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Abstract: Understanding how natural variation in flow regimes influences stream ecosystem structure
and function is critical to the development of effective stream management policies. Spatial variation
in flow regimes among streams is reasonably well understood for streams in mesic regions, but
a more robust characterization of flow regimes in arid regions is needed, especially to support
biological monitoring and assessment programs. In this paper, we used long-term (41 years) records
of mean daily streamflow from 287 stream reaches in the arid and semi-arid western USA to develop
and compare several alternative flow-regime classifications. We also evaluated how accurately
we could predict the flow-regime classes of ungauged reaches. Over the 41-year record examined
(water years 1972-2013), the gauged reaches varied continuously from always having flow > zero
to seldom having flow. We predicted ephemeral and perennial reaches with less error than reaches
with an intermediate number of zero-flow days or years. We illustrate application of our approach
by predicting the flow-regime classes at ungauged reaches in Arizona, USA. Maps based on these
predictions were generally consistent with qualitative expectations of how flow regimes vary spatially
across Arizona. These results represent a promising step toward more effective assessment and
management of streams in arid regions.
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1. Introduction

The effectiveness of the biological indices used to quantify the ecological condition of
stream ecosystems depends on how accurately and precisely we can predict the reference
condition for individual stream reaches, i.e., how biological communities and ecological
processes naturally vary among reaches [1-3]. Accurate and precise predictions of the
reference condition allow us to express assessments of biological condition relative to
each site’s specific biological potential and thus minimize confounding effects of natural
variation in aquatic life with effects of human-caused environmental alterations [2]. In
general, we know that naturally occurring differences in annual and interannual stream-
flow patterns and spatial intermittency along stream channels can be important drivers of
variation in aquatic biodiversity and ecological processes [4-10], but this knowledge has
not been fully used during the development, application, and interpretation of biological
indices [3-6,11-13]. We expect that estimates of site-specific reference conditions will be
especially critical in regions where flow regimes can vary markedly among stream reaches.
One qualitatively conspicuous difference in flow regimes is whether flows are perennial or
nonperennial. Unfortunately, our understanding of the physical, chemical, and biological
variation that occurs among nonperennial reaches lags behind our understanding of peren-
nial reaches even though nonperennial reaches often dominate in many regions [12-17].
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In this study, our goal was to produce a better understanding of the similarities and dif-
ferences in flow regimes that exist among both perennial and nonperennial reaches in the
arid western United States. Our focus was to quantify major patterns of seasonal flow
within large regions. We recognize that flow can also vary along individual streams, but
quantifying that level of variation was beyond the scope of this study.

In general, the aquatic species that inhabit nonperennial reaches are often distinct
from those that inhabit perennial reaches [18-22]. Moreover, reaches in arid regions
can be especially critical to overall landscape health compared with their mesic counter-
parts [12-18,22-27]. However, it is not yet clear how diverse or predictable nonperennial
reaches are from one another in terms of either their hydrologic regimes [12,14-17,23-26]
or the biota they support [12,13,18-22,25,27]. Water resource managers need to more fully
characterize the diversity of flow regimes that occur in these regions, and they need to
be able to predict and map where they occur [23-26,28-30]. Our lack of understanding
of the hydrologic heterogeneity that exists across stream reaches in arid regions, and
the extent to which that heterogeneity is linked to naturally occurring variation in biota,
currently limits the development and application of robust bioassessment tools for these
reaches [4,13,21,27,31,32]. Accurately classifying the hydrological regimes of the 1000s of
ungauged reaches in arid regions is a critical precursor to the development and application
of bioassessment programs in these regions [16,28,31-34].

Perhaps the most striking difference between reaches in arid and mesic regions is
the extent to which arid-region reaches experience drying. Over 90% of the reaches in an
arid region may be nonperennial, and the degree to which reaches are nonperennial can
vary greatly from one or a few days of zero surface flow per year to most days having
no surface flow across numerous years [12-19,23-25,35]. Some nonperennial reaches, typ-
ically in mountainous arid regions, are nearly perennial, with few or no zero-flow days
in at least some years and often exhibit seasonal snowmelt or storm-driven streamflow
pulses [6,23-25,34-39]. The flow regimes of these nearly perennial reaches are influenced
by differences in elevation and resulting differences in the type and timing of precipi-
tation [6,15-17,35,36], as observed in perennial reaches [39—44]. These nearly perennial
regimes are also often influenced by more extreme seasonal differences in snow cover and
extended periods of drought than observed in perennial reaches [6,15-17,23,24,39,45,46].
Other reaches in arid regions can have ephemeral flow regimes, characterized by short-
duration, high-peak flow events interrupting extended periods of zero flow associated with
very low or no baseflow throughout the year [14-17,33-38]. These flow regimes appear to
be influenced by shallow bedrock, high evapotranspiration rates, variable drought cycles,
and episodic rain events interrupting droughts [15,38-46].

Researchers and managers have previously classified streamflow regimes into discrete
groupings as a way to generalize about how reaches differ in their flow characteristics,
quantify their diversity, and predict biotic responses to flow [6-8,40—44]. Most previous
classifications have used hierarchical cluster analysis to identify classes. These analyses are
ideally based on a large number of sites with continuous, long-term (>20 years) records that
robustly characterize observed daily streamflow patterns through space and time [40-44].
Unfortunately, arid regions generally have limited gauge records, and those reaches that are
gauged often have short or incomplete records [17,47-49]. Use of short-term or incomplete
records can result in inaccurate and unrepresentative characterization of the actual flow
regimes that exist. These types of data limitations can introduce large uncertainties in both
flow-regime classifications [17,47,50] and their prediction [17,28]. These data limitations
have compromised the extent to which we have been able to accurately characterize
reference conditions for reaches in semi-arid and arid regions [16,17,28,33,34].

Even if an accurate classification of the variety of flow regimes that occur in arid-
region streams existed, predicting what class ungauged reaches belong to may be more
challenging in arid regions than mesic regions because of our incomplete understanding
of some of the physicoclimatic controls on stream flows in arid regions. Some watershed
attributes previously used to predict perennial streamflow regimes [40-44] may be less
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influential in nonperennial reaches [6,17,29,30,45]. For example, some of the watershed
attributes used in Dhungel et al. [41] to predict flow-regime classes in the conterminous
United States included watershed area, mean elevation of the watershed, the difference
between mean annual maximum and mean annual minimum precipitation, percentage
of precipitation that occurs when mean air temperature is less than zero, proportion of
annual precipitation that occurs in June, proportion of annual precipitation that occurs
in October, and soil permeability. Additional physicoclimatic attributes, such as evapo-
transpiration [6,23,45-47], snow cover [51], or streambed topography [34,52-54], may be
needed to better predict the occurrence and frequency of zero-flow conditions [17,36-39].
Furthermore, low correlation and nonlinear dependencies between rainfall and runoff in
arid regions [17,45,55] may fundamentally constrain our ability to predict flow regimes of
arid-region reaches.

