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Abstract: Benthic macroinvertebrates are among the most used biological quality elements for assess-
ing the condition of all types of aquatic ecosystems worldwide (i.e., fresh water, transitional, and
marine). Current morphology-based assessments have several limitations that may be circumvented
by using DNA-based approaches. Here, we present a comprehensive review of 90 publications on
the use of DNA metabarcoding of benthic macroinvertebrates in aquatic ecosystems bioassessments.
Metabarcoding of bulk macrozoobenthos has been preferentially used in fresh waters, whereas in
marine waters, environmental DNA (eDNA) from sediment and bulk communities from deployed
artificial structures has been favored. DNA extraction has been done predominantly through com-
mercial kits, and cytochrome c oxidase subunit I (COI) has been, by far, the most used marker,
occasionally combined with others, namely, the 18S rRNA gene. Current limitations include the lack
of standardized protocols and broad-coverage primers, the incompleteness of reference libraries,
and the inability to reliably extrapolate abundance data. In addition, morphology versus DNA
benchmarking of ecological status and biotic indexes are required to allow general worldwide imple-
mentation and higher end-user confidence. The increased sensitivity, high throughput, and faster
execution of DNA metabarcoding can provide much higher spatial and temporal data resolution on
aquatic ecological status, thereby being more responsive to immediate management needs.

Keywords: aquatic ecosystems; biomonitoring; bioassessment; benthic macroinvertebrates;
DNA metabarcoding

1. Introduction

One of the major challenges we face today is to protect and restore aquatic ecosystems,
their ecological quality, and other services while preserving biodiversity. Efforts across
the globe have been focused on adopting regulations to protect aquatic ecosystems and
achieve a “good status,” meaning quality is only slightly altered by human influence.
For example, large-scale nation-wide monitoring has been established in the USA and
Canada through the EPA National Aquatic Resource Surveys (NARS) and the Canadian
Aquatic Biomonitoring Network, respectively [1]. In Europe, homologous regulations
include the Water Framework Directive (WFD, Directive 2000/60/EC) and the Marine
Strategy Framework Directive (MSFD, Directive 2008/56/EC), which have been address-
ing aquatic environmental degradation for more than 10 years and have implemented a
European-wide ecological assessment of water bodies [2–5].
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One of the major challenges to achieving the “good status” of water bodies is to
assess the impacts of human activities rapidly and efficiently, or the effects of restoration
measures. The resulting list of taxa and their abundances are used to calculate biotic indices
or metrics measuring the ecological quality status. A large number of aquatic biotic indices
has been developed to assess the ecological quality based on morphological identification
of indicator organisms [6,7]. One of the most commonly used biological quality elements
(BQEs) is benthic macroinvertebrate fauna due to the predictable response to human
disturbances in a broad range of aquatic ecosystems, from rivers, streams, and lakes to
estuaries and marine ecosystems, allowing the monitoring of long-term responses and
site-specific impacts [2,8,9]. In addition, benthic invertebrates are extremely important
by providing invaluable functions and services in aquatic ecosystems (i.e., food, water
filtration, and organic matter decomposition) [10].

Routine biodiversity assessments of macrobenthic communities have been carried-out
exclusively through traditional morphology-based species identification, providing both
taxa occurrence and abundance data [9,11–13]. This is a low-throughput, time-consuming,
and costly approach that requires considerable taxonomic expertise [14], which also results
in low throughput of biomonitoring samples. Assignments to species are often challenging
because of the inherent difficulty of the identification process, the absence of key body parts
for diagnosis, or occurrence in developmental stages not amenable to rigorous morphologi-
cal identification (e.g., larval stages and small juveniles) [15]. Morphology-based species
identifications can be particularly challenging for marine communities due to their high
phylogenetic diversity of species combined with the obstacles of sampling in these complex
ecosystems, which may prevent the full taxonomic identification of a bulk sample [16,17].
The inability to improve species assessment, in time and discrimination, combined with
incomplete taxonomic keys, also hinders an effective assessment of the status and changes
in macroinvertebrate communities. Moreover, biomonitoring is conducted most of the time
in only one or two events per six-year management cycle due to the high cost and time
spent in sampling and identification together [12]. In addition, despite the importance of
monitoring and assessment, the current economic crisis is leading some countries to reduce
the budgets dedicated to monitoring [18].

Modern technologies, namely, DNA-based identification tools, have great poten-
tial to improve monitoring approaches [19–21] and offer an efficient complement to
morphological-based identifications [15,22,23]. DNA-based methodologies have been
proposed to assess the ecological status by detection of specific species or full community di-
versity, enabling higher throughput and efficiency in bioassessment of macroinvertebrates
communities [18,24–27]. In particular, DNA barcoding (i.e., the use of short sequences—
the DNA barcodes—for species identification) [28,29], coupled with high-throughput
sequencing, makes (e)DNA metabarcoding the tool of choice of the 21st century to be used
in biomonitoring [18,21,24,29–31]. To identify multiple species rapidly and accurately, DNA
can be extracted from a bulk sample (i.e., DNA metabarcoding), or directly extracted from
environmental samples (e.g., sediment and water), which is defined as environmental DNA
(eDNA) metabarcoding [32,33]. Both strategies differ in DNA source and applications;
in contrast to DNA metabarcoding, which is used in relatively easy-to-isolate communities,
eDNA is more applicable to target communities hard to isolate from an environmental
matrix (e.g., meiofauna [34]).

Several studies have already implemented (e)DNA metabarcoding approaches to
assess macroinvertebrates diversity in a wide range of aquatic ecosystems, from rivers
(e.g., [24,35–37]) to transitional waters (e.g., [15,27,38,39]) and coastal areas (e.g., [22,40–43]),
possibly enabling comparisons among studies and across a large temporal, spatial, and ge-
ographical scale. However, the standardization of the adopted methodologies is very
difficult because a variety of factors can largely differ across studies—sampling (target com-
munity, season, effort, type of sampling devices, and site) and processing methodologies,
including preservation methods and DNA extraction, PCR amplification (marker loci and
primer pairs) and sequencing (platforms used) [44,45], in addition to the bioinformatics
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pipelines [46]. Some of these differences in the metabarcoding workflow were already
highlighted as drawbacks [20,32,44,45,47], which complicate the implementation of a stan-
dard protocol for regular biomonitoring using (e)DNA metabarcoding approaches [20].
The accuracy of DNA-based assessments is also affected by the lack of representative
sequences for many species and the low quality of records and taxonomic incongruences
present in reference databases [48–51].

Since the first studies were published about 10 years ago, the number of publications
using (e)DNA metabarcoding to diagnose aquatic macroinvertebrate species has been
growing steadily. Here, we comprehensively review this already sizeable body of literature,
aiming to gauge the general status of progress on the application of (e)DNA metabarcoding
to freshwater and marine macroinvertebrates, with a focus on assessing the methodolog-
ical diversity of protocols used—from field sampling to laboratory molecular analyses.
We highlight major limitations and the challenges ahead for scaling up the assessments
and enable their implementation in biomonitoring programs of aquatic environments
across the world. Finally, we provide a set of recommendations for improvement based on
the reviewed literature.

