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Abstract: Rainfall erosivity factor (R-factor) is one of the Universal Soil Loss Equation (USLE) input
parameters that account for impacts of rainfall intensity in estimating soil loss. Although many
studies have calculated the R-factor using various empirical methods or the USLE method, these
methods are time-consuming and require specialized knowledge for the user. The purpose of this
study is to develop machine learning models to predict the R-factor faster and more accurately than
the previous methods. For this, this study calculated R-factor using 1-min interval rainfall data for
improved accuracy of the target value. First, the monthly R-factors were calculated using the USLE
calculation method to identify the characteristics of monthly rainfall-runoff induced erosion. In
turn, machine learning models were developed to predict the R-factor using the monthly R-factors
calculated at 50 sites in Korea as target values. The machine learning algorithms used for this study
were Decision Tree, K-Nearest Neighbors, Multilayer Perceptron, Random Forest, Gradient Boosting,
eXtreme Gradient Boost, and Deep Neural Network. As a result of the validation with 20% randomly
selected data, the Deep Neural Network (DNN), among seven models, showed the greatest prediction
accuracy results. The DNN developed in this study was tested for six sites in Korea to demonstrate
trained model performance with Nash–Sutcliffe Efficiency (NSE) and the coefficient of determination
(R2) of 0.87. This means that our findings show that DNN can be efficiently used to estimate monthly
R-factor at the desired site with much less effort and time with total monthly precipitation, maximum
daily precipitation, and maximum hourly precipitation data. It will be used not only to calculate soil
erosion risk but also to establish soil conservation plans and identify areas at risk of soil disasters by
calculating rainfall erosivity factors.

Keywords: rainfall erosivity factor; USLE R; machine learning; Deep Neural Network

1. Introduction

Climate change and global warming have been concerns for hydrologists and envi-
ronmentalists [1–3]. Hydrologic change is expected to be more aggressive as a result of
rising global temperature, that consequently results in a change in the current rainfall
patterns [4]. Moreover, the Intergovernmental Panel on Climate Change (IPCC) [5] report
showed that increasing rainfall events and rainfall intensity are expected to occur in the
coming years [6]. Due to the frequent occurrence of greater intensity rainfall events, rainfall
erosivity will increase, thus topsoil will become more vulnerable to soil erosion [7]. Soil ero-
sion by extreme intensive rainfall is a significant issue from agricultural and environmental
perspectives [8]. A decrease in soil fertility, the inflow of sediment into the river ecosystem,
reduction of crop yields, etc., will occur due to soil erosion [9,10]. Therefore, effective
best management practices should be implemented for better sustainable management
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of soil erosion. Furthermore, there is a need for a regional estimate of soil loss to proper
decision-making related to appropriate control practice, since erosion occurs diversely over
space and time [11].

During the last few decades, various empirical, physically based, and conceptual
computer models [12] such as Soil and Water Assessment Tool (SWAT) [13], European Soil
Erosion Model (EUROSEM) [14], Water Erosion Prediction Project (WEPP) [15], Sediment
Assessment Tool for Effective Erosion Control (SATEEC) [16], Agricultural Non-Point
Source Pollution Model (AGNPS) [17], Universal Soil Loss Equation (USLE) [18], Revised
Universal Soil Loss Equation (RUSLE) [19] have been developed. Among the models, the
USLE model is one of the most popular and widely used empirical erosion models to
predict soil erosion because of its easy application and simple structures [20,21]. The USLE
model [18] calculates the annual average amount of soil erosion by taking into account soil
erosion factors, such as rainfall erosivity factors, soil erodibility factor, slope and length,
crop and cover management factor, and conservation practice factor.

The Ministry of Environment of Korea has supported for use of USLE in planning
and managing sustainable land management in Korea. To these ends, the USLE has been
extensively used to predict soil erosion and evaluate various soil erosion best management
practices (BMPs) in Korea. Various efforts have been made for the development of site-
specific USLE parameters over the years [22]. Yu et al. [23] suggested monthly soil loss
prediction at Daecheong Dam basin in order to improve the limitation of annual soil loss
prediction. They found that over 50% of the annual soil loss occurs during July and August.
The rainfall erosivity factor (R-factor) is one of the factors to be parameterized in the
evaluation of soil loss in the USLE. The R-factor values are affected by the distribution of
rainfall amount and its intensity over time and space.

Rainfall erosivity has been widely investigated due to its impact on soil erosion studies
worldwide. Rainfall data at intervals of less than 30 min are required to calculate USLE
rainfall erosivity factors. The empirical equations related to R-factor based on rainfall data,
such as daily, monthly, or yearly, available in various spatial and temporal extents, have
been developed using numerous data [24,25].

