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Abstract: High–arsenic (As) groundwater poses a serious threat to human health. The upper and
middle reaches of the Yellow River are well–known areas for the enrichment of high–arsenic ground-
water. However, little is known about the distribution characteristics and formation mechanism
of high-As groundwater in the lower reach of the Yellow River. There were 203 groundwater sam-
ples collected in different groundwater systems of the lower Yellow River for the exploration of
its hydrogeochemical characteristics. Results showed that more than 20% of the samples have ar-
senic concentrations exceeding 10 µg/L. The high-As groundwater was mainly distributed in Late
Pleistocene–Holocene aquifers, and the As concentrations in the paleochannels systems (C2 and
C4) were significantly higher than that of the paleointerfluve system (C3) and modern Yellow River
affected system (C5). The high-As groundwater is characterized by high Fe2+ and NH4

+ and low
Eh and NO3

−, indicating that reductive dissolution of the As–bearing iron oxides is probably the
main cause of As release. The arsenic concentrations strikingly showed an increasing tendency as
the HCO3

− proportion increases, suggesting that HCO3
− competitive adsorption may facilitate As

mobilization, too. In addition, a Gibbs diagram showed that the evaporation of groundwater could
be another significant hydrogeochemical processes, except for the water–rock interaction in the study
area. Different sources of aquifer medium and sedimentary structure may be the main reasons for
the significant zonation of the As spatial distribution in the lower Yellow River.

Keywords: arsenic; paleochannels; lower Yellow River; groundwater; reductive release

1. Introduction

Naturally high-As (>10 µg/L) groundwater is distributed worldwide, including Viet-
nam, India, Bangladesh, Thailand, China, USA, Argentina, and Mexico, among others [1].
Arsenic is a notorious toxicant and carcinogen that causes serious illnesses, including lung
and skin cancer [2], and the drinking water guideline value for As is 10 µg/L according
to the World Health Organization [3]. The mechanisms of As release into groundwater
mainly include reductive dissolution of As–bearing iron oxide minerals, arsenic desorption
in high pH conditions, bicarbonate and phosphate competitive adsorption with arsenic,
and oxidation of pyrite [4–9].

A lot of research shows that the paleochannel aquifers of alluvial plains are subject to
As contamination in groundwater, such as the Red River [10,11], Mekong River [12,13], and
Ganges River [14,15] in South and Southeast Asia, and the Yellow River [16,17] and Yangtze
River [18,19] in China. In the Red River delta plain, areas with high-As groundwater
(10–810 µg/L) are distributed in a 20-km-wide band along the NW–SE boundary of the
plain, which is consistent with the location of the Red River paleochannels (9 ka B.P.) [20].
The paleochannel aquifers are characterized by high permeability and reductive conditions.
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McArthur et al. (2008) suggested that the paleointerfluvial aquifers were unpolluted
because of protection by the impermeable paleosol from the downward migration of
organic matter that drives As reductive release in the Bengal plain [14].

The Yellow River is the second largest river in China and high-As groundwater has
been widely found in the mid-upper reaches of the Yellow River [21–23]. Investigations
showed that the spatial variation in groundwater As in the Hetao Basin and Yinchuan Basin,
located in the mid-upper reaches of the Yellow River, is closely related to the formation
of the swing zone of the Yellow River paleochannels since the Late Pleistocene [24,25].
Vertically, high As concentrations mainly occur in shallow aquifers, with depths <40 m in
these zones. Cao et al. (2018) found that the concentration of groundwater As has a positive
correlation with the swing intensity of the paleo-Yellow River [24]. Nevertheless, the
difference in As concentration in groundwater between the paleochannels and paleointer-
fluves has not been assessed. The lower Yellow River is famous for its high loose-sediment
content and frequent siltation, burst, and migration, which is distinctive compared with
other rivers. From the Late Pleistocene to Early Holocene, multiple paleochannels were
formed with climate change [26]. However, the distribution characteristics of groundwater
As in the lower Yellow River and the role of the paleochannels on it are still unknown.
Shallow groundwater is the primary water supply for agricultural irrigation in the study
area. High concentrations of arsenic pose a serious threat on local water safety.