2. Materials and Methods

We conducted a literature search by querying the Web of Science for articles in which
DNA metabarcoding was used for the bioassessment of macroinvertebrate taxa in aquatic
ecosystems (fresh water, transitional, and marine), on 12 November 2020. We searched by
topic, which included the words in the title, abstract, and keywords. The combinations
of terms that were used to find articles involving bioassessment, DNA metabarcoding,
benthic macroinvertebrate taxa, and aquatic ecosystems, are detailed in Table 1.

Table 1. Combinations of terms used to search the Web of Science for articles involving bioassessment,
DNA metabarcoding, benthic macroinvertebrate taxa, and aquatic ecosystems. The presence of the *
in some search terms means that any words containing them after or before should be displayed in
the search (e.g., *monitoring, should also display biomonitoring).

First Term Second Term Third Term Fourth Term

*monitoring OR
*assessment

metabarcoding OR
high throughput
sequencing OR

high-throughput
sequencing OR HTS
OR next generation

sequencing OR
next-generation

sequencing OR NGS
OR eDNA OR

environmental DNA

invertebrate* OR
macroinvertebrate*

OR benth*

aquatic OR
freshwater* OR fresh
water* OR river* OR
stream* OR lake* OR
dam* OR reservoir*

OR estuar* OR
transition* OR marine
OR lagoon* OR sea*

OR coast*

The information retrieved from each selected publication, when available, included
(Supplementary Materials: Table S2) (1) the geographic area, (2) the environment (i.e.,
fresh, transitional, or marine waters), (3) the sampling strategy (e.g., no. of sites/locations,
substrates—benthic substrates, water or sediment, targets type—eDNA/eRNA, or bulk
communities), (4) sample processing and preservation, (5) the DNA extraction protocols,
(6) the targeted marker loci and primer pairs used, (7) the experimental controls used,
and (8) the sequencing platforms employed. We opted to focus on the procedures used
through the analytical chain of the DNA metabarcoding approach before sequences process-
ing, which are those that may have the strongest influence on the final output and can be
more variable among different labs. In addition, as long as (1) adequate data quality filters
are applied to the data, (2) appropriate Operational Taxonomic Units (OTU) clustering algo-
rithms are employed, and (3) the species assignments of OTUs are conducted preferentially
against curated databases, the results should be reliable and replicable [52]. Furthermore,
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in the case of macroinvertebrate metabarcoding, the desired rank of identification is at
the species level, and, thus, the OTU clustering cut-off value will not have much impact
on the results. Moreover, with the growing trend to use exact sequence variants (ESV) for
taxonomic assignment, the OTU-clustering steps can be bypassed [53].

Our initial literature search yielded 257 papers. Records from the search results were
screened and selected for the analysis if the study targeted benthic macroinvertebrate taxa
and used an (e)DNA metabarcoding approach. We found 83 papers meeting these criteria,
to which seven more papers were added that met our target and were somehow missed by
the search terms used [41,43,54–58] (Supplementary Materials: Table S1). Papers that were
not primary research articles (e.g., reviews), or targeted particular invertebrate species
were excluded from the analysis.

The results were illustrated through point-and-bar graphs using GraphPad Prism
9.0, (San Diego, CA, USA) with an indication of the number of studies where a particular
approach was used for a particular aquatic ecosystem (fresh water, transitional, or marine).
In most figures, results of transitional and marine waters were joined together because
the approaches are broadly identical for both types of ecosystems. A map was built using
the information available about the location of sampling sites in the respective papers
and employing ArcMap 10.5 (ESRI, Redlands, CA, USA). The relative frequencies of
methods used during the several stages of the DNA metabarcoding workflow that are
analyzed in the current review (i.e., environment, target, preservation, DNA extraction
method, marker loci, and sequencing platform) were represented in a diagram constructed
in SankeyMATIC (http://sankeymatic.com/build/). In the diagram, the thickness of
the lines corresponds to the number of publications using each methodology.

3. Results and Discussion
3.1. Progress of Metabarcoding Studies in Aquatic Bioassessment Using Benthic Macroinvertebrates

Since the earliest study published in 2010 [58], there has been a steep growth dur-
ing the following years in the number of papers published on the theme, with most
studies published between 2016 and 2020 (Figure 1). An overview of the studies indi-
cates that metabarcoding-targeting benthic macroinvertebrates have been widely used
in ecological assessments in aquatic ecosystems, for example, to assess (1) the effects of
contaminants in urbanized, industrialized, and agricultural stream and estuarine areas
(e.g., [15,27,39,58–65]), (2) the effects of stream fragmentation due to dams [66], (3) long-
term effects of pesticides [67], oil spills [68], or offshore oil and gas drilling activities [40,69,70],
or (4) the effects of invasive species (e.g., invasive algae [71] and crucian carp [72]). It has
also proven to be a reliable tool to characterize archive collections of specimens [73], to esti-
mate intraspecific genetic diversity [74], to early detect and monitor invasive species [42,75–77],
to be used in the biomonitoring of sea-based fish farms [78,79], and to identify large biogeo-
graphic patterns [80,81] and new molecular and cryptic metazoan diversity, in particular in
marine ecosystems [55,81–84].

The majority of the studies have been conducted on fresh waters (52%), followed by
fully marine waters (42%), while in estuaries or transitional waters, benthic macrofauna
have been much less assessed using (e)DNA metabarcoding approaches (ca. 8%) (Figure 1).

http://sankeymatic.com/build/
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3.2. Methodological Assessment
3.2.1. Sampling Strategies

Sampling strategies were highly variable, in particular in marine waters (Table S2).
Regarding the number of geographical regions surveyed, most studies conducted in fresh
waters targeted one single region (e.g., [23,59,85,86]), while in marine waters, a few stud-
ies have targeted multiple seas or oceans, therefore covering a large geographical ex-
tent [80–82,87] (Table S2). The location of the sampled regions has been mostly concen-
trated in the Palearctic, Nearctic (Northern Hemisphere), and Australasia, with a few
studies in the Antarctic and IndoMalay (Southern Hemisphere) and absent in Neotropics
and Afrotropics (Figure 2). In fresh waters, most studies pertained to the macroinverte-
brate fauna of watercourses (rivers or streams, e.g., [23,85,86,88]), and a smaller amount
in ponds (e.g., [60,72,89]), wetlands (e.g., [54,90,91]), lakes (e.g., [61,92]), or reservoirs
(e.g., [57]), whereas in marine waters, most studies were conducted in open coastal regions
(e.g., [80,93–96]), with a few in the deep sea [87,97]. In transitional waters, studies have
been performed in estuaries (e.g., [15,27,39,58]) and also in coastal lagoons [98].