These classification and prediction challenges are exemplified in the most arid regions
of the southwestern USA. For example, only 25 US Geological Survey (USGS, Reston, VA,
USA) reference-quality streamflow gauge records exist across Arizona [56]. Seventeen of
these records start in the mid 1900s, but they have significant gaps or cease completely
after 15-20 years, most notably after 1985 [57]. Furthermore, these streamflow records
are especially sparse and incomplete for nonperennial reaches [57,58], a pattern that is
true for most extremely arid regions [4,12,23]. The limited availability of streamflow
records in the southwestern USA presents a specific challenge for both the identification
of flow-regime classes and their spatial prediction [28]. Here, we present an approach to
augment the spatial and temporal availability of streamflow data in an arid region with
limited gauges and then use these extended streamflow records to develop and evaluate
(1) alternative streamflow-regime classifications applicable to the arid southwestern USA
and (2) empirical models to predict the streamflow regimes of ungauged reaches from
publicly available geospatial data.

2. Materials and Methods
2.1. General Approach

The workflow required to complete analyses consisted of several steps (Figure 1),
which we summarize here. In Section 2.2, Section 2.3, Section 2.4, Section 2.5, Section 2.6,
Section 2.7, Section 2.8, Section 2.9, we describe each step in more detail. We first identified
gauges from the USGS GAGES 1II [56] dataset of reference-quality (i.e., minimally-impeded
flows) reaches that occurred in two arid southwestern states (Arizona and New Mexico)
and had flow records between water years 1973 and 2013 (41 yr). USGS water years start
on 1 October and end on 30 September0. For the purpose of this study, we defined reaches
with one or more zero-flow days within the record of 41 years as nonperennial [16,17,58].
However, too few gauged nonperennial reaches with full records occurred in these two
states to support a robust analysis. To increase the number of nonperennial reaches with full
records, we extended the study area northward and eastward into the arid and semi-arid
regions of surrounding states (Figure 2) until we had identified 45 gauges on nonperennial
reaches that had full records. We then selected 45 gauged perennial reaches with full records
that spanned the same geographic area as the nonperennial reaches. We also identified
gauged reaches within the expanded study area that had abbreviated or discontinuous
daily flow data for the same time period (1 = 197). To estimate what the full flow records
would have been at these 197 reaches, we developed random forest (RF) regression models
in R [59-61] to predict the missing daily flow values in each of the 197 partial flow record
from the mean daily flows observed at the 90 gauges with full records (see details below).
These model-generated, synthetic streamflow data were then used to extract a variety of
site-specific flow metrics or statistics for each reach. These metrics represented components
of either streamflow magnitude, frequency, duration, timing, and rate of change [7,40-44]
or components of the frequency, duration, and timing of zero flows [17,58]. We then used
hierarchical cluster analysis to identify groups of reaches that differed in one or more flow
metrics. We also calculated the number of zero-flow days that occurred in each record
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and summarized these data as (1) the portion of a record with zero-flow days and (2) the
portion of the 41 water years containing one or more zero-flow days. From these summary
data, we developed additional classification schemes based on different threshold values
of (1) the proportion of zero-flow days (ZFD) and (2) the proportion of years with one
or more zero-flow days (ZFY). We then developed additional RF models to predict class
membership for each of these classifications from watershed physicoclimatic data. We also
used RF to model the continuous variation in percent ZFD and percent ZFY observed in
the records.

Identify reference-quality gauges
(USGS GAGESII dataset) (287)

™\

Gauges with full Gauges with incomplete
records (90) records (197)

V |

Evaluate RF models to Use RF models to synthesize
predict long-term daily —> daily continuous records (287)

continuous records /
Extract and select

Calculate zero-flow days and

flow metrics zero-flow years
Conduct hierarchical Create zero-flow days and
cluster analysis zero-flow years

classifications

2

Compile candidate Develop RF classification and
physicoclimatic regression models
predictors \L

Use models to map distributions of
classes across stream reaches

Figure 1. Workflow describing data compilation, pre-analysis data manipulation, classification, modeling, and mapping.
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Figure 2. Map of the 287 basins with complete (dark blue, dark brown) and partial (light blue, light brown) USGS GAGES II
reference streamflow data. Nonperennial reaches are in brown and perennial reaches are in blue.

2.2. Study Region

As a whole, the USA has one of the largest and longest datasets of gauged streamflow
in the world [48,49]. The study region also has a relatively large number of gauged reaches
with unimpeded flow relative to other arid regions in the world [62]. The gauged reaches
used in this study spanned 22 Level III Ecoregions [63], with multiple records predating
1920 [57]. However, at least 6 of the coastal CA reaches we used may have gauge errors
(too many zero-flow days) associated with flow reversals caused by tides [17].

2.3. Streamflow Data Collection

We used mean daily flow values instead of minimum instantaneous daily flow values
to maximize comparability of our results with previous classifications of flow regimes. Of
the 287 reaches used in this study, 90 reaches had 41 water-years of continuous mean daily
flow measurements (1972-2013), and 197 reaches had between 22 (0.15%) and 14,611 (97%)
days of missing data across the 14,975 days of record (Table 1). Forty-five of the 90 reaches
with complete records were perennial (no zero-flow days in the period of record), and
45 reaches were nonperennial. Of the remaining 197 reaches with partial records, 122 were
nonperennial with between 2% and over 99% zero-flow days (Table 1). Of all 167 nonperen-
nial reaches, 80 had records with less than 20% zero-flow days and 87 reaches had records
with more than 20% zero-flow days.
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Table 1. Numbers of complete and partial streamflow records for each type (N = nonperennial and
P = perennial) of reach used in this study, and the range in the amount of variation (pseudo-r? values)
in mean daily streamflow explained by the RF models for each type of reach and record.

Type of Record Number Variance Explained (%) *
Complete 90 41.8-99.6
NP 45 41.8-99.5
P 45 80.0-99.6
Partial 197 —2.3-99.6
NP 122 —2.3-99.3
P 75 45.3-99.6
Total 287 —2.3-99.6
NP 167 —2.3-99.5
P 120 45.3-99.6

* Pseudo-7? values can be <0 but imply that no variation in daily flows were associated with the predictors.