Sholagberu et al. [26] proposed a regression equation based on annual precipitation
because it is difficult to collect sub-hourly rainfall data to calculate maximum 30-min
rainfall intensity. Risal et al. [27] proposed a regression equation that can calculate monthly
rainfall erosivity factors from 10-min interval rainfall data. In addition, the Web ERosivity
Module (WERM), web-based software that can calculate rainfall erosivity factor, was
developed and made available at http://www.envsys.co.kr/~werm. In the study by Risal
et al. [27] on the R-factor calculation for South Korea, 10-min interval rainfall data, which
cannot give the exact estimate of maximum 30-min rainfall intensity, was used. The Korea
Meteorological Administration (KMA) provides 1-min rainfall data for over 50 weather
stations in Korea. Estimation of R-factor values for South Korea using a recent rainfall
dataset is needed for present and future uses because climate change causes changes in
precipitation pattern and intensity to some degrees. However, the process of calculation
of R-factor from rainfall data is time-consuming, although the Web ERosivity Module
(WERM) software can calculate rainfall erosivity factor [27]. Furthermore, the radar rainfall
dataset can be used to calculate spatial USLE R raster values using Web Erosivity Model-
Spatial (WERM-S) [28]. These days, Machine Learning/Deep Learning (ML/DL) has been
suggested as an alternative to predict and simulate natural phenomena [29]. Thus, ML/DL
has been used for the prediction of flow, water quality, and ecosystem services [30–34].
These studies have implied that ML/DL is an efficient and effective way to calculate R
factor values using recent rainfall time-series data provided by the KMA.

The objective of this study is to develop machine learning models to predict the
monthly R-factor values, which are comparable with those calculated by the USLE method.
For this aim, we calculated R-factor using 1-min interval rainfall data to estimate the
maximum 30-min rainfall intensity of the target values, which is monthly R factor values
at 50 stations in S. Korea. In the previous study by Risal et al. [27], the R-factor values
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for South Korea were calculated using 10-min interval rainfall data, which cannot give an
exact estimate of maximum 30-min rainfall intensity. The procedure used in this study is
shown in Figure 1.
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Figure 1. Study procedures.

2. Methods
2.1. Study Area

Figure 2 shows the location of weather stations where 1-min rainfall data have been
observed over the years in South Korea. The fifty points marked in circles are observational
stations that provide data used for training and validation to create machine learning
models predicting rainfall erosivity factors, while six stations marked in green on the
right map—Chuncheon, Gangneung, Suwon, Jeonju, Busan, and Namhae—represent the
stations for the final evaluation of the results predicted by machine learning models selected
through validation. Thiessen network presented using red lines of the map on the right
shows a range of the weather environment around the weather stations.
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2.2. Monthly Rainfall Erosivity Calculation

Monthly rainfall erosivity (R-factor) was calculated for each of the 50 weather stations
in South Korea from 2013 to 2019. It was calculated based on the equation given in the
USLE users’ manual in order to calculate the R-factor value [18]. According to Wischmeier
and Smith [18], a rainfall interval of fewer than six hours is considered a single rainfall
event. In addition, the least amount of rainfall that could cause soil loss is at least 12.7 mm
or more as specified in the USLE users’ manual [35].

However, if the rainfall is 6.25 mm during 15 min, it is defined as a rainfall event that
can cause soil loss. The calculations for each rainfall event are as follows.

IF I ≤ 76 mm/hr→ e = 0.119 + 0.0873log10 I (1)

IF I > 76 mm/hr→ e = 0.283 (2)

E = Σ (e × P) (3)

R = E × I30max (4)

where I (mm h−1) is the intensity of rainfall, e (MJ mm ha−1) is unit rainfall energy, P
(mm) is the rainfall volume during a given time period, E (MJ ha−1) is the total storm
kinetic energy, I30max (mm h−1) is the maximum 30-min intensity in the erosive event, and
R (MJ mm ha−1 h−1) is the rainfall erosivity factor. In this study, the monthly R-factor
(MJ mm ha−1 h−1 month−1) was estimated by calculating monthly E and multiplying it by
I30max. In addition, the monthly rainfall erosivity factor was calculated using Equations
(1)–(4) [18] using the 1-min precipitation data provided on the Meteorological Data Open
Portal site of the KMA (Korea Meteorological Administration).

2.3. Machine Learning Models

Machine learning can be largely divided into supervised learning, unsupervised
learning, and reinforcement learning [36,37]. In this study, supervised learning algorithms
were used. A total of seven methods (Table 1) were used to build models to estimate
R-factor. Table 1 shows the information on machine learning models utilized in this study.