In fresh waters, studies vary from a single (e.g., [99]) to multiple sites, i.e., loca-
tions (e.g., [61,63,67,74,85,100]), and within each site, some studies consider multiple
sampling points so that all habitats or different sampling times were represented in
the sample, and the possibility of detecting the occurring macroinvertebrate fauna increases
(e.g., [36,59,62,101]) (Table S2). In most cases, sampling points from the same site are pooled
and processed as a single sample following customary procedures (e.g., [23,37,102–104]).
In marine waters, within each sampled region, the number of sampling sites also varied
from single (e.g., [40,41,98,105]) to multiple (e.g., [27,55,81,83]), but within each site, most
surveys included multiple sites. A lower number of studies addressed temporal or seasonal
effects [63,75,95] (Table S2).
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In fresh waters, most surveys collected bulk organismal samples from benthic sub-
strates (>80% of the publications from fresh waters), by using kick-net or Surber samplers
and by following customary procedures to sort macroinvertebrate specimens from any
substrate or debris (e.g., [23,31,67,85,86,88,106–108]) (Table S2). One study used an elec-
troshocking method as an alternative to kick netting [109]. On the other hand, in transitional
and marine waters, the most sampled substrate was sediment to harvest either environmen-
tal DNA (eDNA) (ca. 43%) or bulk benthic communities (ca. 11%) (Figure 3), collected with
sediment cores (e.g., [15,38,82,94,97]) or grabs (e.g., van Veen grab, [39,43,69,78,79,95,110])
(Table S2). Sediment sieving has been often employed to separate bulk organisms from
the environmental matrix (i.e., 0.5 mm to 2 mm mesh size, e.g., [15,22,66,107]), and slicing
into layers is often used to subsample marine sediments from different depths [39,87,97]
(Table S2). Bulk organisms sieving in different size fractions (e.g., marine: >106 µm to
>2 mm, [41,55,81,93,111]), sorting into different size categories (fresh waters, 2.5 mm to
>10 mm) [72,112], or detecting by the naked eye [86,109], has been performed to improve
the detection of smaller sized organisms before DNA extraction, but at an extra cost of an
increase in sample processing time. A feasible option may be sorting samples into basic
taxonomic groups that require little taxonomic knowledge (e.g., Annelida, Arthropoda,
Mollusca) and less time effort, and that can greatly improve the recovery of taxa through
DNA metabarcoding [113].
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In marine waters, benthic substrates, particularly hard-bottom ones, have been also
fairly investigated through DNA metabarcoding (Figure 3). These communities have been
mainly sampled through deployment of artificial substrates (ca. 18%, e.g., [41,80,81,93,114])
or by taking samples directly from scraped surfaces of standardized area (ca.
14%, [71,84,96,115,116]). Among the artificial substrate methods, the autonomous reef moni-
toring structures (ARMS) have been the most widely used (in seven
studies; [41,55,81,93,98,111,114]), while artificial substrate units (ASUs) have been less
used (only in one study found in our literature search [80]) (Figure 3, Table S2). In particu-
lar, the joint use of ARMS with metabarcoding approaches provides a standard method
to survey the marine cryptobiome, which encompasses phylogenetically and ecologically
diverse groups inhabiting benthic ecosystems and very difficult to assess by using tradi-
tional approaches [81]. The use of ARMS sampling may become considerably widespread
during the next years [117], which would be crucial to generate comparable biodiversity
assessments across large spatial and temporal scales and improve biomonitoring of marine
benthic ecosystems, resulting in relevant information to managers and stakeholders [55,81].
However, substrates with more complex structures, such as ramifications resembling
macroalgae, appear to provide refuge for particular taxa that may not occur in ARMS [118].

In contrast to metabarcoding, which has been mostly applied to bulk DNA of ben-
thic macroinvertebrates, a fair proportion of the studies targeted water eDNA (marine;
ca. 25%, e.g., [42,56,76,77,82,83,96] and fresh; ca. 21%, e.g., [57,64,65,90,92,119]) (Figure 3).
The eDNA, which is extracted directly from environmental matrices, such as water and
sediment, tend to be made up of a mix of intra-organismal DNA (e.g., from small organ-
isms) and extra-organismal DNA or trace eDNA shed from large organisms (e.g., body
parts, secreted mucus, and feces, tissues, and cells) [30,33,34]. In particular, in the marine
realm, sampling water involves much less effort and is more cost-effective than sampling
bulk samples (e.g., avoiding sampling through diving) [56,96]. In these studies, most
samples were collected just below the water surface, both in marine and in fresh waters
(e.g., [42,76,83,103,119]). However, in marine ecosystems, a few studies considered multiple
layers in order to take into account the water column stratification and vertical community
structuring [75,120,121]. Moreover, in marine environments, higher volumes (e.g., 5 L in
Cowart et al. [83] and Zhang et al. [120] and 20 L in López-Escardó et al. [82]) are sometimes
needed due to the magnitude of water masses and greater dilution of eDNA. For instance,
López-Escardó et al. [82] pre-filtered a big volume of water (i.e., 20 L) through a larger pore
size membrane to avoid filter clogging. By contrast, a lower amount of water is commonly
filtered in fresh waters (e.g., 250 mL in Carraro et al. [103], 1.5 L in Gleason et al. [119],
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2 L in Bagley et al. [64], and 4 L in Fernandez et al. [122]; see Table S2 for more details),
and only one depth considered, usually below the surface. However, even in the close
vicinity of the benthic layer, water eDNA has been found to reflect poorly the nearby
benthic taxa in both marine (e.g., [77,96]) and fresh waters (e.g., [90,102,119]). For instance,
in fresh waters, bulk-sample metabarcoding resembled much better morphology-based
biomonitoring outcomes [90,102] because indicator macroinvertebrate taxa were captured
(i.e., EPTO—Ephemeroptera, Plecoptera, Trichoptera and Odonata). On the other hand,
water eDNA may detect better the impact of stressors because it also incorporates non-
metazoan taxa [102]. Even so, eDNA studies have a great potential for detecting differences
in community compositions at relatively large scales [103], and its use can be very advanta-
geous for (1) providing a rapid snapshot of local species compositions [75], (2) detecting
non-indigenous species [42,57,75,76] early, (3) inferring the impact of stressors in stream
ecosystems at larger scales [64,102], and (4) providing a rapid assessment protocol to sup-
plement more intensive field sampling efforts [64]. However, when smaller-scale spatial
resolution is required, bulk tissue metabarcoding provides a more accurate representation
of local stream macroinvertebrate communities [119].

