a diameter of 5 m, as studied in [32]. For this WEC, the added
mass and hydrodynamic damping were also estimated wtih DualSPHysics.

• A cylindrical WEC with a diameter of 0.5 m and draft of 0.11 m, as studied in [17,56],
hereafter referred to as “cylinder1”.
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• A cylindrical WEC with a diameter of 0.3 m and draft of 0.28 m, as studied in [34,57],
hereafter referred to as ’cylinder2’. This WEC is studied in more detail by analyzing its
response amplitude operator (RAO) and comparing it with the experimental results
found in [57]. The WEC is also simulated with two kinds of PTO systems (a linear
damping and a Coulomb damping PTO system) and the average absorbed power is
compared for a range of damping coefficients.

Spherical and cylindrical shapes of the WECs were chosen since these are the shapes
that are regularly used for heaving point absorbers. A spherical WEC was chosen since this
shape induces extra non-linear forces, named non-linear Froude—Krylov forces, due to
their non-uniform cross-sectional area [54]. Two cylindrical shapes were chosen since a flat
cylinder provides a balance between the power absorption, WEC bandwidth and material
cost considerations (see [58]), whereas for a slender cylinder, the drag force is expected to
be more significant [34].

An overview of important settings and parameters applied during the DualSPHysics
simulations is listed below.

• Simulations were carried out with two different types of boundary conditions: Dy-
namic Boundary Conditions (DBC) and modified Dynamic Boundary Conditions
(mDBC), as described in Section 2.2. Both SPH results were compared to the theo-
retical force calculated with Equation (23), with the hydrodynamic coefficients from
NEMOH and Cd = 0.45 as in [32]. It is clear from Figure 4 that mDBC gave sig-
nificantly better results compared to DBC. When mDBC was applied, the repulsive
forces exerted by the boundary particles of the sphere were much smaller than when
applying DBC, resulting in a smaller gap between the sphere and the fluid.

• Artificial viscosity was applied with an artificial viscosity coefficient α = 0.01. Ar-
tificial viscosity was introduced into SPH in [14] and was used primarily due to its
simplicity [18]. It was stated in [59] that this artificial viscosity corresponds to an
equivalent kinematic viscosity of 15

112 αcs0h (in 2D), which is generally much higher
than the real kinematic viscosity of water ν = 1 × 10−6 m²/s. Therefore, one way
of reducing the numerical dissipation caused by artificial viscosity is by lowering α;
however, this was not preferred since the value of α = 0.01 has been proven to give
the best results in the validation of wave flumes to study the wave propagation and
wave loadings exerted onto coastal structures [21,42] and is also the value used when
simulating the WEC in regular waves. Only in the case where the hydrodynamic
coefficients A33 and B33 are computed is α set to be equal to zero, as described in
Section 3.1.

• The initial speed of sound was set to cs0 = 15
√

gd, with d being the depth of the
numerical wave basin. It was found that convergence was reached with a lower
resolution when the speed of sound cs0 was decreased. This can be related to the
influence of cs0 on the viscosity: it is stated in [59] that the equivalent kinematic
viscosity associated with the artificial viscous term has the form 15

112 αcs0h. Further
decreasing cs0 leads to overly large timesteps and therefore less accurate results.

• A convergence test was done by varying the interparticle distance dp and studying the
resulting hydrodynamic coefficients A33, B33 and the drag coefficient Cd, calculated
with Equations (28), (30) and (31), respectively. The hydrodynamic coefficients were
compared to results from potential flow theory obtained with NEMOH and the drag
coefficient was compared to results from previous experimental or numerical tests
from [32–34]. The results of these convergence tests are described in Section 5.

• The domain size of the basin was set to be large enough to avoid interaction with side
walls (see Figure 5). Sloped sidewalls were provided as well as numerical damping
layers, with the aim of reducing side wall reflection.
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Figure 4. Vertical force Fz acting on a sphere with prescribed heave motion, a = 1.5 m T = 9 s.