Table 1. Description of machine learning models.

Machine Learning Models Module Function Notation

Decision Tree Sklearn.tree DecisionTreeRegressor DT
Random Forest Sklearn.ensemble RandomForestRegressor RF

K-Nearest Neighbors Sklearn.neighbors KNeighborsRegressor KN
Gradient Boosting Sklearn.ensemble GradientBoostingRegressor GB

eXtreme Gradient Boost xgboost.xgb XGBRegressor XGB
Multilayer Perceptron Sklearn, neural_network MLPRegressor MLP
Deep Neural Network Keras.models.Sequential Dense, Dropout DNN

Decision Tree, Random Forest, K-Nearest Neighbors, Gradient Boosting, and Multi-
layer Perceptron imported and used the related functions from the Scikit-learn module
(Version: 0.21.3), while eXtreme gradient boost was taken from the XGboost library (License:
Apache-2.0) and used the regression functions. Deep Neural Network is trained by taking
Dense and Dropout functions from “Keras.models.Sequential” module of TensorFlow
(Version: 2.0.0) and Keras (Version: 2.3.1) framework. In this study, the standardization
method was used during the pre-process for raw data. Moreover, the “StandardScaler”
function, a preprocessing library of Scikit-learn, was used.

2.3.1. Decision Tree

The Decision Tree (DT) model uses hierarchical structures to find structural patterns in
data for constructing decision-making rules to estimate both dependent and independent
variables [38]. It first learns by continuing the yes/no question to reach a decision [39]. In
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this study, the DT model in the Scikit-learn supports only the pre-pruning. Entropy was
based on classification and 2 for min_samples_split was given in Table 2.

Table 2. Critical hyperparameters in machine learning models.

Machine Learning Models Hyperparameter

Decision Tree criterion = “entropy”, min_samples_split = 2
Random Forest n_estimators = 52, min_samples_leaf = 1

K-Nearest Neighbors n_neighbors = 3, weights = ‘uniform’, metric = ‘minkowski’
Gradient Boosting learning_rate = 0.01, min_samples_split = 4

eXtreme Gradient Boost Booster = ‘gbtree’, max_depth = 10
Multilayer Perceptron hidden_layer_sizes = (50,50,50), activation = “relu”, solver = ‘adam’
Deep Neural Network kernel_initializer = ‘normal’, activation = “relu”

A model hyperparameter is a value that is set directly by the user when modeling.
Table 2 shows the hyperparameter settings of the regressors used in this study.

2.3.2. Random Forest

Random Forest (RF) is a decision tree algorithm developed by Breiman [40] that
applies the Bagging algorithm among the Classification and Registration Tree (CART)
algorithm and the ensemble technique. RF creates multiple training data from a single
dataset and performs multiple training. It generates several decision trees and improves
predictability by integrating the decision trees [41]. Detailed tuning of the hyperparameter
in RF is easier than an artificial neural network and support vector regression [42].

In this study, the hyperparameters in the RF are the following: 52 for n_estimators,
and 1 for min_samples_leaf.

2.3.3. K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a non-parametric method which can be used for
regression and classification [43]. In this study, KNN was used for regression. KNN is an
algorithm that finds the nearest “K” neighborhood from the new data in training data and
uses the most frequent class of these neighbors as a predicted value [44]. In this study,
the number of the nearest neighbors in KNN’s hyperparameter was set as 3. The weights
were calculated using a simple mean, and the distance was calculated by the Minkowski
method [45].

2.3.4. Gradient Boosting and eXtreme Gradient Boost

Gradient Boosting (GB) is an ensemble algorithm belonging to the boosting family
that can perform classification and regression analysis [46,47]. In GB, the gradient reveals
the weaknesses of the model that have been learned so far, whereas other machine learning
models (e.g., DT and RF) focus on it to boost performance [48]. In other words, the advan-
tage of gradient boosting is that the other loss functions can be used as much as possible.
Therefore, the parameters that minimize the loss function that quantifies errors in the pre-
dictive model can found for better R-factor prediction. In this study, the hyperparameters
in the GB are the following: 0.01 for learning_rate, 4 for min_samples_split.

The eXtreme Gradient Boost (XGB) model is faster in training and classifying data than
GB using parallel processing. It also has a regulatory function that prevents overfitting,
which results in better predictive performance [49]. XGB is trained only by important
features so that it calculates faster and performs better when compared to other algo-
rithms [50,51]. The hyperparameters in the XGB are the following: gbtree for booster, and
10 for max_depth.
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2.3.5. Multilayer Perceptron

Multilayer Perceptron (MLP) is a neural network that uses a back-propagation algo-
rithm to learn weights [52]. MLP network consists of an input layer, a hidden layer, and an
output layer (the R-factor). In this study, the hidden layer consisted of 50 nodes.