2.4. Creating Synthetic Complete Streamflow Records for All Gauged Reaches

We developed random forest (RF) models [59-61] to predict missing mean daily flow
values at the 197 reaches with incomplete data from the flows observed at the 90 reaches
with full data. We first evaluated how well RF models could predict known flows by
modeling mean daily flows at each of the 90 reaches with full data as a function of the
flows observed at the other 89 reaches with full records. These 90 models predicted mean
daily flows with pseudo-r? values ranging from 0.42 to > 0.99 (Table 1). Only 3 of these
90 models explained less than 80% of the variation in observed values. We therefore built
RF models to predict missing flow values in the records of reaches with partial data. These
models were calibrated with the existing observations in each partial record, and then the
models were used to fill in the missing values. These models had pseudo-r? values ranging
from 0.00 to > 0.99 (Table 1). Across all 287 models, 240 models accounted for over 90% of
the variation in observed daily flow values. Seventeen other models accounted for between
70% and 90% of the observed variation in mean daily flows, and the remaining 20 models
accounted for less than 70% of the variation in daily flows. With one exception, the models
with the lowest pseudo—r2 values (—2 to 70%) were those for nonperennial reaches (Table 1).
Of the 20 records for which models explained less than 70% of observed variance in mean
daily flows, 19 were from nonperennial reaches with high percentages of zero-flow days.
The exception was a perennial reach with nearly constant flow.

To avoid negative values in synthetic data (all regression models can predict negative
values at low values because of prediction error), we adjusted predicted daily flow values
to maintain the same proportion of zero-flow days as in the raw data for each reach.
We first calculated the percentage of days with mean daily flow equal to zero based
on the original data, regardless of whether records were complete or partial. We then
identified the predicted daily flow value associated with this percentage for each reach
record. Next, we identified all occurrences of mean daily flow at or below this record-
specific threshold. Finally, for each predicted record, we replaced all daily flows at or
below their record-specific threshold flow values with zero. This adjustment assumes
that the observed proportion of zero-flow days is representative of the entire 14,975 day
period, including missing dates. This assumption may be inaccurate in reaches where
missing data are associated with an anomalously dry or wet period, and error is expected to
increase in reaches with more extreme low flows and with a greater proportion of missing
records. However, we expect that this decision had limited influence on the derivative flow
metrics and classification because threshold flow values were always small (near zero).
Process-based hydrologic models may possibly generate more accurate daily streamflow
timeseries over missing periods, but such models require substantial data inputs and
parameterization, cannot be directly applied to other reaches, and often perform poorly
under low-flow conditions. These issues remain critical limitations for application to large,
data-limited regions [50].
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2.5. Selection of Flow Metrics for Use in Hierarchical Classification

Flow-regime classifications are typically based on several flow metrics that together
characterize different aspects of streamflow magnitude, frequency, duration, timing, and
rate of change [7,40-44]. Dhungel et al. [41] used principal components analysis to identify
16 candidate flow variables from 65 metrics that characterized broadly different dimensions
of these five flow attributes. We used identical methods to calculate site-specific values
for the same 16 metrics, but we considered 6 other flow metrics related to zero-flow days
instead of the two low-flow metrics used by Dhungel et al. [41] because we wanted to
provide greater resolution in distinguishing different types of nonperennial streamflow
patterns. We examined correlations between these 20 candidate metrics and dropped one
of any pair of metrics that were correlated (r > 10.751) with one another. When selecting
which metric to use from a pair of correlated metrics, we used the one that we considered
most likely to have an interpretable effect on aquatic life [5,8,18-22]. We ultimately selected
12 metrics for use in the hierarchical cluster analysis (Table 2). The final 12 metrics included
9 used by Dhungel et al. [41] and 3 metrics characterizing different aspects of zero-flow
conditions: the mean number of zero-flow days per year and its coefficient of variation
(ZcntMn, ZentMnCV) and the mean duration of continuous zero-flow days across the
period of record (Meanzd_R).

Table 2. The 12 flow metrics used in the hierarchical cluster analysis. Abbr = abbreviation.

Flow Metric Description Abbr
1. Mean number of zero-flow days per year ZcentMn
2. Coefficient of variation of the mean number of zero-flow days per year ZentMnCV
3. Seven day moving average of minimum flow Q7min
4. Bank full flow BFF
5. Flood duration (mean number of days exceeding bank full flow) FD
6. Mean days to annual peak flow Pk_time
7. Mean duration of all zero-flow events across the record Meanzd_R
8. Mean days to 50% of total annual flow T50
9. Mean number of low-flow events per year LFE
10. Mean number of high-flow events per year HFE
11. Constancy: a unitless measure of uncertainty, higher C = high certainty throughout year C
12. Contingency: a unitless measure of seasonal uncertainty, higher M = high certainty by season M

Bank full flow was estimated as Qy 67, which is the discharge value that has a probability of exceedance of 1/1.67 from a lognormal
probability distribution fit to the annual maximum daily flow series.

2.6. Classifying Streamflow Regimes

Hierarchical cluster analysis has been frequently used to characterize streamflow
regimes [41-44]. For our analyses, we used Ward’s method of agglomerative hierarchical
cluster analysis [59]. This method produces a dendrogram that describes similarities among
sites based on the joint variation among sites in the metrics used in the classification. The
dendrogram can then be visually inspected to identify increasingly resolved and subtle
differences among classes as the number of branches increases [41-43]. We were primarily
interested in how well 3-5 classes partitioned variation in flow regimes, which represented
a trade-off between resolution (which will affect the accuracy and precision of biological
assessments), the accuracy in predicting class membership of ungauged reaches, and the
practical needs of water resource managers for a classification scheme that can be easily
communicated to stakeholders.

We also created 4 alternate classifications based directly on the percent of zero-flow val-
ues in the streamflow records for comparison with the cluster-based approaches (Table 1).
This independent threshold-based approach has been previously used to classify non-
perennial streamflow regimes in the arid southwestern USA [28]. For this approach, we
calculated both percent of zero-flow days (ZFD) across the record for each reach as well as
the percent of years across each reach’s record with at least one zero-flow day (ZFY). As
discussed above, we assumed that measures of ZFD and ZFY were not affected by differ-
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ences among reaches in the number and distribution of missing data in the partial-record
reaches. We then applied different thresholds to define three or four different classes for
both the ZFD and ZFY classifications. These thresholds were selected to create classes
that generally aligned with the flow characterization methods being considered to support
of bioassessments of southwestern USA reaches [16,28], which we also thought could be
(1) biologically relevant and (2) predictable from watershed attributes. ZFD thresholds
were set at 0% (the 120 perennial reaches), >0%, >2%, and >20% ZFD for a four-group
classification and at 0%, >0%, and >20% for a three-group ZFD classification. Thresholds
for the ZFY classifications were set to create two three-group classifications with class
thresholds of 0% ZFY (the same 120 perennial reaches), >0%, and >20% ZFY and another
with 0% (the same 120 perennial reaches), >0%, and >75% ZFY thresholds.