Therefore, a typical profile was selected in the lower Yellow River, based on the
regional hydrogeological conditions, to:

(1) investigate the spatial distribution of As in shallow groundwater;
(2) explore the hydrogeochemical characteristics and the formation mechanisms of

high-As groundwater in the lower Yellow River

2. Materials and Methods
2.1. Study Area

The study area is located in the alluvial plain of the lower Yellow River, bounded by
the modern Yellow River in the south, Bohai Sea to the east, and Taihang Mountain to the
west (Figure 1). With a warm temperate continental monsoon climate, this region has an
average annual rainfall of 563 mm, far less than the average evaporation of 1500–1900 mm.
The Yellow River flowing through the study area is the second largest river in China, with
a length of 5464 kilometers.

Originating from the northern foothills of the Bayan Har Mountain on the Qinghai–
Tibet Plateau, the Yellow River flows through the Loess Plateau in the middle reaches,
the vast North China Plain, and finally into the Bohai Sea (Figure 1). The paleo-Yellow
River, which carried a large amount of loose sediment, frequently changed its flow path
in the low-lying North China Plain [27]. The shallow buried paleochannels in the lower
Yellow River was mainly formed from the Late Pleistocene (Last Glacial Maximum) to the
Early Holocene (25~7.5 ka BP) when the climate was cold and dry and the sea level was
low [26]. During this period, the ancient Yellow River swung, eroded, and cut the bottom
clay layer, forming a cut valley with a thickness of 5–20 m, and then quickly deposited.
In the mid–Holocene (7.5–3.0 ka BP), the climate became warm and humid, and the river
level was higher than the sea level, causing a large transgression. The paleochannels was
covered by gray–black silt and clay containing a lot of organic matter (Figure 2).
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Figure 1. Locations of the study area and arsenic concentration distribution in the different groundwater systems in the
lower Yellow River. C2 is the southern Neihuang–Guanxian–Ningjin paleochannel system; C3 is the Fuyang–Gaotang–
Yangxin paleointerfluve system; C4 is the Liaocheng–Linyi paleochannel system; C5 is the modern Yellow River affected
zone system.

According to the “Atlas of Groundwater Sustainable Utilization in North China
Plain” [28], the groundwater system of the Lower Yellow River plain can be divided into
six groundwater subsystems (Figure 1). The division of the groundwater systems is based
on sediment lithology, heavy mineral, aquifer structure, permeability, isotopic age, and
hydrochemical composition. The impermeable zone of clayey soils is identified as the
boundary dividing the paleochannels and paleointerfluves. The study area involves four
groundwater subsystems, namely, the southern Neihuang–Guanxian–Ningjin paleochannel
system (C2), Fuyang–Gaotang–Yangxin paleointerfluve system (C3), Liaocheng–Linyi
paleochannel system (C4), and modern Yellow River affected zone system (C5). The
C2 and C4 paleochannel aquifers are composed of fine sand and silty–fine sand with a
thickness of 10~20 m and the hydraulic conductivity here is ~2.5–10 m/d. Aquifers of the
paleointerfluve (C3) and modern Yellow River affected zone (C5) are characterized by a
thin fine–sand layer, with hydraulic conductivities <2.5 m/d. The general direction of the
regional groundwater flow is from southwest to northeast.
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2.2. Groundwater Sampling and Analysis

Two hundred and three groundwater samples were collected from irrigation wells
with depths ranging from 6 m to 50 m, in May to July 2015 (Figure 1). Before sampling,
the well was purged at least half an hour to ensure that the groundwater samples are
representative of the in–situ conditions. The WTW–Multi–340i/SET multi-parameter
measuring instrument (Germany) was used to monitor the groundwater temperature, pH
level, and redox potential (Eh). Meanwhile, a portable spectrophotometer (DR2800, HACH)
was used to measure the Fe2+ and NH4

+–N concentrations on site. Groundwater samples
were collected and then filtered by 0.45–µm membrane filters in the field. Samples for trace
element analysis were acidified to a pH < 2 using nitric acid, and the unacidified samples
were used for the major ions analysis. All samples were stored in portable ice–filled coolers
during transportation and preserved in a refrigerator at 4 ◦C in the laboratory until analysis.
After sampling, the samples were immediately transported to the laboratory and analyzed
within 48 hours.