Even though the potential of using eDNA for detecting small organisms (e.g., plank-
tonic micro-eukaryotes and meiofauna) or large organisms (e.g., fish) in small sediment
samples can be effective (e.g., [39,78,123]), its broad use for biodiversity assessment and
monitoring purposes of benthic macroinvertebrates should be employed with caution
(e.g., [94,110]). For instance, in comparative studies, only a small proportion of the taxa
identified through morphological methods was retrieved by extracting eDNA directly
from estuarine benthic sediments [110]. In addition, the direct extraction of eDNA from
Wadden sea sediments, without prior cell lysis, yielded the lowest taxa diversity, and thus
an incomplete view of benthic biodiversity [94]. However, interestingly, Steyaert et al. [38]
found a reduction in species richness in sieved sediment samples through metabarcoding
when compared to non-sieved samples, suggesting that the direct use of sediments may
take into account both eDNA (originated from macroinvertebrates) and organisms lower
than 500 µm, mostly meiofauna.

Environmental RNA (eRNA) has been less frequently used and only employed
in marine waters in the scope of the searched articles, in particular in sediments (ca.
11%) [69,78,79,82,87,105]. Environmental DNA, trimmed by shared OTUs with eRNA,
has been found to represent a better proxy for assessing anthropogenic impacts on marine
benthic ecosystems [69,105]. However, using eRNA requires specific storage conditions
of samples and workflow protocols, which are more expensive and time-consuming,
and therefore much less adopted than eDNA, which allows to conduct more logistically
realistic, repeatable, and reliable surveys [87].

3.2.2. Sample Preservation, Pre-Processing, and DNA Extraction Protocols

Concerning sample preservation, most studies have been preserving benthic macroin-
vertebrates in ethanol 95–96% at 4–5 ◦C (e.g., [31,102,110,115]) or −20 ◦C (e.g., [15,35,71,
84,90,96,114,116,124]) until DNA extraction (Table S2). In fresh waters, Nichols et al. [107]
found that storing the samples at room temperature or after heating (i.e., 50 ◦C for 3 h)
had no effect on macroinvertebrate taxa detection in comparison with preserving at lower
temperatures (−20 ◦C). Other methods, in particular for sessile fauna retrieved from ARMS
in marine waters, include the preservation of homogenized sub-samples in dimethyl sul-
foxide (DMSO) buffer at −20 ◦C (Table S2) (e.g., [41,55,81,93]), resulting in samples with
less degraded and higher quality DNA than those preserved in ethanol [41]. The influence
of preservation time has been less studied, but Nichols et al. [107] found no effect on
freshwater macroinvertebrate taxa detection for samples stored from up to one year in 95%
ethanol and at room temperature.

Homogenization of bulk samples with a kitchen blender (e.g., [71,84,88,96,106,114]),
an ultra-turrax homogenizer (e.g., [63,112,113]), a fast-prep equipment with MP lysing ma-
trix tubes (MP Biomedicals, Irvine, CA, USA) [24,54], or a mortar and pestle (e.g., [27,65,125])
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has been widely employed before DNA extraction, in addition to sediment homogenization
(e.g., [38,62,87,110]) (Table S2). These procedures ensure sample homogeneity, which may
increase the recovered diversity, in particular of rare or low abundance taxa. Most studies
remove the preservation solutions and ethanol before DNA extraction, and samples are
often dried to get rid out of any ethanol traces, which may interfere with subsequent
steps in the workflow (e.g., [23,52,66,67,89,125]). Grounding dried bulk samples collected
in fresh waters by using, for example, bead mills, allows DNA extractions of the entire
community using a small quantity of tissue powder (e.g., up to 15 mg), which is much
more feasible for large-scale studies and to be routinely implemented [35,52,112].

Regarding sediment preservation for eDNA analysis, most samples have been di-
rectly frozen (at −20 ◦C or −80 ◦C) (e.g., [38,60,61,94,95,110]), preserved in LifeGuard
Soil preservation solution (MoBio, Carlsbad, CA, USA, later acquired by Qiagen, Hilden,
Germany) [69,70,78,105], in ethanol at −20 ◦C [40,43,126], or freeze-dried [62] (Table S2).
The filters’ material used for water eDNA analysis (i.e., glass microfiber, cellulose nitrate,
nylon, polycarbonate, or polyethersulfone), and their pore size (0.2 µm to 5 µm), have
been highly variable among studies in both marine and fresh waters (e.g., [36,64,65,70,75,
82,96,102,103,127]) (Table S2). Studies comparing the effects of filter material or the pore
size on water eDNA recovery are practically absent, but in marine ecosystems, Deiner
et al. [128] found a significant effect of the filter material (glass microfiber versus cellulose
nitrate), but not of the pore size (0.2 µm to 1.2 µm). Although less adopted, the use of a
larger pore size (i.e., 5 µm) may be better suited for filtering larger volumes, in particular in
turbid sites [119]. Moreover, the filters have been often stored frozen (at −20 ◦C or −80 ◦C)
without applying any preservative solution (e.g., [65,70,82,83,103,119,122,127]) (Table S2).
Other less used alternatives include preservation of the filters in ethanol at 4 ◦C [102]
or −20 ◦C [64,77], or in Longmire’s buffer [75] (Table S2).

Most studies, particularly in marine waters, have been using DNA extraction kits for
all types of samples (bulk, sediments, and filters), in particular, the DNeasy PowerMax Soil
kit (MoBio, Carlsbad, CA, USA, later acquired by Qiagen, Hilden, Germany), which allows
the extraction of up to 10 g of material (ca. 26%, Figure 4, Table S2). This demonstrates
the ability for recovering high-quality DNA from a high range of environmental ma-
trices [70,87,126] or bulk samples containing high phylogenetic diversity [22,27,84,96].
Hermans et al. [36] compared the efficiency of six commercial kits to extract DNA from
different biological targets, including macroinvertebrate taxa, and from different envi-
ronmental matrices (e.g., water, sediment, and litter) and found the DNeasy PowerSoil
(MoBio, Carlsbad, CA, USA, later acquired by Qiagen, Hilden, Germany) the most uni-
versally applicable DNA extraction method, yielding high-quality results and with lower
bias than other methods. In terms of kit chemistry, both PowerMax and PowerSoil are
identical, but PowerMax allows to process a much larger sample amount (10 g versus
0.25 g), and thus, the chance to detect small specimens or low biomass specimens greatly
increases. The DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany) has been also widely
used (ca. 20%, Figure 4), in particular in fresh waters. It has been argued that the chemical
and enzymatic lysis used by this method is considered to be more suited to the detection of
animals because cells are easier to lyse while preventing excessive DNA shearing [36].
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On the other hand, non-commercial methods, such as a modified salt DNA extrac-
tion protocol, have been widely employed in fresh waters (ca. 23%, e.g., [23,35,102,112]),
which can be more cost-effective than commercial kits and allow any starting amount of
material. Other less used protocols included the phenol-chloroform DNA extraction pro-
tocol [57,98] and the cetrimonium bromide (CTAB) protocol [57,119] (Table S2). However,
non-commercial methods often involve extra purification steps (e.g., [23,102,112]),
while DNA yields from commercial kits are usually of high quality [36,104]. In addi-
tion, the use of commercial kits has also the advantage of achieving results quickly due
to shortened isolation steps, the handling of smaller amounts of chemicals, and being
more prone to standardization among different labs and researchers [36]. The use of DNA
extraction protocols adapted to 96-well microplates can highly increase sample through-
put while reducing the risk of cross-contamination [89,113] and has been proposed to
scale-up DNA metabarcoding for the routine monitoring of freshwater macroinvertebrate
communities [52].