We also used RF regression models to assess if continuous variation in percent ZFY
and percent ZFD was predictably associated with variation in physicoclimatic conditions
across the study region. The rationale for these analyses was that if the models accounted
for a substantial portion of the variation in ZFY and ZFD, managers could use them to map
flow regimes based on any threshold of ZFY or ZFD that was appropriate to their specific
management needs.

2.7. Selection of Predictor Variables

We considered over 500 landscape and climate attributes as candidate predictor vari-
ables of both the streamflow-regime classes and the continuous variation in ZFDs and ZFYs.
Seventy-one of these attributes were obtained from the USEPA’s (United States Environ-
mental Protection Agency, Office of Water, Washington, DC, USA) StreamCat dataset [64],
which was built on the NHDPlusV2 geospatial framework. StreamCat includes geographic
descriptors such as latitude, longitude, and watershed area as well as watershed-level
attributes describing climate, vegetation, soil, and geomorphology, many of which are
known to be associated with flow generation and variation in the magnitude, frequency,
duration, timing, or rate of change of streamflow [7,40—44]. For example, StreamCat in-
cludes a topographic wetness index and a soil wetness index, both of which have been used
as predictors of runoff in hydrologic models [65]. We expected these watershed- and local
catchment-level attributes to be important predictors of flow-regime classes, particularly
the base flow index (BFI) [12,15,38]. The StreamCat BFI was generated through spatial
interpolation of USGS gauge-specific BFI calculations, where BFI represents the baseflow
volume/total streamflow volume as calculated through a combination of a moving mini-
mum flow (similar to the Q7min in Table 2) and a recession slope test [66,67]. StreamCat
data are available at two scales: local catchments and full-contributing watersheds, but our
variable selection procedure almost always selected predictors that were calculated for the
entire full-contributing watershed above the downstream boundaries of the NHDPlusV2
reaches on which gauges were located. The use of NHDPlus-associated predictors limited
the universe of stream reaches to which we could make predictions, i.e., the models cannot
make predictions to small headwater reaches that are not included in the NHDPlus.

Given the driving role of evapotranspiration and climate on streamflow patterns in
arid landscapes [23,39,45,46], several additional evapotranspiration and aridity indices not
available in StreamCat were calculated from 30 year, 4 km (1981-2010) mean air temperature
and precipitation PRISM (Parameter-elevation Regression on Independent Slopes Model,
prism.oregonstate.edu) data [68] and the modeled runoff index in StreamCat [64]. These
variables were combined through simple algebra [69]:

Long-term evapotranspiration (ET, mm) was calculated from PRISM precipitation
(Precip8110Ws) [64,68] and StreamCat Runoff (RunoffWs) [64] as:

ETmm = Precip8110Ws — Runoff WS @
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We followed Gardner et al. [70] to estimate regional potential evapotranspiration (PET)
from PRISM mean annual temperatures (Tmean8110Ws) [64,68] as:

PET = (1.2 x 10'°) x exp(-4620/(Tmean8110Ws +273)) )
We also followed Gardner et al. [70] to calculate an Aridity Index (PET_P) as:
PET_P = PET/Precip8110Ws 3)
and an Evaporative Index (ET_P) as:
ET_P = ETmm/Precip8110Ws 4)

We compiled additional watershed-level summaries of several climate variables [45,46,51]
including the average watershed snow-cover from the Modis-10A1 V6 Snow Cover Daily
Global 500 m product [71] and a county level drought-severity index from the National
Drought Mitigation Center [72].

We used ArcGIS (ESRI, Redlands, CA, USA) [73] to generate curvature variables
from a 30 m Digital Elevation Model (DEM) downloaded through Earth Explorer [74].
The ArcGIS curvature tool was used to calculate the second derivative of the DEM to
generate planar and profile curvature rasters. Slope curvature, describing the convexity or
concavity of the terrain, can affect runoff [38,65] through groundwater access [38,75] and
saturation rate of soil profiles in response to rainfall [15,34,65,76]. Minimum, maximum,
mean, and standard deviation of the perpendicular and parallel terrain curvature were
used as additional candidate predictors.

We selected 95 of the >500 variables as candidate predictors (Table S1, Supplemental
Materials). Predictors were eliminated if they lacked evidence of being associated with
either runoff generation, base-flow contribution, or zero-flow events. We also removed
predictors that were functionally redundant but calculated differently. In general, we
retained the predictors that were most easily calculated to facilitate repeatability in future
analyses. We also removed predictors that were missing from one or more of the 287 gaged
locations or that varied little across the study region.

We then used the VSURF function in R [59,77] as an objective way to identify the most
parsimonious set of predictors that produced the best model performance. VSURF uses RF
to apply a 3-step variable selection process to further eliminate redundancy and identify
the subset of predictor variables that produce the lowest out-of-bag errors for each model.
VSUREF will optimize variable selection based on either interpretation or prediction, and
we chose to optimize predictive accuracy.

2.8. Predicting Streamflow-Regime Classes and Continuous Variation in ZFDs and ZFY's

We used RF models to predict both class membership and the observed continuous
variation in ZFDs and ZFYs. RF models frequently perform better than many alternative
types of classifiers and regression models [59-61]. They are especially useful when there
are many predictor variables. RF models are also resistant to overfitting and automati-
cally incorporate interactions between predictor variables. RF models create hundreds
of classification (or regression) trees based on bootstrapped subsamples of the data and
assess model performance based on the overall out-of-bag (OOB, observations withheld
when building each tree) prediction error. For each classification model, we randomly
selected n = the smallest class size by applying the ‘sampsize’ and ‘strata’” arguments in the
RF algorithm. Balancing class sizes avoids inherent biases in over-predicting classes with
larger numbers of observations [78]. We used confusion matrices to evaluate the prediction
errors associated with each individual class in each classification. We used pseudo-r2
values to evaluate the amount of variance RF regression models explained in observed ZFY
and ZFD values.
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2.9. Mapping Flow-Regime Classes

As a case study, we used ArcMap to predict the flow regimes of the ~75,000 NHD
reaches in Arizona. The NHD (National Hydrography Dataset is a nationally-consistent,
digital, 1:100,000-scale map of the stream and river network in the USA (https://www.
usgs.gov /core-science-systems/ngp/national-hydrography). Reaches in the NHD are
defined as the stream segments between two confluences and flows are assumed to be
similar within a reach. We used local catchments (the hillslopes draining directly into each
reach) as mapping units rather than reaches to help visualize predictions.