The hidden layers receive the signals from the nodes of the input layer and transform
them into signals that are sent to all output nodes, transforming them into the last layer of
outputs [53]. The output is used as input units in the subsequent layer. The connection
between units in subsequent layers has a weight. MLP learns its weights by using the
backpropagation algorithm [52].

2.3.6. Deep Neural Network

Deep Neural Network (DNN) is a predictive model that uses multiple layers of
computational nodes for extracting features of existing data and depending on patterns
learn to predict the outcome of some future input data [54]. The invention of the new
optimizers enables us to train a large number of hyperparameters more quickly. In addition,
the regularization and dropout allow us to avoid overfitting. The package used to build
DNN in this study was TensorFlow developed by Google. In this study, the DNN model
structure consisted of 7 dense layers and 1 dropout (Figure 3). Additional details about
DNN can be found in Hinton et al. [55].
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2.4. Input Data and Validation Method

Input data were compiled as shown in Table 3 to develop machine learning models to
assess the R factor. The corresponding month from Jan. to Dec. was altered to numerical
values, because rainfall patterns and their intensity may vary every month over space. Total
monthly precipitation, maximum daily precipitation, and maximum hourly precipitation
were calculated monthly and selected as the independent variables. The data can be easily
downloaded in the form of monthly and hourly data among the Automated Synoptic
Obstruction System (ASOS) data from the Korea Meteorological Administration (KMA)’s
weather data opening portal site and organized as input data.

Table 3. The input data for machine learning models.

Description Count Mean std Min 25% 50% 75% Max

Input variable

month month (1~12) 4087 6.49 3.45 1 3 6 9 12

m_sum_r the total amount of monthly precipitation 4087 96.45 97.01 0 30.90 66.20 126.15 1009.20

d_max_r maximum daily precipitation 4087 39.39 38.10 0 14.50 27.10 51.35 384.30

h_max_r maximum hourly precipitation 4087 11.84 12.69 0 4.00 7.50 15.50 197.50

Output variable R-factor R-factor 4087 419.10 1216.79 0 15.99 77.84 326.24 43,586.61

The monthly R-factors data in the manner presented in the USLE for the 50 selected
sites from 2013 to 2019 were designated as target values, and as the features are given
in Table 4, month (1–12), total monthly precipitation, maximum daily precipitation, and
maximum hourly precipitation were designated as the features. Among the data, 80% of
randomly selected data were trained, the model was created, and then the remaining 20%
of data were used for the validation of the trained model.

To assess the performance of each machine learning model, Nash–Sutcliffe efficiency
(NSE), Root Mean Squared Errors (RMSE), the Mean Absolute Error (MAE), and coefficient
of determination (R2) was used. Numerous studies indicated the appropriateness of these
measures to assess the accuracy of hydrological models [56–58]. NSE, RMSE, MAE, and R2

for evaluation of the model accuracy can be calculated from Equations (5)–(8).

NSE = 1− ∑ (Ot −Mt)
2

∑ (Ot −Ot)
2 (5)

RMSE =

√
∑ (Ot −Mt)

2

n
(6)

MAE =
1
n ∑

∣∣∣∣Mt −Ot

∣∣∣∣ (7)

R2 =

[
∑
(
Ot −Ot

)(
Mt −Mt

)]2
∑ (Ot −Ot)

2
∑ (Mt −Mt)

2 (8)

where Ot is the actual value of t, Ot is the mean of the actual value, Mt is the estimated
value of t, Mt is the mean of the estimated value, and n is the total number of data.
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Table 4. Monthly R-factor calculated by the Universal Soil Loss Equation (USLE).

Station
Number

Station
Name

R-Factor
(MJ mm ha−1 h−1 month−1)

R-Factor
(MJ mm ha−1 h−1

year−1)

January February March April May June July August September October November December Annual

90 Sokcho 21 29 32 95 47 159 1039 2860 368 494 507 44 5694
95 Cheolwon 2 37 30 119 257 235 5867 2769 403 239 65 24 10,046
98 Dongducheon 2 69 31 91 287 455 3031 1364 424 228 47 24 6053