A few studies had extracted directly the DNA from preservative ethanol in order
to characterize macroinvertebrate communities (e.g., [31,37,43,99,104,109]). This alterna-
tive can greatly speed up processing times in the laboratory before DNA metabarcoding
because the decanting and the sorting steps can be much reduced. In fresh waters, commu-
nities assessed from preservative ethanol have been found either to display a high overlap
with morphology-based analyses and bulk DNA [31,104] but affected by the preservation
time and the DNA extraction method employed [104] or to display very different com-
munities [99] or fewer taxa, in particular those with low biomass [109]. In marine waters,
Derycke et al. [43] also found a substantially lower number of species in preservative
ethanol, with larger size species and soft bodies (without chitin or CaCO3 in their skeletons)
displaying higher detection rates. In fresh waters, although Zizka et al. [99] were able to
detect most species from a mock community in the ethanol used for preservation, they
were not able to reliably detect all Mollusca taxa. Thus, for a comprehensive assessment
of the macroinvertebrate diversity in both fresh and marine waters, conventional bulk
sample metabarcoding should be rather applied because taxa detection in preservative
ethanol may not be sufficient and be greatly influenced by the differences in the morpho-
logical traits of the species constituting the communities [43,99]. Non-destructive methods,
which involve a temporary immersion of whole specimens in an extraction buffer without
previous homogenization, may provide comparable results to tissue-based DNA extraction



Water 2021, 13, 331 11 of 25

methods, and are faster while preserving specimens for taxonomic characterization or
individual-based DNA barcoding [101]. In addition, these are not dependent on ethanol
quality, usage, or storage time, and may be less influenced by the morphological traits
(i.e., size, protective case, and sclerotization) of the species [101]. Non-destructive methods
can be of great use for benchmarking metabarcoding against morphology and completing
macrozoobenthic inventories while the reference libraries are not completed.

3.2.3. Marker Loci and Primer Pairs

Partial segments of the mitochondrial cytochrome c oxidase subunit I (COI) gene have
been the most used for targeting benthic macroinvertebrate communities in all typologies
of aquatic ecosystems surveyed in the current review (Figure 5). Indeed, it is by far the
marker for which a higher coverage exists in reference sequence databases for aquatic
macroinvertebrate taxa, including marine and freshwater species [48,49,73,129]. In addition,
it has enough genetic variation to allow species level identifications for most taxonomic
groups, even when short fragments of ca. 150 bp have been employed [51,100,130,131].
Generally, a higher coverage has been found for freshwater invertebrates (ca. 65%, [48])
than for marine invertebrates (ca. 22% to 48%, [48]) in both the Barcode of Life Data
System (BOLD) and GenBank, but coverage strongly varies among taxonomic groups [48].
For instance, Odonata, Trichoptera, and Hemiptera, and crustaceans, have been found to
be the best-covered groups among freshwater invertebrates (≥85%, [48]), while marine
Annelida, Mollusca, and Arthropoda, which are the most well-represented phyla among
marine invertebrates, have completion levels between 40% to 50% [48].

Among the COI, the primer pair mICOIintF/jgHCO2198, targeting the 3′ region,
has been by far the most widely used, in particular in marine waters (ca. 34%, Sup-
plementary Materials: Table S3). This combination of degenerate primers, targeting a
fragment of 313 bp, performs well across metazoan diversity, with higher success rates
than the combination of the forward primer either with HCO2198 or dgHCO2198 re-
verse primers [43,132]. In particular, in marine ecosystems, macrobenthic communities
are complex and highly diverse, and primer-sequence mismatches can be often found
for several organisms, and thus, degenerate primers may perform better [43,132,133].
Although less used, the combination of primers mICOIintF/LoboR1 [132,133] has been
tested successfully in mock communities [15,131] and shown to perform just as well as
the pair mICOIintF/jgHCO2198 [134]. Moreover, compared to jgHCO2198, LoboR1 has
the advantage of lacking inosine bases, which may be incompatible with high-fidelity Taq
polymerases usually employed for amplifying the PCR amplicons to be high-throughput
sequenced, and it is also a cost-effective solution [135,136]. On the other hand, the ampli-
fication of the whole COI region (i.e., barcode region) or of the 5′ region have been less
used and reported to recover fewer invertebrate taxa than primers amplifying the 3′ end of
the barcode region [15,43,131,132] (Table S3).

In fresh waters, four highly degenerated primer pairs (BF/BR) have been specifically
designed for freshwater macrozoobenthos and successfully evaluated using mock commu-
nities [112,137]. In particular, the pair BF2/BR2, also targeting the 3′ end of the barcode
region, perform particularly well for freshwater insects (up to 100% of the insects and
98% of all morphotaxa, respectively, composing 10 different mock communities [137]).
Consequently, it has been currently widely employed in environment-derived samples (ca.
21%, Table S3, e.g., [102,112,119]), but showed poor performance on non-insect metazoans
such as Bivalvia, Turbellaria, Amphipoda, and Hirudinea [137]).

In marine waters, the nuclear small subunit 18S rRNA (18S) gene has been also
widely used, particularly in studies also targeting microbial eukaryotic diversity (Table S2,
e.g., [38,39,56,58,78]), but to a lesser extent for macroinvertebrates assessment in
fresh [37,60,92] and marine [22] waters. Although amplification success may be high
due to low variation in primer binding sites, the species level resolution has been found to
be substantially lower for 18S than for COI [22].
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Because different markers can yield different diversity estimates [37,43], combin-
ing different markers would increase recovered diversity, but only nine studies in ma-
rine waters employed COI and other markers (Supplementary Materials: Table S2; 18S,
e.g., [22,56,71,84,87] and 16S, [56]), and in fresh waters, only four employed other markers
in addition to COI (Table S2; 18S, [37,122,138]; 16S, [37,138]; and CytB, [100]). According to
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Elbrecht et al. [124], the ribosomal marker 16S may lead to less biased estimates of biomass
than COI but has a low taxonomic resolution, and reference libraries may lack adequate
data to support taxonomic identifications [124].