All the chemical component measurements were completed at the Water Quality
Analysis Laboratory of the Institute of Hydrogeology and Environmental Geology. Total
dissolved solids (TDS) were measured through gravimetric analysis. The major cations
(Ca2+, Mg2+, Na+, and K+) and total As were tested by inductively coupled plasma–mass
spectrometry (Agilent 7500ce ICP–MS), with a detection limit of 1.0 µg/L for As. The
major anions (SO4

2−, Cl−, and NO3
−) were determined via ion chromatography (DX–

120, Dionex). Besides, concentrations of HCO3
− were tested by acid–base titration. The

analytical precisions of both the ICP–MS and DX–120 equipment were less than 5%, which
refers to the standard deviation of the results of the repeated analyses. The ion charge
imbalances were <5% among most groundwater samples. Data of the groundwater samples
analysis are presented in Table S1 and descriptive statistics of the hydrochemical parameters
in different groundwater systems are shown in Table 1. The concentration values below
the detection limit were replaced by the detection limit before the statistical analysis.
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Table 1. Statistical summary of the major physical–chemical parameters of the groundwater in the study area.

pH Eh TDS Ca2+ Mg2+ Na+ K+ HCO3− SO42− Cl− NO3− NH4
+ Fe2+ As

mV mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µg/L

Total (n = 203)
Min 6.3 –173.0 360.1 28.1 16.9 34.0 0.3 270.9 3.0 13.4 <0.01 <0.03 <0.04 <1.0
Max 8.5 373.0 8692.5 639.7 713.6 1775.0 170.0 1295.7 3108.6 2428.9 68.4 5.1 12.8 105.0

Mean 7.5 38.3 1889.3 137.4 140.0 341.5 4.1 729.5 478.2 390.3 2.7 0.2 1.0 10.1
Median 7.4 19.2 1445.2 118.7 111.6 256.8 1.1 715.1 290.1 261.4 0.4 0.1 0.1 1.0

SD 0.5 95.7 1413.2 83.2 104.5 292.3 16.1 197.2 539.9 394.9 8.6 0.5 1.9 18.1
CV 0.1 2.5 0.7 0.6 0.7 0.9 3.9 0.3 1.1 1.0 3.2 2.5 1.9 1.8
C2 (n = 103)
Min 6.3 –130.5 638.9 28.9 36.3 61.0 0.4 412.3 16.6 13.4 <0.01 <0.03 <0.04 <1.0
Max 8.2 373.0 8692.5 462.1 713.6 1700.0 170.0 1295.7 3108.6 2297.6 56.0 5.1 12.8 88.0

Mean 7.2 34.3 2250.6 151.6 170.0 412.0 4.5 787.6 616.3 473.9 2.34 0.2 1.4 10.4
Median 7.1 14.8 1937.8 136.9 131.2 300.0 1.2 771.5 420.6 368.7 0.4 0.1 0.3 1.0

SD 0.3 97.3 1520.3 80.4 114.6 318.0 19.7 187.2 621.3 410.6 7.4 0.5 2.5 17.6
CV 0.05 2.8 0.7 0.5 0.7 0.8 4.4 0.2 1.0 0.9 3.2 2.6 1.8 1.7
C3 (n = 30)

Min 7.0 –173.0 616.1 40.7 50.6 44.5 0.3 429.9 3.0 24.3 <0.01 0.08 <0.04 <1.0
Max 8.5 266.0 8126.0 639.7 572.2 1775.0 91.3 1071.9 2525.5 2428.9 32.0 0.7 4.4 34.0

Mean 7.6 79.9 1955.1 124.6 139.8 379.5 4.7 711.9 513.3 412.6 2.28 0.2 0.5 5.0
Median 7.4 105.5 1407.2 94.2 109.0 296.0 0.9 695.0 310.9 241.9 0.4 0.1 0.1 1.0

SD 0.5 96.3 1604.3 108.9 102.6 345.6 16.3 174.1 569.0 486.9 6.0 0.2 1.0 8.9
CV 0.1 1.2 0.8 0.9 0.7 0.9 3.5 0.2 1.1 1.2 2.6 1.0 1.8 1.8
C4 (n = 56)

Min 6.9 –141.0 580.5 28.1 27.3 60.0 0.3 290.1 27.6 24.7 <0.01 0.09 <0.04 <1.0
Max 8.5 224.0 4638.5 327.3 352.9 800.0 45.5 1192.7 1027.9 1379.1 68.4 4.3 4.1 105.0