Water 2021, 1, 0 13 of 24

Figure 4. Dimensions of the numerical wave basin for hydrodynamic coefficients and drag coefficient
test for a heaving sphere.

5. Results and Discussion
5.1. Estimation of the Hydrodynamic Coefficients and of the Drag Coefficient

Before calculating the drag coefficient Cd it is briefly checked if DualSPHysics is
able to accurately compute the hydrodynamic coefficients, being the added mass A33
and the hydrodynamic damping B33. This computation is carried out for the heaving
sphere described in section 4 by simulating this heaving sphere in an inviscid fluid (α =
0.0) in DualSPHysics. Equations (28) and (30) are applied in order to calculate A33 and
B33. The obtained values are compared to the values found by NEMOH, which applies
linear potential flow theory. In order to get results comparable to linear theory the heave
amplitude a of the sphere is kept rather low, a = 0.25m. Finally, the results of A33 and B33
are displayed in figure 5, showing that DualSPHysics is able to accurately compute A33
and B33, apart from some discrepancies in the low frequency region.

In the following simulations, carried out to compute the drag coefficient Cd, α will
be set equal to 0.01 as suggested in [21]. As discussed in section 3.1 DualSPHysics sup-
ports flow rotationality and adds artificial viscosity, resulting in vortex shedding. Vortex
shedding is expected to be present at regions with high wall curvature, such as the cor-
ners of a heaving cylindrical WEC and results in a significant part of the total drag force.
Therefore a brief qualitative analysis is carried out looking into the presence of vorticity
in DualSPHysics simulations. The cylindrical WEC with diameter 0.5 m and draft 0.11
m - cylinder1 - is simulated in DualSPHysics in regular waves with H = 0.16m, T = 1.5s
and BPTO,l = 1100Ns/m, similarly as was done in an experimental study in [57]. The
high value of BPTO,l was chosen in order to induce a large phase difference and thus high
relative velocities and high vortex induced drag. A qualitative comparison between the
numerical and experimental model is displayed in Figure 6, showing the magnitude of
vorticity calculated in DualSPHysics and the flow patterns surrounding the WEC during
experiments. It is clear that DualSPHysics shows high vorticity at the sides and corners of
the heaving WEC, similar as in the experimental case studied in [57].

Figure 5. Dimensions of the numerical wave basin for hydrodynamic coefficients and drag coefficient
test for a heaving sphere.

5. Results and Discussion
5.1. Estimation of the Hydrodynamic Coefficients and of the Drag Coefficient

Before calculating the drag coefficient Cd, wer briefly checked whether DualSPHysics
was able to accurately compute the hydrodynamic coefficients corresponding to the added
mass A33 and the hydrodynamic damping B33. This computation was carried out for the
heaving sphere described in Section 4 by simulating this heaving sphere in an inviscid
fluid (α = 0.0) in DualSPHysics. Equations (28) and (30) were applied in order to calculate
A33 and B33. The obtained values were compared to the values found by NEMOH, which
applies linear potential flow theory. In order to obtain results comparable to linear theory,
the heave amplitude a of the sphere was kept rather low, at a = 0.25 m. Finally, the results
of A33 and B33 are displayed in Figure 6, showing that DualSPHysics was able to accurately
compute A33 and B33, apart from some discrepancies in the low-frequency region.
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Figure 6. Hydrodynamic coefficients A33 and B33 calculated with NEMOH and with Smoothed Particle Hydrodynamics
(SPH)–DualSPHysics for a sphere with a diameter of 5 m.