The choice of the primers can highly affect the recovered diversity through metabarcod-
ing approaches because metabarcoding results can be particularly affected by the affinity of
the primers with the target sequences [78,80,93], the completeness of reference libraries [80]
and reference databases used, and the algorithms used to assign taxonomy [43]. If possible,
in silico evaluations and the use of mock communities of known compositions should be
used to validate the primers that work better for the target groups and the purpose of
the study [72,137,138]. For instance, in marine waters, the DNA from mollusks has been
reportedly found to have poor mismatches with broad-coverage primers targeting both
COI [80,93,139] and 18S [78] regions, but Cowart et al. [22] found a high success of mollusks
detection through DNA metabarcoding by using Folmer primers (LCO1490/HCO21982).
Marine polychaetes are also a well-known class to display a high diversity in the COI
gene [140], and whose amplification may fail even when using different primers [43].
In fresh waters, broad-coverage COI markers are also reported to miss several non-insect
taxa such as Mollusca, Annelida, and Platyhelminthes (e.g., [37,59,99]), and high primer
degeneracy leads to the best amplification of freshwater and insect taxa [137].

Although the choice of the primers has been found to influence considerably taxa
detection, few studies made thorough comparisons (e.g., transitional/marine, [15,43,131]
and fresh waters, [137,141]). By using marine invertebrate mock communities, Hollatz
et al. [131] found that only 30% to 60% of all species were recovered by using any single
primer set targeting the COI region, while 85% of the species were detected only when
employing at least three primer pairs. Lobo et al. [15] also found that high success rates of
detection of estuarine macroinvertebrate taxa were attained when using at least two primer
pairs targeting the COI region. In metabarcoding-based surveys of macroinvertebrate taxa
in fresh waters, Hajibabaei et al. [141] also found that the combined use of multiple COI
amplicons recovered higher taxa richness. Gene enrichment may be an alternative to avoid
primer-associated amplification biases but is much less adopted in biomonitoring due to
the high cost of probes and increased library preparation time [85]. The design of primers
customized to specific taxonomic groups (e.g., Mollusca, Annelida, and Arthropoda),
may be a cost-effective solution to avoid biases of broad-coverage primers and to meet
the stringent taxonomic requirements when targeting different benthic macroinvertebrate
phyla in aquatic ecosystems [56,142].

3.2.4. Employment of Controls and Validation with Morphology

The employment of controls along the complete experimental workflow is essential
for assessing the validity of the metabarcoding approach. Controls expose two com-
mon types of experimental errors—type-I errors (false positives) and type-II errors (false
negatives) [143]. Most studies in any of the aquatic ecosystems have been employing
negative controls to expose possible sample contamination (Table S2). They include con-
trols applied either since the very beginning of the workflow (i.e., sampling) through
the high-throughput sequencing or dedicated to specific steps of the analytical chain.
The former controls are often employed in studies analyzing water eDNA because it in-
volves a filtration step that is often conducted in the field and therefore more exposed to
potential contamination (e.g., [64,70,75,102,115,119,122,127]). The later controls are usually
introduced during DNA extraction (e.g., [36,77,81,127]) and PCR (e.g., [63,72,104,115,116])
to expose contamination that can originate from extraction buffers and solutions, PCR
reagents, and labware. In contrast, negative controls have been less used during laborato-
rial pre-processing steps of bulk samples in the lab, but the application of muffled sand
(i.e., 400 ◦C, 24 h to remove DNA traces), which is processed alongside regular samples,
can help detect contamination or artifacts that may be introduced during pre-processing
steps (i.e., sieving, [71,84,116]).
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The employment of mock communities, either by extracting DNA from known com-
binations of species (e.g., [15,35,36,99,107,112,125,131,137]) or by mixing DNA extracts
from known species [37,60,94,98,105,124], has been widely used to assess the efficiency of
the DNA amplification and sequencing or to establish thresholds (e.g., sequence similarity
and minimum read number) for detecting species [24]. They are crucial to understand
the prevalence of false negatives, due to methodological limitations, as for example, the in-
efficiency of DNA extraction protocols (e.g., [15,31,59,87,100,112,125]), primer-associated
amplification bias (e.g., [37,60,72,98,115,122,124,131,137]) and faulty reproducibility of
the sequencing process, and gaps in bioinformatic pipelines (e.g., random sampling of rare
OTUs, [98]) and reference databases [38,94]. PCR inhibition controls may also be applied
to ensure that extracted DNA is free of inhibitors [35,60,115]. One possibility consists
in the introduction of a known amount of DNA from a non-target species in the DNA
template prior to amplification [72]. The introduced DNA must be from an organism very
unlikely to occur in the surveyed environment [72], or made of artificially synthesized
DNA and known a priori to amplify with the primers in use.

Most of the studies here analyzed also implemented concomitant morphological
analyses, which can act as a positive control and are crucial to evaluate the ability of
metabarcoding to recover the taxonomic diversity in the samples (e.g., [15,22,24,27,31,35,38,
54,100,103,106,113,114]). However, many morphological identifications are only achieved
at order [31] or family level [59]. In order to circumvent this, many studies also DNA
barcoded individual specimens, thereby providing low-rank taxonomic assignments (i.e.,
genus, species) and allowing a better assessment of the metabarcoding efficiency, concur-
rently completing local reference barcode libraries to increase the success of taxonomic
assignments [24,31,41,77,93,100,114,124,125,144].

In most studies, the outcomes of the bioassessments were comparable and comple-
mentary to current morphology-based protocols [23,38,59,63,69,72,80,83,106], but the di-
versity recovered through metabarcoding often exceeded the morphology-based surveys,
in particular in marine waters [15,22,54,82,111]. A higher degree of resolution, both at taxo-
nomic level [54,59,67,89,91,131] and environmental or geographic level [61,81,111], is often
achieved. In most studies, the molecular data also closely matched morphology-based
indices [27,70,78,79,110].

Because primer efficiency is highly species-specific, this should impede straightfor-
ward assessments of species abundance and biomass through metabarcoding [35]. Indeed,
the ability to infer relative species abundances or biomass from metabarcoding data has
been fairly disputed among studies. In contrast to some report data suggesting that relative
abundance information may be captured with metabarcoding [27,66,86,93,144], others
failed to detect any relationship between read number and relative abundance or absolute
abundances (e.g., [15,35,131]).

3.2.5. Sequencing Platforms

Concerning the sequencing platforms used, Illumina (San Diego, CA, USA) is by
far the most employed in all typologies of aquatic ecosystems (ca. 74% of all the studies,
Figure 6, Table S2), followed by Roche 454 (Brandford, CT, USA, no longer available),
in particular in earlier studies using DNA metabarcoding (e.g., [24,31,58]), and Ion Torrent
(Gilford, NH, USA), more frequently used in transitional/marine waters (Figure 6, Table S2).
Very few studies compared the efficiency of different platforms, and the ones who did have
found either discrepant (e.g., Roche 454 versus Ion Torrent [145]) or similar results (e.g.,
Illumina versus Ion Torrent [146]) in the diversity recovered.



Water 2021, 13, 331 15 of 25

Water 2021, 13, x FOR PEER REVIEW 15 of 25 
 

 

 
Figure 6. Sequencing platforms used for assessing macroinvertebrate diversity through metabar-
coding in fresh and transitional/marine waters. 