Mean 7.9 32.9 1308.9 119.2 91.3 226.0 3.1 659.5 263.7 246.6 2.5 0.2 0.7 13.3
Median 7.9 19.0 1160.0 112.3 79.8 202.0 1.1 635.1 214.4 186.8 0.4 0.1 0.1 1.0

SD 0.4 93.8 681.1 60.6 51.7 133.0 8.2 186.7 203.4 231.2 9.6 0.6 1.0 23.0
CV 0.1 2.9 0.5 0.5 0.6 0.6 2.6 0.3 0.8 0.9 3.8 2.5 1.4 1.7
C5 (n = 14)

Min 7.0 –122.0 360.1 51.4 16.9 34.0 0.3 270.9 33.2 32.9 <0.01 0.10 <0.04 <1.0
Max 8.1 94.0 6099.0 414.9 467.3 935.0 22.3 993.4 1569.5 1490.0 45.0 0.1 2.8 27.0

Mean 7.6 0.2 1412.4 133.2 114.5 203.2 4.0 619.4 244.4 302.1 6.9 0.1 0.4 5.8
Median 7.6 0.0 909.3 106.6 84.5 113.8 1.0 602.6 102.3 133.3 0.4 0.1 0.0 1.0

SD 0.3 51.3 1427.0 98.0 107.4 237.1 7.3 210.9 381.2 395.8 15.2 0.0 0.9 8.7
CV 0.04 269.0 1.0 0.7 0.9 1.2 1.8 0.3 1.6 1.3 2.2 0.0 2.1 1.5

SD: standard deviation; CV: coefficient of variation; CV = SD/average.

3. Results and Discussion
3.1. General Groundwater Chemistry

The groundwater pH values ranged between 6.3 and 8.5, which indicates a neutral–to–
weak alkaline environment (Table 1).

The results showed that the TDS concentrations widely varied between 360 mg/L
and 8693 mg/L. The cation concentrations were dominated by Na+, followed by Mg2+,
Ca2+, and K+. The average concentrations of them were 342 mg/L, 140 mg/L, 137 mg/L,
and 4.1 mg/L, respectively. The anions are dominated by HCO3

− with concentrations
varying between 271 and 1296 mg/L, far over SO4

2− and Cl−(Table 1). As shown in the
Piper diagram (Figure 3), the figures appeared relatively clustered in the C2, C3, and C4
groundwater systems. The groundwater mainly comprises the Na–Mg–HCO3 type in
these three zones. In addition, the distribution of samples was relatively spaced in the C5
groundwater system, with the water types of Na–Mg–HCO3 or Ca–Mg–HCO3.

Groundwater Eh values varied from –173 mV to 373 mV (average 38.3 mV), and the
CV value of Eh was 2.5, higher than other parameters, indicating frequent changes in
the redox condition in the groundwater. Similar to the Eh values, the concentrations of
other redox–sensitive parameters, such as Fe2+, NO3

−, and NH4
+, varied significantly

(Table 1). The highest concentration of Fe2+ was observed in C2, followed by C4, C3, and
C5. The concentrations of NH4

+ in the four groundwater systems were C4 > C2 > C3 >
C5. The NO3

− concentrations showed an opposite trend, which is C5 > C4 < C2 > C3. The
variations in the Eh values and Fe2+, NH4

+, and NO3
− concentrations reflect the changes

in the redox environment in the different aquifers.
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3.2. Spatial Distribution of the Groundwater As