3. Results
3.1. Hierarchical Classifications

We identified a total of five hierarchical levels of flow regimes from the hierarchical
cluster analysis that produced two, three, four, and seven nested classes of flow regimes
(Figure 3, Table 3). Class A reaches included the driest reaches in the dataset and exhibited
intermittent flood peaks associated with monsoonal rainfall (Figures 4 and 5). This class
had the absolute highest mean annual count of zero-flow days (ZcntMn, Figure 4), which
approached 300 days for Al reaches and ~150 days for A2 reaches. In comparison, Class
B reaches had ~75 zero-flow days. Class A reaches ranged from being largely ephemeral
with over 75% zero flow and no baseflow (A1) to exhibiting monsoonal flow signatures
(A2) with between 20 and 75% zero-flow days and some baseflow (Figure 5). Class A
reaches had flood peaks that were orders of magnitude higher and Q7min values that were
several orders of magnitude lower than in Class B. Some of these peaks were 30 orders of
magnitude higher than any other reach (Figure 5), but baseflows in Class A reaches were
at or near zero (Figure 4). Class A reaches also had a greater number of both high- and
low-flow events (HFE and LFE) (Figure 4). Most Class A1 reaches with over 75% zero-flow
days lacked seasonality, as quantified by high constancy (C) and low contingency (M) of
flow (Figure 5). Collectively these metrics describe reaches with more extreme differences
between high- and low-flow events than Class B reaches (Figures 4 and 5).

height
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Figure 3. The dendrogram produced by the hierarchical cluster analysis with the most resolved

seven-group classes shown. The number of reaches in each class were Al (39), A2 (53), Bla (36), B1bi
(60), B1bii (30), B2a (44), and B2b (25).
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Table 3. The percent of nonperennial (NP) reaches in each hierarchical class and general descriptions

of the flow regimes of the seven-group classification. P = perennial.

Class %NP Class %NP Class %NP Class %NP Class %NP Description
Aseasonal-NP
Al 100 Al 100 Al 100 Al 100 Ephemeral and flashy
A 100
A2 100 A2 100 A2 100 A2 100 Weal seasonal-NP
Wet winter-spring
Seasonal-NP
Bla 97 Bla 97 Rain and snowmelt
Summer dry
. Weak seasonal-P
B1 28 Blbi 0 Rain and snowmelt
B 38 B 38 Blb 0 Seasonal-P
Blbii 0 Rain and snowmelt
Summer dry
B2 58 B2 58 B2a 91 Aseasonal-NP
B2b 0 Aseasonal-P
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Figure 4. Density distribution plots of the metric values for each of the seven most resolved hierar-

chical classes (A1 to B2b). Plots for the different metrics are presented in the same order as given in

Table 2. Each panel’s dotted line represents the mean for all 287 streams. The bold intersecting line

for each distribution represents the mean for each individual class.
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Figure 5. Dimensionless reference hydrographs (archetypes) for the seven most resolved classes (Al to B2b). Day of year is
based on water year, i.e., October 1 = day of year 1. The red line and shading trace the mean percentiles of mean daily flow
values for each individual day of year calculated for each class across the full period of record. The black lines represent the

maximum and minimum mean daily flows for each class on each day of record. The number of reaches in each class were
Al (39), A2 (53), Bla (36), B1bi (60), Blbii (30), B2a (44), and B2b (25).

Class B reaches included a mix of perennial and nonperennial reaches (Figure 3)
characterized by seasonal variation in flow (Figures 4 and 5). This class was further
split into reaches with snowmelt (B1) and rain storm (B2) signatures (Figure 5). Class
B1 was further split into nonperennial (Bla) and perennial (B1b) reaches based on the
presence of zero-flow days (Figures 3-5). Class Bla reaches were 97% nonperennial, with
the highest ZcntMnCV values and some of the lowest mean zero-flow day durations
(Meanzd_R) (Figure 4). The rain storm Class B2 was similarly split into nonperennial (B2a)
and perennial (B2b) reaches (Figure 5).

3.2. Percent Zero-Flow Classifications

Both ZFY classifications included the same class of 120 perennial reaches by design
but differed in the number and size of nonperennial classes that were assigned. One ZFY
classification included 41 reaches ranging from >0 to 20% ZFYs and 126 reaches with
>20% ZFY. The other ZFY classification included 83 reaches ranging from >0 to 75% ZFY
and 84 reaches with >75% ZFY. The ZFY and ZFD classes were generally similar in the
distribution of reaches among classes.

Both ZFD classifications also included a class consisting of the 120 perennial reaches
but differed in the number and size of nonperennial classes. For the four-group ZFD
classification, one group included 37 reaches with >0 to 2% ZFD, which were reaches
predominantly from group Bla. Another class consisted of 43 reaches with >2 to 20% ZFD,
which contained a mix of reaches from A2, Bla, and predominantly B2a. The alternative
three-group ZFD classification combined these 37 and 43 (80) reaches into the >0 to 20%
ZFD class. The last class for both ZFD classifications consisted of 87 reaches with >20%
ZFD, which was almost exclusively class A reaches.
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3.3. Model Performance

Overall OOB prediction error for the RF classification models varied from 15 to 41%
(Tables 4 and 5), and pseudo-r? values varied from 50 to 58% for the two RF regression
models. In general, and as expected, overall prediction error increased as the number of
classes increased. Furthermore, class-specific prediction errors sometimes varied markedly,
i.e., some types of flow regimes were more difficult to predict than other types. Performance
of the models predicting the hierarchical-based reach classes varied both with the number
of classes and among classes (Table 4). These models had overall OOB errors of 15, 23, 24,
34, and 39% for the two- through seven-group classifications, respectively. The variation
between class-specific prediction errors became more pronounced as the number of groups
increased. There were no obvious trends in what types of classes were predicted with
greater or lesser accuracy. Overall model performance also varied across the ZFY and
ZFD classifications (30—41% error) (Table 5). In general, the ZFY- and ZFD-based class
models poorly predicted classes with intermediate values of ZFY or ZFD, exceeding 70%
and sometimes 80% in class-specific prediction error. The results of the ZFY and ZFD RF
regression models were consistent with results of the ZFY and ZFD threshold classification
models (Figure 6). These two regression models explained slightly more than 50% of
the variation in percent ZFY (r? = 0.54) and ZFD (r? = 0.52). However, the prediction
errors were sometimes relatively large. For example, the prediction errors associated with
any observed value could be as much as 30 or 40% of the actual values of ZFD and ZFY,
respectively (Figure 6).