100 Daegwallyeong 4 19 20 79 577 194 1472 1669 453 237 40 8 4772
106 Donghae 17 29 34 207 27 157 592 1317 469 1461 128 8 4447
108 Seoul 0 31 37 95 284 266 2813 988 191 90 50 16 4861
112 Incheon 3 50 69 83 224 192 2193 897 406 480 88 27 4712
114 Wonju 2 22 31 83 284 699 2654 999 303 65 40 8 5189
127 Chungju 4 36 22 79 171 270 2075 1240 909 117 38 17 4978
129 Seosan 7 72 50 135 147 562 747 635 330 146 127 42 3000
130 Uljin 86 16 47 292 24 227 590 470 360 2816 143 30 5100
133 Daejeon 8 47 50 182 72 602 1658 1293 494 181 96 24 4707
136 Andong 1 32 53 101 48 325 1142 808 368 176 33 14 3100
137 Sangju 6 18 67 105 45 361 1098 1143 420 273 51 19 3605
138 Pohang 7 46 106 139 40 233 417 1051 910 1478 51 23 4500
143 Daegu 1 8 57 80 67 313 548 1322 238 340 26 12 3013
152 Ulsan 15 36 122 141 154 287 751 1499 727 1709 77 74 5591
156 Gwangju 8 59 92 156 74 927 1249 2458 703 361 99 49 6236
165 Mokpo 15 112 117 227 177 630 1023 944 2094 493 85 127 6044
172 Gochang 12 24 137 151 77 399 1768 2235 614 273 77 21 5788
175 Jindo 18 43 231 559 511 598 738 1323 799 636 113 36 5606
201 Ganghwa 1 26 35 60 193 59 1922 1255 648 654 48 20 4921
203 Icheon 2 34 103 83 211 207 2284 1068 450 162 45 24 4673
212 Hongcheon 1 11 23 81 461 162 2220 934 223 51 29 8 4204
217 Jeongseon 1 20 18 75 117 126 2165 654 355 101 36 16 3686
221 Jecheon 3 26 21 90 158 265 1616 1162 405 80 43 12 3881
226 Boeun 8 19 42 106 62 482 2016 1102 583 163 77 15 4675
232 Cheonan 2 17 21 86 106 248 3408 1002 249 110 68 15 5333
235 Boryeong 5 73 47 142 127 322 878 849 1014 184 149 29 3820
238 Guemsan 5 17 52 154 48 483 1126 1059 447 148 37 17 3591
244 Imsil 3 9 83 106 67 369 2329 1416 632 224 44 16 5297
245 Jeongeup 11 18 106 160 265 318 1679 1930 521 207 46 27 5287
247 Namwon 8 19 78 159 52 704 2988 2304 479 586 88 49 7512
248 Jangsu 5 34 85 151 80 246 1997 1812 715 308 53 30 5516
251 Gochanggoon 7 14 127 191 69 352 1448 2066 521 175 37 23 5029
252 Younggwang 7 15 130 178 114 292 994 2008 596 491 63 39 4928
253 Ginhae 7 43 220 200 339 385 1036 1600 1216 734 44 48 5872
254 Soonchang 4 14 93 194 89 456 1724 1304 629 363 58 16 4945
259 Gangjin 10 34 204 344 425 666 1156 9781 903 444 187 18 14,170
261 Haenam 10 15 223 206 177 595 965 1142 650 1250 83 91 5406
263 Uiryoong 4 24 121 184 156 334 629 1961 805 643 39 36 4936
266 Gwangyang 8 76 120 218 591 686 827 2488 2195 555 86 73 7924
271 Bonghwa 0 9 36 86 95 415 1154 706 327 98 28 13 2968
273 Mungyeong 7 18 54 139 102 331 1724 742 529 180 61 21 3908
278 Uiseong 1 6 69 101 74 220 632 647 326 106 31 7 2220
279 Gumi 3 12 68 103 95 380 1296 1442 554 364 32 14 4363
281 Yeongcheon 2 11 81 162 52 316 1259 1082 409 230 28 12 3643
283 Gyeongju 3 11 53 101 55 125 573 759 681 686 21 13 3081
284 Geochang 3 17 54 105 60 434 1184 1491 619 2246 33 55 6299
285 Hapcheon 2 22 57 173 105 700 1114 1646 810 676 47 24 5378

3. Results and Discussion
3.1. USLE R-Factor

For the selected 50 sites, monthly rainfall erosivity factors for each year from 2013 to
2019 were calculated, and the average monthly rainfall erosivity factors for seven years
were obtained. Then, the seven-year average monthly rainfall erosivity, R-factor, was
generated and shown in Table 1. Moreover, to give a comprehensive look at the degree
of rainfall patterns by site, the average annual rainfall erosivity factor for each site is also
presented in Table 4.