Arsenic concentrations ranged between <1 and 105 µg/L in shallow groundwater,
with an average of 10.1 µg/L. More than 20% of the groundwater samples had As con-
centrations exceeding the World Health Organization’s drinking water guideline value of
10 µg/L. Figure 1 shows the spatial distribution of arsenic in the groundwater is highly
heterogeneous. High–As groundwater mainly occurs in the paleochannels (C2 and C4),
while the concentration of As in the paleointerfluve (C3) and modern Yellow River affected
zone (C5) is relatively low (Figure 4). The average concentration of As was C4 > C2 > C5 >
C3, i.e. 13.3 µg/L, 10.4 µg/L, 5.8 µg/L, and 5.0 µg/L, respectively. The standard deviation
of the As concentration was 23.0, 17.6, 8.9, and 8.4 in the groundwater systems C4, C2, C3,
and C5, respectively. It shows that dispersion of the As concentration is significantly higher
in C4 and C2 than C3 and C5. In addition, the change in As concentration appears to be
depth–dependent: more high-As samples (>10 µg/L) were distributed in late Pleistocene
aquifers, with a depth of 20–35 m, and the over–standard rate of the As was as high as
32.9%, with a maximum of 105 µg/L (Figure 5). Seen from Figure 2, the sand content is high
in the C2 and C4 paleochannels aquifers between 20 and 35 m. The high permeability of
the aquifers is contributed to the migration of dissolved organic matter and the water–rock
interaction, which would affect arsenic mobilization [14,29]. In Holocene aquifers with
depths <20 m, only 12.0% of the groundwater samples had arsenic concentrations above
10 µg/L, and the maximum was 81.0 µg/L.
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3.3. Formation Mechanisms of High–Arsenic Groundwater
3.3.1. Control of Reduction Conditions

The concentrations of total As and Fe2+ across the different groundwater systems
showed the same variation trends, which were opposite to that of the Eh values (Figure 6),
indicating that the redox condition is the key controlling factor of As mobilization in the
study area. The similar variations observed for As and Fe2+ indicates that arsenic release
is possibly related to the reduction of iron oxyhydroxides [30]. Biogeochemical redox
processes controls the release or sequestration of inorganic components in groundwater,
which induces the following reduction sequence: O2, NO3

−, Mn(IV), As(V), Fe(III), and
SO4

2− [31].
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Seen from Figure 7 high As concentrations are mainly observed in groundwater with
low Eh values (<0) and NO3

− concentrations (<1.6 mg/L), indicating that the reduction of
O2 and NO3

− was almost completed in the high-As groundwater. A large amount of O2
and NO3

− is consumed along the long groundwater flow path and the Holocene sandy clay
limits the infiltration of dissolved oxygen and NO3

− from surface water and precipitation
to groundwater, resulting in an insufficient supply. Thus, As(V) and Fe(III) are easily used
as electron acceptors for microbial degradation, causing high As and Fe2+ concentrations in
groundwater. In addition, the positive correlation between As and Fe2+ (Figure 7) indicates
that reductive dissolution of As–bearing Fe(III) oxyhydroxides is probably the main cause
of As release into groundwater [15,32]. The reduction is generally induced by microbial
degradation of organic matter in the aquifer, where SO4

2− is reduced to S2− and the
HCO3

− concentration increases [33]. Therefore, the SO4
2−/HCO3

− meq ratio is often used
to indicate the degree of reductive conditions in high-As groundwater [24]. In Figure 7,
most high-As groundwater samples have an SO4

2−/HCO3
− ratio <1, indicating that a

strong reducing environment is conductive to enrichment of As in groundwater of the
lower Yellow River. The SO4

2− reduction has also been found in high-As groundwater of
the inland basin and coastal aquifers [34,35].

3.3.2. Competitive Desorption of As

Arsenic release induced by bicarbonate competition may be another important mech-
anism, which has been proved by lots of laboratory experiments [36–38]. In this study
area, HCO3

− is the dominating anion with average concentrations of 729.5mg/L, which
significantly exceeds SO4

2− and Cl−. HCO3
− in groundwater may have multiple sources,

including dissolutions of calcite and dolomite and degradation of organic matter [39]. Due
to the high solubility and stability of Cl−, HCO3

−/(HCO3
−+Cl−) was used to evaluated

the HCO3
− dominance and reduced the influence of salinity [40]. According to Figure 8,

the As concentration shows a tendency of a significant increase as the HCO3
− proportion

increases, which indicates that As release is related to high HCO3
− concentrations. A

significant correlation between As and HCO3
− has been observed in groundwater of the

Ganges plain [41], Hetao Basin [42], and Guide Basin [22]. Studies suggested that the
HCO3

− ion can substitute arsenate from the surface sites of iron oxides, leading to arsenic
mobilization [43–45]. Thus, HCO3

− competitive sorption can be regarded as one possible
mechanism to mobilize As in bicarbonate–dominated reductive groundwater of the lower
Yellow River.
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3.3.3. Influences of Evaporation on Arsenic Concentration