In the following simulations, carried out to compute the drag coefficient Cd, α was
set to be equal to 0.01 as suggested in [21]. As discussed in Section 3.1, DualSPHysics
supports flow rotationality and adds artificial viscosity, resulting in vortex shedding.
Vortex shedding is expected to be present in regions with a high wall curvature, such as the
corners of a heaving cylindrical WEC, and results in a significant part of the total drag force.
Therefore, a brief qualitative analysis was carried out to investigate the presence of vorticity
in DualSPHysics simulations. The cylindrical WEC with a diameter if 0.5 m and draft of
0.11 m—cylinder1—was simulated in DualSPHysics in regular waves with H = 0.16 m,
T = 1.5 s and BPTO,l = 1100 Ns/m, in a similar way as was done in an experimental study
in [56]. The high value of BPTO,l was chosen in order to induce a large phase difference
and thus high relative velocities and high vortex-induced drag. A qualitative comparison
between the numerical and experimental model is displayed in Figure 3, showing the
magnitude of vorticity calculated in DualSPHysics and the flow patterns surrounding the
WEC during experiments. It is clear that DualSPHysics shows high vorticity at the sides
and corners of the heaving WEC, similar to the results in the experimental case studied
in [56].

The presence of vortex shedding around the heaving cylindrical WEC in DualSPHysics
simulations implied that there was a drag force acting on the WEC. In the remainder of this
section, we determine whether this drag force was accurately modeled in DualSPHysics
by calculating the drag coefficient Cd, applying Equation (31). This Cd was calculated for
the three WECs described in Section 4: one spherical WEC and two cylindrical WECs.
In all cases, the values of A33 and B33 used in Equation (31) were those obtained from
NEMOH, which is the same approach as followed in [32]. This means that Cd does not
only account for the viscous non-linear effects, but also for other non-linear effects, as
also described in [29]. Figure 7 shows the results for the calculation of Cd using the ap-
proach described in Section 3.1, for different ratios of D/dp, with D being the WEC’s
diameter and dp the interparticle distance. The convergence analyses are performed for
the sphere studied in [32] with a = 1.5 m and T = 9 s, the cylinder studied in [17,56], with
a = 0.045 m and T = 1.5 s (cylinder1 in Figure 7) and the cylinder studied in [34,60], with
a = 0.1 m and T = 1.2 s (cylinder2 in Figure 7). The Cd value obtained from previous
numerical tests or experiments performed in [32–34] is displayed as well; it is clear that
the result of DualSPHysics converges towards a slightly higher value of Cd than obtained
in previous numerical or experimental tests. One possible explanation for why the Dual-
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SPHysics simulations slightly overestimate the value of Cd is the use of the artificial viscosity
value with α = 0.01, resulting in excessive equivalent kinematic viscosity as described in
Section 4. In future work, a more physical viscosity and turbulence model will be imple-
mented in DualSPHysics. The Cd value obtained for cylinder1 simulated in DualSPHysics
was compared to the Cd obtained from the results described in [33]; i.e., Cd = 1.5. In [33,61],
experimental and numerical tests were carried out for a heaving vertical cylinder with
similar values for the Keulegan–Carpenter number KC and the Reynolds number Re. The
Cd value obtained for cylinder2 in DualSPHysics was compared to the Cd value determined
experimentally in [34]; i.e., Cd = 1.4. In [34,60], the drag coefficient Cd was determined by
performing one or multiple heave decay tests for the cylinder. However, this approach
was not followed here since decay tests in DualSPHysics require a very high resolution for
decent accuracy (see [62]). The test for cylinder2 performed in DualSPHysics was carried
out at a period of T = 1.2 s and a heave amplitude a = 0.1 m, resulting in values for KC
and Re of the same order of magnitude as those in the free decay tests, which is important
since Cd depends on both KC and Re [63].

Figure 7. Convergence test for drag coefficient Cd using a varying resolution for (i) a sphere with a = 1.5 m, T = 9 s [32], (ii)
a cylinder with a = 0.045 m, T = 1.5 s (cylinder1, [56]) and a cylinder with a = 0.1 m, T = 1.2 s (cylinder2, [34]).