In this study, rainfall erosivity factor maps were generated to examine patterns of
monthly R-factor calculated by USLE using rainfall data from 50 selected sites for evalua-
tion. The R-factor distributions were mapped reflecting the geographical characteristics in
South Korea (Figure 4). The high R-factor distribution in all regions during the summer
months of July and August can be confirmed.
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The monthly R-factors for two months from July to August contribute more than 50%
of the total average annual R factor value of Korea. The rainfall occurs mainly in the wet
season and the likelihood of erosion is very high compared to the dry season. In such a
case, using the average annual R-factor value can give a misleading amount of soil erosion.
For these reasons, the monthly R-factor would be helpful in analyzing the impact of the
rainfall on soil erosion rather than the average annual R-factor.

3.2. Validation of Machine Learning Models

Table 5 shows the prediction accuracy results (NSE, RMSE, MAE, R2) of seven ma-
chine learning models, by comparing the predicted R-factor. The results from the Deep
Neural Network (DNN) showed the highest prediction accuracy with NSE 0.823, RMSE
398.623 MJ mm ha−1 h−1 month−1, MAE 144.442 MJ mm ha−1 h−1 month−1, and R2 0.840.

Table 5. Prediction accuracy results of seven machine learning models.

Machine Learning Models NSE RMSE
(MJ mm ha-−1 h−1 month−1)

MAE
(MJ mm ha-−1 h−1 month−1) R2

Decision Tree 0.518 657.672 217.408 0.626
Multilayer Perceptron 0.732 490.055 158.847 0.783
K-Nearest Neighbors 0.817 405.327 149.923 0.794

Random Forest 0.800 423.345 148.147 0.799
Gradient Boosting 0.702 516.956 161.259 0.722

eXtreme Gradient Boost 0.791 433.230 159.275 0.788
Deep Neural Network 0.823 398.623 144.442 0.840

When comparing the results of DNN and the other machine learning models (Decision
Tree, Random Forest, K-Nearest Neighbors, Multilayer Perceptron, Gradient Boosting, and
eXtreme Gradient Boost), we can see that DNN provided more accurate prediction results
over other machine learning algorithms. Moreover, the highest value of NSE, RMSE, MAE,
and R2 was found when the DNN was employed for the prediction R-factor values.
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DNN had been proven for its good performance in a number of studies about the
environment. In the study conducted by Liu et al. [59], the DNN showed better results,
compared with results obtained by other machine learning algorithms, in predicting
streamflow at Yangtze River. Nhu et al. [60] reported the DNN has the most impactful
method in machine learning for the prediction of landslide susceptibility compared to
other machine learning such as decision trees and logistic regression. In the study by Lee
et al. [61], a DNN-based model showed good performance as a result of evaluating the
heavy rain damage prediction compared to the recurrent neural network (RNN) in deep
learning. Sit et al. [62] reported the DNN can be helpful in time-series forecasting for flood
and support improving existing models. For these reasons, it has been shown that DNN
performs better in various studies.

In this study, the second best-predicted model is the K-Nearest Neighbors (KNN).
The result from the KNN model showed prediction accuracy with NSE 0.817, RMSE
405.327 MJ mm ha−1 h−1 month−1, MAE 149.923 MJ mm ha−1 h−1 month−1, and R2 0.794
which indicates that the KNN is the most effective, aside from DNN, in predicting R-factor.
According to Kim et al. [63], KNN has good performance results in predicting the influent
flow rate and four water qualities like chemical oxygen demand (COD), suspended solids
(SS), total nitrogen (TN), and total phosphorus (TP) at a wastewater treatment plant.

On the other hand, Decision Tree has prediction accuracy, with NSE 0.518, RMSE
657.672 MJ mm ha−1 h−1 month−1, MAE 217.408, MJ mm ha−1 month-−1, and R2 0.626.
This means that Decision Tree is less predictable than other machine learning models
(Random Forest, K-Nearest Neighbors, Multilayer Perceptron, Gradient Boosting, eXtreme
Gradient Boost, and Deep Neural Network). Hong et al. [37] also reported Decision Tree has
less accuracy for the prediction of dam inflow compared to other machine learning models
(Decision tree, Multilayer perceptron, Random forest, Gradient boosting, Convolutional
neural network, and Recurrent neural network-long short-term memory).

Figure 5 shows the scattering graphs of the R-factors predicted by the seven machine
learning models and calculated by the USLE method. All machine learning results represent
a rather distracting correlation with less agreement. However, in Figure 5h, the Deep Neural
Network algorithms predicted USLE R values calculated using the method suggested by
USLE users’ manual with higher accuracy, NSE value of 0.823.
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Among the data, 80% of randomly selected data were trained, the model was created,
and then the remaining 20% of data were used for the validation of the trained model.
To prevent overfitting, the K-fold cross-validation was implemented for R2 as shown in
Table 6. As a result of the five attempts of K-fold cross-validation, the DNN showed the
best results with an average R2 of 0.783.
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Table 6. K-fold cross validation results of seven machine learning models.