The Gibbs diagram, which was plotted by the relation of TDS versus the concentration
ratio of Na+/(Ca2++Na+), was used to assess the principle hydrochemical processes of the
groundwater in the lower Yellow River. According to Figure 9, the high-As groundwater
was mainly located between the rock weathering domain and evaporation domain, indicat-
ing that the hydrochemical compositions were influenced by evaporation except for the
water–rock interaction. The effect of evaporation on arsenic accumulation in groundwater
has been reported in many low-lying plains, such as the eastern Indus Plain [46], the Oka-
vango Delta of Botswana [47], and Nazas and Aguanaval Rivers plain [48]. In the study
area, the burial depth of the shallow groundwater table ranges between 2.0 m and 4.0 m
and the hydraulic gradient is <0.3‰, which is conducive to the evaporation of shallow
groundwater [28,49]. The high-As groundwater is characterized by high TDS and the
maximum of TDS concentration is 8693 mg/L. On the one hand, high evapotranspiration
rates could effectively concentrate As and other solutes. On the other hand, evapotran-
spiration leads to pH and salinity increases, in turn inducing the desorption behavior of
As on mineral oxide surfaces [47]. In general, isotopic evidence should be used in further
research to support the control of evaporation on arsenic concentration.
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3.4. Why Does As Distribution Show Obvious Zonation

A significant zonation of high-As groundwater is observed in the lower Yellow River.
The high As samples are mainly distributed in the paleochannel aquifers (C2 and C4) than
paleointerfluve aquifers (C3) and modern Yellow River affected aquifers (C5). Several
reasons help to explain this characteristic. Sources of aquifer particles is one possible reason.
An estimated 95% of the fluvial deposits in the lower course of the Yellow River derive
from loess in the middle reaches [50]. Investigations show that the arsenic content in Malan
loess, distributed in the middle reaches of the Yellow River, reach 23–30 µg/g, higher than
the arsenic background (median: 9.2 µg/g) in Chinese soil. In addition, the arsenic in loess
mainly exists in the adsorbed (37.76%) and iron–manganese combined states (36.15%) [51].
It would provide the material sources for groundwater arsenic in the lower paleochannels.
Deposit structure may be another key factor. In this study area, the land surface was
exposed during the last low stand of the sea level in the Late Pleistocene, cut by the paleo-
Yellow River, and now buried by Holocene sediments. Arsenic contamination has been
found to be significantly associated with the overlying Holocene sediments, which are
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rich in organic matter [52–54]. Microbial reduction of Fe(III) and As(V) need a supply
of available organic carbon [55]. According to Figure 2, the paleochannel aquifers (C2
and C4) consist of thick layers of sand with a high permeability, vulnerable to downward
migration of dissolved organic matter, while impermeable clay in the interfluvial areas
(C3 and C5) would strongly restrict groundwater flow and solutes transport [14]. Thus,
groundwater systems C2 and C4 show a reductive condition with low Eh values that
is characterized by high concentrations of Fe2+ and As and a low NO3

− concentration,
compared with groundwater systems C3 and C5. A similar pattern was found in the
Meghna paleochannels [56] and Red River paleochannels [20,57]. A further exploration of
the lithological and biogeochemical processes of the different groundwater systems would
contribute to a convincing explanation of this assumption.

4. Conclusions

The spatial distribution of As in the groundwater showed a significant zonation.
High–As groundwater mainly occurred in paleochannel aquifers (C2 and C4) with a high
permeability, compared with the paleointerfluve aquifer (C3) and modern Yellow River
affected zone. Vertically, high-As groundwater mainly occurred in the Late Pleistocene–
Holocene aquifers, with a depth of 20–35 m. Redox condition is the key controlling factor
of As mobilization in the study area. Across these four groundwater systems, the concen-
tration variation trends of the As and Fe2+ was basically the same, which was opposite to
the variation trend in Eh values. Reductive dissolution of the As–bearing iron oxides is
probably the primary mechanism of As release in the groundwater. The strong reducing
conditions in the C2 and C4 groundwater systems are conductive to As release, compared
to the C3 and C5 groundwater systems. In addition, HCO3

− competition adsorption
and evaporation of groundwater also have some influence on the As concentration in
shallow groundwater. Although this study revealed the distribution characteristics and
influence mechanisms of As in groundwater, it is still weak on evidence, which needs
further investigation by experimental studies.
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