Among Illumina platforms, MiSeq is clearly the most frequently used (Table S2), but 
a recent study found that the newest platform from Illumina—NovaSeq—was able to de-
tect many more taxa than the former in marine waters, even when the same sequencing 
depth was employed [147]. While a meaningful difference may be found in the detection 
of biota from eDNA in a complex environment such as the open ocean or the deep-sea, in 
lower diversity realms such as fresh or transitional waters, or if bulk samples are analyzed, 
these differences may be minor and can be compensated by increasing the sequencing 
depth. In addition, NovaSeq is still too expensive for most labs (10 times more expensive 
than MiSeq [147]), and cost-effective solutions need to be found, in particular as metabar-
coding is routinely implemented. 

A cost-effective solution may be provided by Oxford Nanopore (Oxford, UK) or Pac-
Bio (Menlo Park, CA, USA) platforms [135,148]. For instance, in a study employing ARMS 
in marine ecosystems biomonitoring, MinION (small handheld sequencer from Oxford 
Nanopore) barcodes, generated from macrofaunal samples (the fraction >2 mm) were 
highly accurate compared to Illumina reference barcodes [135]. In addition, data were 
available within 3.5–4 h, and at a lower price, but it still remains presently untested in 
metabarcoding and no established pipeline exists yet for metazoans [135]. On the down-
side, Oxford Nanopore and PacBio platforms are reported to have lower raw read accu-
racy than Illumina, but something that can be compensated by the ability to generate 
longer reads (ca. 700 bp versus 300 bp generated by Illumina [44]). 

4. Final Considerations and Conclusions 
The use of metabarcoding for assessing benthic macroinvertebrate communities has 

been proving its efficiency and great potential for improved monitoring of aquatic envi-
ronments, including marine, transitional, and fresh waters (rivers, streams, ponds, reser-
voirs, and wetlands). However, whereas for fresh waters several countries are already 
actively working towards its implementation in routine monitoring of macroinverte-
brates, and perhaps with greater feasibility and promptness to complement biomonitor-
ing programs on a large scale [21,52,137], implementation in marine waters appears to be 
somewhat more challenging and lagging behind, although some broad-scale networks 
have started to emerge [80,81,95,117]. Either in marine or freshwater realms, there are still 
important shortfalls that need to be addressed by near-future research before a full and 
dependable transition to molecular approaches is completely accomplished. 

A SWOT analysis (Figure 7), which analyses the strengths, weaknesses, opportunities 
and threats, revealed that the main current weaknesses and threats for the widespread 
applicability of macrozoobenthos metabarcoding concern with (1) the need for standard 

Figure 6. Sequencing platforms used for assessing macroinvertebrate diversity through metabarcod-
ing in fresh and transitional/marine waters.

Among Illumina platforms, MiSeq is clearly the most frequently used (Table S2), but a
recent study found that the newest platform from Illumina—NovaSeq—was able to detect
many more taxa than the former in marine waters, even when the same sequencing depth
was employed [147]. While a meaningful difference may be found in the detection of biota
from eDNA in a complex environment such as the open ocean or the deep-sea, in lower
diversity realms such as fresh or transitional waters, or if bulk samples are analyzed, these
differences may be minor and can be compensated by increasing the sequencing depth.
In addition, NovaSeq is still too expensive for most labs (10 times more expensive than
MiSeq [147]), and cost-effective solutions need to be found, in particular as metabarcoding
is routinely implemented.

A cost-effective solution may be provided by Oxford Nanopore (Oxford, UK) or PacBio
(Menlo Park, CA, USA) platforms [135,148]. For instance, in a study employing ARMS
in marine ecosystems biomonitoring, MinION (small handheld sequencer from Oxford
Nanopore) barcodes, generated from macrofaunal samples (the fraction >2 mm) were
highly accurate compared to Illumina reference barcodes [135]. In addition, data were
available within 3.5–4 h, and at a lower price, but it still remains presently untested in
metabarcoding and no established pipeline exists yet for metazoans [135]. On the downside,
Oxford Nanopore and PacBio platforms are reported to have lower raw read accuracy than
Illumina, but something that can be compensated by the ability to generate longer reads
(ca. 700 bp versus 300 bp generated by Illumina [44]).

4. Final Considerations and Conclusions

The use of metabarcoding for assessing benthic macroinvertebrate communities has
been proving its efficiency and great potential for improved monitoring of aquatic environ-
ments, including marine, transitional, and fresh waters (rivers, streams, ponds, reservoirs,
and wetlands). However, whereas for fresh waters several countries are already actively
working towards its implementation in routine monitoring of macroinvertebrates, and
perhaps with greater feasibility and promptness to complement biomonitoring programs
on a large scale [21,52,137], implementation in marine waters appears to be somewhat
more challenging and lagging behind, although some broad-scale networks have started
to emerge [80,81,95,117]. Either in marine or freshwater realms, there are still important
shortfalls that need to be addressed by near-future research before a full and dependable
transition to molecular approaches is completely accomplished.

A SWOT analysis (Figure 7), which analyses the strengths, weaknesses, opportunities
and threats, revealed that the main current weaknesses and threats for the widespread ap-
plicability of macrozoobenthos metabarcoding concern with (1) the need for standard and
broad implementation protocols, without which scaling up laboratory and field protocols
can be compromised, (2) the challenges of completely circumventing PCR amplification bi-
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ases and the still incomplete reference databases, which can lead to incomplete or erroneous
species assignments, and, finally, (3) the difficulty in inferring quantitative abundance
from metabarcoding data, which is a key component of the most commonly used benthic
indices implemented in legal frameworks (e.g., WFD) (Figure 7). Strategies for scaling
up laboratory protocols have been already designed and proposed for its use in routine
large-scale monitoring projects in fresh waters [52]. In addition, existing indices have
been already successfully adapted to infer ecological conditions using sequence-based
data in transitional/marine ecosystems (i.e., gAMBI—genetics based AZTI’s Marine Bi-
otic Index [27,149]). Recommendations to fulfill reference libraries have been already
provided for Europe [48], and this particularly includes targeting the species relevant
in biomonitoring programs. In the case of marine invertebrates, this includes the taxa
of the AMBI checklist, in particular those more dominant in the datasets, such as Mol-
lusca, Crustacea, and Annelida [2,49,149], while for freshwater macroinvertebrates this
includes the groups widely used in WFD monitoring, and especially the most sensitive
groups of insects Ephemeroptera, Plecoptera, and Trichoptera, in addition to Crustacea
and Mollusca [48]. Filling reference libraries is undoubtedly crucial to support species
identifications because it is still the most pointed-out reason for the failure of species
detection through DNA metabarcoding in distinct world regions [22,23,38,84,107,109,124].
Ideally, this should include the full sweep of species in the target ecosystem, with a bal-
anced representation of specimens across each species distributional range, which would
account for possible regional variability and reveal possible hidden diversity. The audition
and annotation of these reference libraries are also of extreme importance to account for
accidental errors that may arise from the generation of the sequences and may compromise
accurate species identifications [150]. For instance, GenBank contains reference sequences
from many different genetic markers, but it is more exposed to errors because it can contain
a high number of non-curated entries [82]. Thus, as procedures become optimized and
their use more widespread, metabarcoding is becoming an important tool for aquatic
ecological monitoring.
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macroinvertebrates.