An overview of the heave amplitude a and the heave period T applied during the
DualSPHysics tests is displayed in Table 1, as well as the obtained value of Cd.

Table 1. Heave amplitude a and heave period T applied during the forced oscillation with Dual-
SPHysics of a spherical WEC and two cylindrical WECs, as well as the obtained drag coefficient Cd.

Spherical WEC Cylinder1 Cylinder2

T [s] 9 1.5 1.2
a [m] 1.5 0.045 0.1
Cd [-] 0.78 1.65 1.50
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5.2. Cylindrical WEC in Regular Waves

Once the Cd values were determined, a study was carried out on the WEC’s behavior in
regular waves. This study was carried out only for cylinder2, since experimental validation
for this WEC was available from [34]. The modified equation of motion including the
effect of the drag force, Equation (53), was used for the calculation of the heave motion and
the average absorbed power. The Cd used in Equation (53) equalled 1.5, determined with
DualSPHysics (see Table 1). The results of the heave motion and average absorbed power
were then compared with the results obtained from simulations in DualSPHysics.

5.2.1. Undamped Heaving WEC

Before studying the heaving WEC with a PTO system, the response amplitude opera-
tor (RAO) of the undamped heaving WEC was calculated. This RAO could be calculated by
comparing different modeling techniques: (i) linear potential flow theory—Equation (18),
(ii) linear potential flow theory with a correction term taking into account the effect of
the drag force—Equation (53), (iii) SPH simulations using DualSPHysics and (iv) experi-
mental results using data from [34,57]. This RAO was calculated for the undamped case
(BPTO,l = 0.0 Ns/m) with H = 0.08 m as was done in the experiments. The dimensions of
the numerical wave basin modeled in DualSPHysics differed for each wave frequency, since
the WEC should be placed at least one wavelength away from the piston [17]. An example
of the numerical wave basin for a specific wave frequency is given in Figure 8. This numer-
ical wave basin was provided with a beach and numerical damping (introduced in [21]) in
order to reduce wave reflection. Furthermore, periodic boundaries were provided at the
sides, reducing reflection from the side walls. Figure 9 shows that the SPH simulations fit
well with the experimental results and that the linear theory with a correction term for the
drag force significantly increased accuracy compared to the conventional linear potential
flow theory. It is clear that applying linear potential flow theory without the inclusion of
the drag force greatly overestimates the RAO, at least for the WEC analyzed in the present
study.

Figure 8. Dimensions of a basin for a heaving cylindrical WEC in waves with T = 1.2 s in DualSPHysics.
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Figure 9. Response amplitude operator (RAO) for the cylindrical WEC cylinder2 without a power take-off (PTO) system,
calculated with (i) linear potential flow theory with Cd = 0.0, (ii) linear potential flow theory with Cd = 1.5, (iii) SPH–DualSPHysics
and (iv) obtained from experiments [34], H = 0.08 m.

5.2.2. Linear Damping PTO System

In the next step, simulations with cylinder2 were carried out with a linear damping
PTO system and the average absorbed power was calculated in three different ways: (i)
linear potential flow theory, (ii) linear potential flow theory with Cd = 1.5 in Equation (53)
and (iii) with DualSPHysics. The results are displayed in Figure 10. Similar to the results
was found in [34], the optimal PTO system damping coefficient BPTO,l,opt was significantly

larger than B33 (
BPTO,l,opt

B33
≈ 7). The average absorbed power was significantly lower when

including the drag force, due to the high relative velocities in the resonance region leading
to considerable drag forces. It is clear from Figure 10 that the average absorbed power
calculated with DualSPHysics lay close to the results obtained from the modified equation
of motion with Cd = 1.5. The lower values for average absorbed power obtained with
DualSPHysics could be due to the use of only one constant value for Cd in the equation
of motion and thus in the calculation of the average absorbed power, while Cd actually
increased with decreasing amplitude [32]. At BPTO,l = 0.0 Ns/m, the WEC’s heave
amplitude was approximately 0.10 m whereas at BPTO,l = 35 Ns/m the WEC’s heave
amplitude was only 0.05 m.