Fold
Coefficient of Determination (R2)

Decision
Tree

Multi-Layer
Perceptron

K-Nearest
Neighbors

Random
Forest

Gradient
Boosting

eXtreme
Gradient Boost

Deep Neural
Network

1 0.631 0.781 0.818 0.817 0.730 0.801 0.821
2 0.598 0.806 0.705 0.686 0.648 0.737 0.733
3 0.544 0.759 0.705 0.682 0.635 0.717 0.759
4 0.592 0.714 0.780 0.774 0.653 0.644 0.762
5 0.626 0.783 0.794 0.799 0.722 0.788 0.840

Average 0.598 0.769 0.760 0.752 0.678 0.737 0.783

Figure 6 shows the results of the prediction of the five machine learning models (i.e.,
Multilayer Perceptron, K-Nearest Neighbor, Random Forest, eXtreme Gradient Boost, and
Deep Neural Network) at six sites for the testing of the selected models, as well as the
time series comparison graph for 2013–2019 of the monthly R-factor values calculated
on the USLE basis. At most sites, it showed that the time series trend fits well with a
pattern similar to the USLE calculation value. In particular, looking at the distribution in
Figure 6b Gangneung, the value of 9303 MJ mm ha−1 h−1 month−1 in October 2019, which
represented the peak value of the rainfall erosivity factor, was generally well predicted by
all machine learning models. Among the models, the result of the Random Forest model
estimated a similar value with 8133 MJ mm ha−1 h−1 month−1.

On the other hand, among six sites, the time series distribution values of the model
prediction result in Busan showed a slightly different pattern from the USLE calculation
R-factor. In particular, the result was overestimated as the values of 8241 MJ mm ha−1 h−1

month−1 in August 2014, and Multilayer Perceptron was almost twice overestimated at
16,725 MJ mm ha−1 h−1 month−1.

However, the Random Forest (8188 MJ mm ha−1 h−1 month−1) and eXtreme Gradient
boost (8395 MJ mm ha−1 h−1 month−1) algorithms were predicting very similar values.
Therefore, the machine learning results could be seen as good at predicting the peak value.

A comparison of the machine learning model accuracies of NSE and R2 of the test
(validation) results at the six sites is shown in Figure 7. All five models had a coefficient of
determination of 0.69 or higher, and the simulated values of the USLE method calculation
and machine learning models showed high accuracy prediction. However, compared
to Deep Neural Network, the NSE results of the four models (Multilayer Perceptron, K-
Nearest Neighbor, Random Forest, eXtreme Gradient Boost) were less than 0.58, and the
Deep Neural Network model showed 0.87 in both NSE and R2. Therefore, the monthly
average value of the R-factor, predicted by the DNN would be a good candidate algorithm
for USLE R factor prediction (Table 5 and Figure 7).
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Table 7 shows average monthly rainfall erosivity factor values at the six sites for
testing, Chuncheon, Gangneung, Suwon, Jeonju, Busan, and Namhae, along with the USLE
calculation and Deep Neural Network (DNN) prediction.
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Table 7. Monthly R-factor calculated (C) by the previous method and predicted (M) by Deep Neural Network.

Station
Number

Station
Name Method

R-Factor
(MJ mm ha−1 h−1 month−1)

R-Factor
(MJ mm ha−1 h−1 year−1) NSE

January February March April May June July August September October November December Annual

101 Chuncheon
C 2 99 27 110 195 320 3466 1844 355 182 45 24 6670

0.814
M 5 59 26 84 166 356 3543 1608 323 154 31 16 6372

105 Gangneung C 25 36 31 138 150 113 742 2476 390 1598 325 16 6040
0.874

M 57 24 38 84 154 100 774 2189 287 1129 207 14 5055

119 Suwon
C 3 29 80 115 278 165 2944 1463 388 107 84 27 5683

0.981
M 5 36 56 88 210 156 2708 1352 312 85 52 19 5076

146 Jeonju C 7 17 104 105 108 526 1315 1511 311 240 67 21 4330
0.911

M 7 16 80 103 95 581 1086 1261 310 153 50 19 3760

159 Busan
C 32 79 199 408 472 781 1021 1729 1764 616 266 113 7479

0.883
M 22 56 148 243 317 639 860 2205 2514 458 184 91 7736

295 Namhae
C 19 407 366 946 892 1016 1608 1822 2169 1634 151 131 11,159

0.584
M 14 161 198 748 607 867 1201 1164 1633 1010 85 110 7798
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Among average annual vales, the results for Busan showed a good performance
with the Deep Neural Network (DNN) resulting in the average annual value of the rain-
fall erosivity factor of 257 MJ mm ha−1 h−1 year−1 difference over the USLE calculation
result. In the case of Chuncheon, DNN also showed a good performance with an aver-
age annual rainfall erosivity factor difference of 298 MJ mm ha−1 h−1 year−1 difference
over the USLE calculation result. On the other hand, the USLE calculation results for
Namhae showed an average annual value of the rainfall erosivity factor difference of
3361 MJ mm ha−1 h−1 year−1 greater than the DNN result.