Table 4. Confusion matrices for the two- to seven-group hierarchical classification models showing
model performance as out-of-bag (OOB) error. Classes with over 90% nonperennial reaches are
marked with a *. Classes with 100% perennial reaches are marked with a t. Observed classes are
rows, and predicted classes are columns.

Two classes (15% OOB)

A* B Error (%) Totals
A" 79 12 13 92
B 32 163 16 195
Three classes (23% OOB)
Al* A2 B Error (%) Totals
Al* 32 4 2 16 39
A2* 8 39 6 26 53
B 14 33 148 24 195
Four classes (24% OOB)
Al* A2* Bl B2 Error (%) Totals
Al* 29 4 2 3 24 39
A2* 7 36 2 8 32 53
B1 2 5 108 11 14 126
B2 7 13 5 44 36 69
Five classes (34% OOB)
Al* A2* Bla * Blb?t B2 Error (%) Totals
Al* 28 4 2 1 3 26 39
A2* 5 33 3 2 10 38 53
Bla* 1 4 19 11 1 47 36
Blb * 1 5 13 68 3 24 90
B2 6 16 1 4 42 39 69
Seven classes (39% OOB)
Al* A2*  Bla* Bilbi* Blbiit  B2a* B2b*t  Error (%) Totals
Al* 31 2 2 0 1 2 0 18 39
A2* 6 34 1 1 5 2 4 36 53
Bla* 1 4 17 6 6 0 2 53 36
Blb.i* 0 1 6 51 1 1 0 15 60
Blb.i 1 2 2 7 15 0 3 50 30
B2a * 5 12 0 3 3 13 8 70 44
B2b * 0 4 0 0 2 5 14 44 25
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Table 5. Confusion matrices for the four percent zero-flow day and percent zero-flow year threshold
classification models. P = perennial reaches (equal to 0% ZFY or ZFD); NPy>0-20 = > 0 but <20%
ZFY); NPy>20 = >20% ZFY); NPy>0-75 = >0 but <75% ZFY); NPy>75 = >75% ZFY); NPd>0-20 = >0
but <20% ZFD); NPd>20 = >20% ZFD); NPd>0-2 = >0, <2% (greater than zero, less than 2 percent
ZFD); NPd>2-20 = >2 but <20% ZFD). Nonperennial ZFY classifications were based on thresholds
first set at 20% ZFY and then at 75% ZFY for each of 287 reaches. Nonperennial ZFD classifications
were based on thresholds first set at 20% ZFD and then at two higher thresholds: 2% and 20% ZFD.
Model performance ranged from 24 to 37% OOB error. Observed classes are rows, and predicted
classes are columns.

Zero-flow year (ZFY) thresholds
20% ZFY (31% OOB)

P NPy > 0-20 NPy > 20 Error (%) Totals
P 88 20 12 27 120
NPy > 0-20 16 17 8 59 41
16 17 93 26 126

75% ZFY (30% OOB)

P NPy > 0-75 NPy > 75 Error (%) Totals
P 90 19 11 25 120
NPy > 0-75 25 44 14 47 83
NPy > 75 6 11 66 20 84

Zero-flow days (ZFD) thresholds

20% ZFD (34% OOB)

P NPd > 0-20 NPd > 20 Error (%) Totals
P 92 18 10 23 120
NPd > 0-20 24 32 24 60 80
NPd > 20 8 12 66 23 87
2% and 20% ZFD (41% OOB)
P NPd >0-2  NPd>2-20 NPd > 20 Error (%) Totals
P 80 20 11 9 33 120
NPd > 0-2 16 10 5 6 73 37
NPd > 2-20 8 6 18 11 58 43
NPd > 20 7 3 15 61 29 87
Zero Flow Day Zero Flow Year

25 50 75 100 0 25 50 75 100

Predicted

Figure 6. Plots of observed versus predicted values for the ZFY and ZFD regression models.
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3.4. Consistency in Selected Predictor Variables

A few predictor variables were consistently selected from the 95 predictor variables
across models (Table S2, Supplementary Materials). BFI was identified as the top predictor
in all but the hierarchical four-class model, which ranked longitude before BFI. Other top
predictors were related to location, topography, and climate. Other frequently selected
predictors included measures of streambed shape (e.g., ParCurveSTD), air temperature
(e.g., Tmax8110Ws), evapotranspiration (e.g., PET), and elevation (e.g., ElevWs). These pre-
dictors were also selected by the ZFY and ZFD models, along with additional dimensions
of streambed shape and landcover.

3.5. Flow-Regime Maps

The different predicted hierarchical-based reach classes tended to be geographically
organized across the state of Arizona (Figure 7). Most of the driest reaches (Al and A2)
were predicted to occur in the southwestern and northeastern parts of the state, whereas
the most perennial reaches were predicted to be largely confined to two mountainous areas
in the state: the most northwestern part of the state and the far east-central part of the state.
In general, the driest classes transitioned geographically into less severely nonperennial
reaches (class Bla), which transitioned into the mixed perennial /nonperennial class (B2),
which transitioned into perennial reaches (class Blb). By mapping different levels of the
hierarchical classification, the error inherent in modeling was apparent. For example,
the specific reaches predicted to be in a certain class (e.g., A2) differed for some reaches
depending on whether A2 was part of a three-, four-, or five-group classification. Although
the predicted spatial distribution of each class of reaches was broadly similar regardless
of the level of resolution used in the classification, the predicted class of specific reaches
could differ.

Flow-regime classes
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_— —)
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Major rivers e

I A @
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Figure 7. Maps of the state of Arizona showing the predicted locations of the three-, three-, four-, and five-group classes

derived from the hierarchical cluster analysis. Major rivers (blue lines) are superimposed.
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4. Discussion

Water resource managers currently lack the tools needed to assess the physical, chemi-
cal, and biological integrity of the majority of stream ecosystems in arid regions [4-6]. This
problem is especially severe for nonperennial reaches, which are understudied relative to
perennial reaches but which represent the vast majority of the stream networks in these
regions [12-17]. Knowledge of how physicochemical factors structure biological commu-
nities provides the basis for defining and identifying the reference conditions on which
assessments of individual waterbodies are based [1,3] and is thus central to successful
assessment and management programs.