On the other hand, we identified several strengths and opportunities, compared with
morphology-based approaches, including (1) increased sensitivity in species detection and
higher taxonomic resolution (i.e., taxonomic identifications typically at species level or at
least down to genus), (2) high-throughput approach, which allows to scale up sample pro-
cessing considerably and increase both spatial and temporal frequency in data acquisition
in monitoring programs, and (3) does not require taxonomic expertise (only at the reference
library building and alfa taxonomy stage), therefore the response is fast and more prompt
to immediate management needs.
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Considering this SWOT analysis and the current status of the development of metabar-
coding protocols, we recommend a transition phase involving the implementation of a
combined approach where both methods (DNA and morphology) are employed, when pos-
sible, in order to successfully and extensively benchmark DNA-based approaches against
past long-term monitoring through morphology. Although DNA-based monitoring ap-
pears to gradually expand its use, specimen identification based on morphology will
probably be still required, at the very least to provide abundance data. One possibility
is to continue to perform morphology-based surveys but much more spaced in time and
geographic scope than metabarcoding assessments. Furthermore, morphological and other
whole-specimen data can contribute much more to ecologically pertinent data beyond basic
taxonomic identifications that can have an irreplaceable use in environmental assessments
(e.g., size, biomass, morphometries, and functional roles).

We also identified procedures that have been predominantly used along the analytical
chain of DNA metabarcoding (excluding bioinformatics pipelines) because of the demon-
strated positive influence on the reliability and precision of the results and are thus a good
starting point for methodological standardization of aquatic macrozoobenthos monitoring
through metabarcoding (Figure 8). These include the following:
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using a method. NR represents studies where the corresponding stage/method was not reported and PS represents
preservation solution.

• the preferential use of bulk communities if targeting the macrozoobenthos for aquatic
assessments, or at the very least the bulk preservative, if specimens are to be kept intact.
Indeed, several studies indicated that water and sediment eDNA tend to reflect only
partially benthic macroinvertebrate communities, either in marine or fresh waters;

• implementation of experimental/field and/or technical replicates during sampling,
DNA extraction, and PCR amplification. This implementation is critical to avoid
bias in results, disentangle the effects of technical variance, including false positives
(contamination) and false negatives, and increase the capacity of taxa detection in
particular of rare species;

• the use of negative and positive controls (e.g., mock communities) all along the metabar-
coding analytical chain;

• the use of Ethanol 95–96% for sample preservation, or DMSO buffer in the particular
case of marine sessile fauna retrieved from ARMS;

• the predominant use of DNA isolation kits. In particular, the PowerMax Soil isolation
kit allows DNA extraction of samples from either marine or freshwater environments
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and up to 10 g of biomass, generating high-quality DNA from a wide range of environ-
mental matrices (sediment, water), and from bulk organismal samples with variable
phylogenetic compositions. The downside is the high cost of these kits, which may
limit the ability to implement metabarcoding-based approaches as extensively as
desired, particularly in certain regions of the globe where running costs are highly
limiting. Cost-effective alternatives, such as the use of non-commercial protocols
(e.g., modified salt DNA extraction) can also be adopted, as long as the high-quality
of the DNA extracted, at the end of the step, is ensured. When possible, method
validation should be performed with mock communities.

• We highly recommend the use of more than one marker region, and more than
one primer pair because freshwater and marine macroinvertebrates are typically
phylogenetically diverse. However, in the impossibility of using two markers, priority
should be given to COI, which has the broadest coverage in reference libraries, allows
identification at the species level for most metazoans, and these are essential in
benthic monitoring and for applying many indices based on macroinvertebrate taxa.
When possible, in silico evaluations should be conducted, in addition to primer
validation with mock communities.

• Finally, standardized sampling is also highly desirable for allowing comparable de-
scriptions of biodiversity in aquatic ecosystems and can also greatly benefit biomon-
itoring through DNA metabarcoding. In fresh waters, sampling should follow a
standardized protocol that is usually implemented for ecological quality assessment
based on morphological identifications (i.e., standardization of sampler type and pro-
cedure, mesh size, sampling period, distribution of sub-samples by instream habitats,
and sub-sampling methods) [52,151]. Among other possibilities, for assessing hard-
bottom communities in marine ecosystems, the deployment of artificial structures (e.g.,
ARMS, ASUs) for fixed periods of time, in combination with DNA metabarcoding,
is very promising for achieving long-term or high-frequency monitoring.

In conclusion, the use of metabarcoding in monitoring aquatic ecosystems will con-
tinue to require scientific collaboration and coordination among researchers, in particular
for calibrating methodologies among different labs [20]. Metabarcoding serves a vari-
ety of purposes ranging from water quality to ecosystem conservation and restoration
assessments through NIS detection. Its throughput, accuracy, and taxonomic resolution
capabilities make it a prime candidate for becoming the workhorse of aquatic biomonitor-
ing during the next years, as morphology-based macroinvertebrate assessments have been
so far. However, one of the greatest challenges is related to end-user confidence and legal
implementation [18,152,153]. For this reason, it is vital that end-users recognize the power
and the limitations of existing tools, to know how (e)DNA metabarcoding works and what
it can offer beyond existing methods, and what are the limitations of the technique [153]. Be-
cause there are key differences between metabarcoding and morphology-based approaches
(e.g., detection capability and taxonomic resolution versus capturing species abundance
data), extensive benchmarking of the former against the latter is needed to understand
the impact of these differences in the outcomes of the bioassessments, especially when
one considers the long-term bioassessments generated using the morphological approach
along the past decades.

Lastly, it is indispensable that manuals be created with information on how the tool
should be best used, accounting for error minimization and quantification, how to interpret
the results, and how they can influence decisions on best practices and decision-support
frameworks [21,153]. Clear communication among the diverse partners involved (re-
searchers and managers) in all stages of the research (i.e., protocols definition, samples
collection, laboratory analyses, data analyses, and result interpretation) would be also
essential for a successful implementation of molecular methods in biomonitoring [152].

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
441/13/3/331/s1, Table S1: List of publications used to retrieve the information used to conduct
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the current review. * Publications added by the authors that were not retrieved during the search,
Table S2: References and information retrieved from the 90 publications employing DNA metabar-
coding in aquatic ecosystems biomonitoring using benthic macroinvertebrates, Table S3: Markers loci
and targeted specific regions within each locus, primer pairs, and approximate fragments length (bp)
and no. of studies that used each primer pair in (F) fresh waters and (M) transitional/marine waters.
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