From Figure 10, the optimal linear PTO damping coefficient BPTO,l,opt can be found.
This value was then used to compute the velocity of the WEC in regular waves with
H = 0.15 m, T = 1.2 s and compare the different modeling techniques—see Figure 11.
Figure 11 shows that the velocity calculated with linear potential flow theory with Cd = 1.5
lay close to the velocity calculated with DualSPHysics, while linear potential flow theory
with Cd = 0.0 overestimates the velocity.
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(a) (b)
Figure 10. Average absorbed power of cylinder2 with (a) a linear damping PTO system and (b) a Coulomb damping PTO
system for a range of PTO system damping coefficients, calculated with linear potential flow theory with (i) Cd = 0.00, (ii) Cd
= 1.50 and (iii) with DualSPHysics—H = 0.15 m, T = 1.2 s.

(a) (b)

Figure 11. Velocity of cylinder2 with (a) a linear damping PTO system, BPTO,l = 25 Ns/m and (b) a Coulomb damping
PTO system , BPTO,c = 10N calculated with linear potential flow theory with (i) Cd = 0.00, (ii) Cd = 1.50 and (iii) with
DualSPHysics—H = 0.15 m, T = 1.2 s.

5.2.3. Coulomb Damping PTO System

The same procedure was repeated with a Coulomb damping PTO system: the average
absorbed power was calculated with (i) linear potential flow theory, (ii) linear potential
flow theory with Cd = 1.5 and (iii) with DualSPHysics. In the case in which linear potential
flow theory was applied, Equation (56) was applied for the PTO system force in the
frequency domain. For the DualSPHysics calculation, the PTO system force with Coulomb
damping, expressed in Equation (55), was implemented in Project Chrono and applied
in the DualSPHysics–Project Chrono coupling. The results are displayed in Figure 10.
From Figure 10, it is clear that the calculations using Equation (56) gave results close to
the DualSPHysics results, meaning that the approximation of the Coulomb damping PTO
system force as its first frequency component is valid.

From Figure 10, the optimal Coulomb damping coefficient BPTO,c,opt could be found.
This value was then used to compute the velocity of the WEC in regular waves with
H = 0.15 m, T = 1.2 s and compare the different modeling techniques (see Figure 11).
Figure 11 shows that the velocity calculated with linear potential flow theory with Cd = 1.5
lay close to the velocity calculated with DualSPHysics, while linear potential flow theory
with Cd = 0.0 overestimated the velocity. Figure 11 also shows that the velocity computed
with DualSPHysics was no longer a sine wave since the WEC was latched briefly when
its velocity reaches zero. This is an inherent property of the Coulomb damping PTO
system force FPTO,c which is a square wave and latches the WEC shortly when it reaches
its maximum or minimum displacement [48,64]. This behavior was not visible in the linear
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potential flow theory, with Cd = 0.0 or Cd = 1.5, since these theories simplify FPTO,c as a
sine wave.

6. Conclusions

In this study, we investigated how the hydrodynamic coefficients of a floating body
(added mass and hydrodynamic damping) can be determined with DualSPHysics when
using appropriate settings (see Section 4). The artificial viscosity coefficient α should be set
to be equal to zero and the heave amplitude of the moving WEC should be kept sufficiently
low in order to allow a fair comparison with hydrodynamic coefficients calculated with
NEMOH. It was found that the phenomenon of vortex shedding, responsible for causing a
significant part of the drag force, is present in DualSPHysics simulations of a cylindrical
WEC (see Figure 3). A significant and novel result of the current study is that the drag
coefficient Cd of heaving WECs can be determined with DualSPHysics. This is not only
useful for WECs but for floating offshore structures in general. For the test cases studied
in this research, the interparticle distance dp was found to be required to be lower than
D/50 with D being the WEC’s diameter in order to obtain accurate results. mDBC should
be applied a boundary condition in order to achieve accurate results with reasonable
resolution. The results were validated with experimental data obtained from [33,34].