Of the many naturally occurring physicochemical factors that can influence aquatic
life in streams, the flow regime is thought to be of paramount importance [5-10]. In arid
regions, variation in flow regimes is likely to be especially critical to aquatic life given that
a conspicuous dimension of these regimes is the extent to which flows completely cease—a
naturally occurring disturbance that has profound effects on the type of biota that can
persist in a reach [18-22]. Characterizing, or classifying, natural flow regimes in arid-region
streams (and hence their reference conditions) is therefore a critical need in the USA and
elsewhere [16,23-34]. Spatially sparse and temporally incomplete flow records typically
limit our ability to robustly describe the variability of naturally occurring flow regimes
in arid regions [17,23,47,48,58]. The lack of classification schemes beyond the traditional
division of perennial and nonperennial reaches has likely limited our appreciation of the
full diversity of ways that flow regimes may vary across these landscapes [4,24]. In this
study, we first showed that we could improve the spatial coverage of daily streamflow
data by estimating data that were missing from gauges with incomplete records. That
process, together with the inclusion of additional flow metrics characterizing different
aspects of zero flow, allowed us to explore several alternative classifications that may be
of use to water resource managers. Below, we address both the potential utility of these
classifications and factors that may limit their use, including our ability to predict where
they occur.

4.1. The Value of Creating Standard, Long-Term Synthetic Flow Records

Developing robust classifications of flow regimes requires data that cover the full
range of variability in flow. For arid regions, flow records should span a full range of both
nonperennial and nonperennial reaches [12-17], and more than one metric related to the
frequency, duration, and timing of zero flows are likely needed to describe differences in
their flow regimes [6,17,24-26]. By using RF models to estimate the daily flows occurring at
gauges with incomplete records from gauges with complete records, we greatly enhanced
our ability to characterize the spatial and temporal diversity of stream flows that occur
in the southwestern USA [17,28,47]. The majority (55%) of these models explained well
over 90% of the variation in daily flows that were recorded in the 197 gauges with partial-
records although, on average, flows in nonperennial reaches were predicted with slightly
less accuracy than those in perennial reaches (Table 1). Previously used approaches to
classify and predict flow regimes would have disregarded records from up to 145 gauges
in our study region because they would not have met data-quality criteria, e.g., they either
had less than 10-20 years of record, or they had data gaps greater than 5-10 years [47-49].
Furthermore, a majority of these 145 incomplete records fell within gauge-sparse arid
ecoregions in Arizona, New Mexico, and Texas, 50 of which had been excluded by Dhungel
et al. [41] in their analysis of the potential effect of climate change on flow regimes across
the conterminous USA. By creating synthetic records, we greatly enhanced our ability to
characterize variation across the region in all aspects of flow, especially those associated
with zero flow (ZFY, ZFD).

4.2. Beyond the Perennial-Nonperennial Dichotomy

Water resource managers in the southwestern USA are starting to realize that a simple
dichotomy of perennial and nonperennial reaches is unlikely to fully support management
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goals [e.g., 16,28,35], and it is becoming increasingly clear that reaches in the arid western
United States can differ substantially in their flow regimes. For example, the first split
in our hierarchical cluster analysis distinguished two classes, one of which (B =2/3rd
of the reaches) contained both nonperennial and perennial reaches. The other class was
wholly nonperennial (A). Class A was subsequently split into two nonperennial classes
(A1 and A2, Figure 3) based largely on number of zero-flow days, the magnitude of peak
flows, and presence of baseflow. These two A classes appear to be similar to two classes
identified by McManamay and DeRolph [43], who developed a flow-regime classification
that spanned the entire conterminous USA. The distinction between these two classes
may be critical from a management perspective because states like Arizona must identify
ephemeral reaches from other nonperennial reaches for regulatory purposes. It is unclear,
however, how tightly our ephemeral class (A1) matches definitions of ephemeral used by
different regulatory entities. These details notwithstanding, the identification of different
types of nonperennial reaches as shown here will likely be important in the development
and application of consistent regulatory policies designed to protect regulated waterbodies.
Our modeling and mapping of reach classes (Figure 7) is a step in that direction, especially
given that the prediction error of 16% for the most ephemeral (A1) reaches should represent
a reasonable level of uncertainty for at least initial screening purposes. Use of higher-
resolution DEMs and stream networks may also improve both classification and predictions.
Higher-resolution DEMs are becoming increasingly available [74], although comparable
higher-resolution digital stream networks are not yet widely available.

The presence of permanent flow, or its lack thereof, is one aspect of the flow regime,
and it may not always be obvious how it should be weighted when classifying flow regimes.
From the cluster analysis, pure perennial reach classes were unresolved until the 4th-level
(five classes) of the dendrogram, i.e., one of five classes (B1b). Further splits in the cluster
diagram were needed to resolve additional pure or nearly pure classes of nonperennial
and perennial reaches, e.g., the seven-group classification (Table 4), where three of seven
classes (Blb.i, B1b.ii, B2a) were perennial and four of seven classes (Al, A2, Bla, B2b)
contained 90-100% nonperennial reaches (Figure 3). However, the last classes formed,
nonperennial B2a and perennial B2b, had unreasonably high prediction errors, which
greatly compromises their potential utility. These two classes had highly similar overall
flow regimes (Figure 5) other than the presence (B2a) and absence (B2b) of zero flow, and
these two classes had a high chance of being misclassified as the other class (Table 4). The
overall similarities in their flow regimes could result in high rates of misclassification and
hence a failure to distinguish reaches that may be biologically different [18-20], which
would lessen the effectiveness of many bioassessment methods [21,79].

We must also emphasize that the classifications that emerged from our analyses are
dependent on the specific flow metrics we used to create classes. The metrics used in
the hierarchical classification and the thresholds used to define ZFD and ZFY classes
were guided by our general ecological knowledge of the importance of flow regimes to
aquatic life [19,41]. For example, zero-flow events represent severe disturbances that
can reset biological communities, and the number, timing, and duration of such events
should influence the magnitude and predictability of the recovery dynamics of stream
communities [4,6,17,22]. We also point out that zero-flow measures at a gauge do not
necessarily indicate that an entire reach is dry—pools may still be present that can provide
important refugia to aquatic biota [17]. However, until these classifications are tested to
assess whether they are actually associated with variation in valued ecological attributes,
we do not yet know that the types of flow regimes we identified will be useful or how
many classes will be needed. Managers ultimately need classifications that allow enough
partitioning of biological variation to produce indices that are precise enough to detect
ecologically important impairment but do not have so many classes that they are difficult
to communicate and unwieldy to use. Assessing the strength of these relationships is an
active area of research [4,6,10,28,79]. Use of a different set of flow metrics would likely
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lead to different types and numbers of classes [10], and it is possible that such alternative
classifications might be as, or more, useful than the ones developed here.