This is because, in the case of Namhae, the rainfall tendency lasted for a long period in
the dry season from February to June compared to the other testing sites like Chuncheon,
Gangneung, Suwon, Jeonju, and Busan. Moreover, the monthly R-factor calculation of
Namhae in dry seasons was two to four times more than other testing sites. In particular,
the monthly R-factor for February in Namhae figure being about five times higher than the
monthly R-factor in Busan. This means that if the single set of learning data has a huge
deviation or variation from other sets, it may result in the uncertainty of the entire result
data. Therefore, the monthly R-factor of Namhae in the dry season from is containing
uncertainty. In the future study, when predicting the R-factor of the Namhae, DNN
model analysis will be implemented in consideration of rainfall trends by supplement the
historical rainfall data.

R-factor can be calculated by machine learning algorithms with high accuracy and
time benefit. The spatio-temporal calculation of the rainfall erosivity factor using machine
learning techniques can be utilized for the estimation of the soil erosion due to rainfall at
the target value. The DNN will be incorporated into the WERM website in the near future
after further validation.

4. Conclusions

The main objective of this study is to develop machine learning models to predict
monthly R-factor values which are comparable with those calculated by the USLE method.
For this, we calculated R-factor using 1-min interval rainfall data for improved accuracy
of the target value. The machine learning and deep learning models used in this study
were Decision Tree, K-Nearest Neighbors, Multilayer Perceptron, Random forest, Gradient
boosting, eXtreme Gradient boost, and Deep Neural Network. All of the models except
Decision Tress showed NSE and R2 values of 0.7 or more, which means that most of
the machine learning models showed high accuracy for predicting the R-factor. Among
these, the Deep Neural Network (DNN) showed the best performance. As a result of the
validation with 20% randomly selected data, DNN, among the seven models, showed
the greatest prediction accuracy results with NSE 0.823, RMSE 398.623 MJ mm ha−1 h−1

month−1, MAE 144.442 MJ mm ha−1 h−1 month−1, and R2 0.840. Furthermore, the DNN
developed in this study was tested for six sites (Chuncheon, Gangneung, Suwon, Jeonju,
Busan, and Namhae) in S. Korea to demonstrate a trained model performance with NSE
and R2 of both 0.87. As a result of the comparative analysis of R-factor prediction through
various models, the DNN was proven to be the best model for R-factor prediction in S.
Korea with readily available rainfall data. The model accuracy and simplicity of machine
learning and deep learning models insist that the models could replace traditional ways of
calculating/estimating USLE R-factor values.

We found that the maximum 30 min intensity derived from 1-min interval rainfall
data in this study is more accurate than that estimated from previous research. These
methods can provide more accurate monthly, yearly, and event-based USLE R-factor for
the entire period. Moreover, if the user has input data (month, the total amount of monthly
precipitation, maximum daily precipitation, maximum hourly precipitation) as described
in Table 3, the monthly R-factor can be easily calculated for the 50 specific stations in S.
Korea by using the machine and deep learning models. Since the updated R-factor in
this study reflected the recent rainfall data, which have high variability, it can improve
the accuracy of the usage of the previous R-factor proposed by the Korean Ministry of
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Environment [64] for future study. The results from this study can help the policymakers
to update their guideline (Korean Ministry of Environment) [64] regarding the updated
version of R-factors values for S. Korea.

It is expected that it will be used not only to calculate soil erosion risk but also to
establish soil conservation plans and identify areas at risk of soil disasters by calculating
rainfall erosivity factors at the desired temporal-spatial areas more easily and quickly.

However, this study evaluated the R-factor using machine learning models in S.
Korean territory, under the monsoon region. Although deep learning models such as
Deep Neural Network’s applicability in S. Korea has been confirmed in this study, few
studies have investigated and benchmarked the performances of a Deep Neural Network
model-based USLE R-factor prediction trained. Therefore, future studies should be carried
out for the diverse conditions of the other countries such as European countries, the United
States, and African countries to broaden the applicability of machine learning technology
in USLE R-factor (erosivity factor) analysis.
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