Once an accurate value of Cd is found, the effect of the drag force can be included
in the equation of motion of the WEC (Equation (53)) in the frequency domain. In the
current study, it was shown that this Equation (53) allowed accurate calculation of the
WEC’s heave motion, with results similar to those calculated with DualSPHysics, validated
with experimental data from [34]. Furthermore, an updated value of the optimal linear
PTO system damping coefficient BPTO,l,opt can be calculated with Equation (54). The
average absorbed power taking into account the effect of the drag force was calculated and
compared to results from DualSPHysics simulations. The results show that the average
absorbed power near resonance is significantly lower when including the drag force and
that the BPTO,l,opt obtained from the modified equation of motion taking into account the
drag force lies significantly higher than the BPTO,l,opt obtained from the equation of motion
without the inclusion of the drag force. These findings are confirmed by simulations of
the heaving WECs in DualSPHysics. Future research could further extend the modified
equation of motion by applying it to WECs that oscillate with one or more than one degree
of freedom, such as pitching or surging WECs.

Besides a linear damping PTO system, a Coulomb damping PTO system has been
included in the DualSPHysics–Project Chrono coupling. An approximation of the Coulomb
damping PTO system force has also been included in the equation of motion, and the
results are compared with DualSPHysics. A major outcome of the current study is that the
modified equation of motion including the effect of the drag force gives results similar to
those obtained from DualSPHysics for heaving WECs with a linear damping or Coulomb
damping PTO system.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

a Heave amplitude of the WEC (m)
Ad Cross-sectional area of the heaving WEC (m²)
A33 Added mass (kg)
B33 Hydrodynamic damping in heave (Ns/m)
BPTO,l Linear PTO system damping coefficient (Ns/m)
BPTO,c Coulomb damping PTO system damping coefficient (N)
Cd Drag coefficient (-)
cs Speed of sound in DualSPHysics (m/s)
D WEC diameter (m)
d Depth of the numerical basin (m)
dp Interparticle distance in DualSPHysics (m)
Fe Excitation force (N)
Fhs Hydrostatic force (N)
Fr Radiation force (N)
FPTO PTO system force (N)
FPTO,coulomb Coulomb damping PTO system force (N)
Fz Rotal vertical force acting on the heaving WEC (N)
fk Force per unit mass acting on boundary particle k (N/kg)
g Gravitational acceleration (m/s²)
H Wave height (m)
h Smoothing length in DualSPHysics (m)
K33 Hydrostatic spring stiffness (N/m)
k Wave number (1/m)
m WEC’s mass (kg)
P Fluid pressure (Pa)
Pav Average absorbed power (W)
rk Position of particle k in DualSPHysics (m)
T Wave period (s)
t Time (s)
v0 Vertical fluid velocity (m/s)
v WEC’s heave velocity (m/s)
v′ WEC’s relative velocity, equal to v− v0, (m/s)
W Kernel function
zb Half of the WEC’s draft (m)
α Artificial viscosity coefficient applied in DualSPHysics
αv Ratio of the WEC’s relative velocity amplitude to the WEC’s velocity amplitude
Π Artificial viscosity term in DualSPHysics (m²/s)
ρ Fluid density (kg/m³)
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Φ Velocity potential
φα Phaseshift between v′ and v (rad)
Ω Rotational velocity (rad/s)
ω Angular wave frequency (rad/s)
ˆ Complex amplitude
CFD Computational Fluid Dynamics
DBC Dynamic Boundary Condition
mDBC Modified DBC
PTO Power take-off
SPH Smoothed Particle Hydrodynamics
WEC Wave Energy Converter
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