4.3. Predictive Variables and Prediction Errors

Ideally, predictive models will both perform well (accurate and precise) and be inter-
pretable in terms of what physicoclimatic factors are most important in producing different
flow regimes. In this study, both overall and class-specific prediction error rates varied
considerably. We observed an expected tradeoff between number of classes and prediction
error, which can be used to inform recommendations regarding the practical use of specific
classification schemes. If we assume that 25% error is tolerable to water resource managers,
our results imply that no more than four metric-based classes will be useful to managers
and that none of the zero-flow based classifications would be acceptable. Moreover, in the
four-group metric-based classification, the fact that only two classes were predicted with
<25% error implies that classification may be of limited utility. These error rates do not
seem to be unique to our study. For example, Dhungel et al. [41] reported error rates that
ranged from 14 to 43% for an eight-group classification, with the most error in small non-
perennial reaches and the least error in small perennial reaches. In contrast, McManamay
and DeRolph [43] report overall prediction errors of ~5 to 34% for classifications based on 2
to 30 hierarchically-defined flow-regime classes across the entire conterminous USA. They
did not report class-specific error rates. Their analyses did include three classes of reaches
in their 30-group classification that they described as intermittent flashy, but based on their
maps, only two of these reach classes appear to exist in the southwestern USA. We expect
that the higher error rates that we observed in our study occurred because our classification
of southwestern reaches was much more resolved because of the increased coverage and
length of nonperennial reach gauge records. It appears that we can predict the ends of
the ephemeral to perennial continuum reasonably well, but our models had difficulty
distinguishing reaches that are more variable in the number of zero-flow days from year to
year. It is also possible that more spatially resolved predictors could improve predictions.
We used 30-m DEMs to characterize most of our predictors. LIDAR (Light Detection and
Ranging)-based mapping by the USGS with a resolution of 1-3 m is becoming increasingly
available, which may improve predictions.

We also point out that a specific reach could be predicted to be in different classes
depending on the number of other classes used in the classification (Figure 7). These
differences occurred because each model (two-group, three-group, etc.) differed somewhat
in class-specific errors, i.e., the classification itself affected modeling error. This observation
may be an under-appreciated aspect of flow-regime modeling of which researchers and
mangers need to be aware.

Empirical models can perform poorly if predictor variables that represent important
drivers of streamflow patterns are missing from the models. We attempted to ensure
that the predictor variables we used represented the range of physicoclimatic controls on
flow regimes expected to occur in arid regions. The specific variables that the VSURF
procedure identified as optimal sets of predictors in the models were generally similar
across classifications and interpretable in terms of their likely mechanisms. For example,
BFI, which represents the slowly moving source of streamflow [38,80,81], was consistently
ranked as a top predictor (Table S2, Supplementary Materials), likely due to its clear linkage
to the streamflow patterns themselves. However, it may be unlikely that prediction errors
can be substantially improved by incorporating additional predictor variables, and we
suspect that flow regimes of individual reaches in arid regions may be inherently difficult
to predict because physicoclimatic conditions and streamflow generation may not be as
tightly coupled in arid regions as they are in more mesic regions. The physical controls
on streamflow response in arid regions are typically related to intermittent monsoonal
climate patterns, low annual precipitation [15,17,39,41], comparatively high annual rates
of potential evapotranspiration [45,46,82], and shallow bedrock, leading to lower annual
baseflows and often irregular patterns of zero flow [15,34-36]. As a result, rainfall and



Water 2021, 13, 380

19 of 23

runoff are often poorly correlated and have nonlinear dependencies on antecedent condi-
tions [23,55,83]. Aryal et al. [55] found that, similar to other studies in semi-arid regions,
streamflow patterns were much more muted than precipitation patterns, the spatial distri-
bution of streamflow did not correlate with the spatial pattern of precipitation, and there
was no significant correlation between the annual number of zero-flow days and days with
precipitation, or between catchment area and mean annual or seasonal runoff.

5. Conclusions

Ultimately, any useful classification of streamflow regimes must either generate new
understanding of the processes that influence stream flows or help managers identify
reaches that differ with respect to their management objectives. Our study focused on
developing classifications of streamflow regimes that would allow resource managers to
more fully characterize the diversity of flow regimes that occur in arid landscapes. For
example, the Arizona Department of Environmental Quality (ADEQ, Phoenix, Arizona,
USA) has estimated that approximately 90% of stream length across Arizona may no longer
be considered as Waters of the United States (WOTUS) under the USEPA Navigable Waters
Protection Rule of 2020 and hence will not be protected under the Clean Water Act (personal
communication, Patrice Spindler, ADEQ). This new rule defines ephemeral waterbodies as
nonjurisdictional under the Clean Water Act, which affects Arizona’s universe of WOTUS
and all water quality management programs. In Arizona, flow-regime map updates at
the state level and to the NHD have been ongoing; however, flow data are sparse for
ephemeral and intermittent reaches, so updates to these waterbodies is incomplete at best
and grossly inaccurate at worst [35]. The flow-regime modeling described here provides a
tool for identifying where ephemeral and other types of reaches likely occur, when other
data are lacking. These flow-regime data will help with WOTUS determinations regardless
of what specific criteria are used to define WOTUS, and they should provide another tool
for identifying flow regime, designated uses, and appropriate standards applications.

Classifications that extend beyond the traditional dichotomy of perennial and non-
perennial reaches are almost certainly needed to support developing programs tasked with
assessing whether reaches are meeting physical, chemical, and biological water quality
standards. At a minimum, our study showed that it is possible to distinguish a subset
of nonperennial reaches that are ephemeral and likely differ biologically from both other
nonperennial and perennial reaches. An equally important goal is to better understand
what level of resolution in flow-regime classifications is needed to best support developing
bioassessment programs. Our study adds to a growing body of knowledge that is needed to
address that question for stream ecosystems in the arid southwestern USA and elsewhere.
We also need to recognize that climate change is causing flow regimes to change in the
arid southwestern USA and elsewhere [84]. An important assumption when developing
flow-regime classifications for use in bioassessment is that the data used to create the
classifications will adequately represent future flow regimes. Climate has changed in the
southwestern USA in recent decades, and we observed drying trends in many of the flow
records that we compiled. How to parse the effects of natural variation in flow regimes
on stream ecosystems from those caused by climate change represents a major research
challenge moving forward.
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1/13/3/380/s1, Table S1: List of 95 watershed, catchments, and streambed profile attributes mined
and calculated from available sources. Table S2: Lists of predictors (with source) that were selected
by the VSURF R package for the five hierarchical classification models, the four zero-flow day and
zero-flow year models, and the continuous zero-flow days and zero-flow years regression models.
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