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Landslides are frequent and widespread destructive processes causing casualties and
damage worldwide [1,2]. The majority of the landslides are triggered by intense and/or
prolonged rainfall [3]. Therefore, the prediction of the occurrence of rainfall-induced
landslides is an important scientific and social issue. To mitigate the risk posed by rainfall-
induced landslides, landslide early warning systems (LEWS) can be built and applied at
different scales as effective non-structural mitigation measures [4]. Usually, the core of
a LEWS is constituted of a mathematical model that predicts landslide occurrence in the
monitored areas [5–7]. In the last decades, rainfall thresholds have become a widespread
and well-established technique for the prediction of rainfall induced landslides, and for the
setting up of prototype or operational LEWS at regional scale [8–11]. A rainfall threshold
expresses, with a mathematical law, the rainfall condition that, when reached or exceeded,
is likely to trigger one or more landslides in a given area. Rainfall thresholds can be defined
with relatively few parameters and are very straightforward to operate, because their
application within LEWS is usually based only on the comparison of monitored and/or
forecasted rainfall with the identified critical conditions. Because of these advantages, the
technique of rainfall thresholds has received growing attention from the early 1980s of
the last century to present. To date, rainfall thresholds have become the most widespread
method to develop (operational or prototypal) regional scale warning systems irrespective
of physical settings, landslide characteristics, and technological level of the countries
financing research programs and applications [10,11].

Despite that, the technique is still affected by some limitations, making the topic a
prolific research field for the landslide community. Among the most cogent research trends:
the evaluation and reduction of possible sources of uncertainties [12,13]; the reduction
of the false alarm rate committed by the models [14]; the strife for improving quantity
and quality of input data [15]; the definition of standardized and objective methods of
analysis [16,17]; the comparison between different possible rainfall parameters to identify
the optimal ones for each case of study [18]; the attempts to enhance the performances of
the thresholds by the joint use of instrumental monitoring [19]; the combination of rainfall
thresholds into more complex forecasting systems combining different techniques, among
which landslide susceptibility zonation [20,21] and antecedent soil conditions analyses [22];
the tests with hydrological parameters instead of the classical rainfall parameters [23,24];
the experiments on the exportability of consolidated models to completely different test
sites [25].

In this wide panorama of open research questions, the present special issue can con-
tribute to the advancement of the state of the art, as some of the aforementioned criticalities
are tackled in the papers collected. Indeed, this special issue collects contributions about
recent research advances or well-documented applications of rainfall thresholds, as well as
other innovative methods for landslide prediction and early warning. All contributions are
focused on the development of LEWS or are preparatory studies on forecasting models
with the perspective of future operational implementations.

Water 2021, 13, 323. https://doi.org/10.3390/w13030323 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-6030-1046
https://orcid.org/0000-0002-1605-7701
https://orcid.org/0000-0001-8930-5705
https://doi.org/10.3390/w13030323
https://doi.org/10.3390/w13030323
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13030323
https://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/13/3/323?type=check_update&version=2


Water 2021, 13, 323 2 of 5

Moreover, besides scientific advances, the development of the recent literature high-
lights the interest, by an international audience, of new case studies, new approaches, new
objectives (reliable results before establishing an operational LEWS). In this regard, the
special issue collects case studies from three continents and a wide range of countries:
Bhutan, China, India, Italy, Slovenia, Taiwan, and a site across Democratic Republic of
Congo, Uganda, Rwanda, and Burundi. This allows accounting for very different climatic
and geological settings, two relevant factors in the definition of critical rainfall conditions
for landslide initiation. Moreover, the papers account for scales of application ranging from
the local scale to the national scale. An interesting advance, useful especially in data-scarce
regions, is represented by the use of satellite-based rainfall estimates and freely available
global landslide catalogues in the calculation of the thresholds. Interestingly, contributions
focused on different approaches useful in landslide analyses (e.g., numerical modeling,
susceptibility and hazard analysis) are also proposed in this special issue to cover a broad
spectrum of studies.

To better address the readers towards the content of the special issue, a short summary
of each published paper is provided hereafter.

− In the paper by Yang and co-authors [26], the authors presented the Runout modeling
of the Yining landslides (China), made using DAN-W software. Triggering factors of
the landslide have been identified in a combination of snow melt and geological setting
of the slopes. The numerical model was calibrated using field survey and laboratory
tests results and allowed the researchers to estimate the velocity of the landslide, which
reached a maximum of 20.5 m/s and to estimate the duration of the paroxistic event in 22 s.
The outcomes of this paper showed the importance of slope monitoring, since landslide
triggering can be a quick event, leaving no time for countermeasure operations once the
landslide started its mobilisation.
− Dikshit and co-authors [27] investigated the rainfall conditions that can lead to landslide
triggering in the Chukha Dzongkhag area (Buthan) and defined a rainfall threshold based
on E-D (cumulative rainfall-duration) relationship. They also discovered that 10 days and
30 days antecedent rainfall play an important role in the occurrence of landslides in the
investigated area.
− Abraham and co-authors [28] try to define empirical rainfall thresholds for the Idukki
area in India, to set the first step to establish a landslide early warning system. Two types of
thresholds have been defined: (i) classical I-D (mean rainfall intensity-duration) thresholds,
(ii) threshold based on short (1 day) and long duration rainfall (from 3 to 40 days). One
of the main outcomes of the paper is the clear importance of antecedent rainfall (30 and
40 days before failure) in the triggering of landslides for the investigated area.
− Using satellite-based rainfall estimates from TMPA 3B42 Real-Time v.7 and information
on 184 dated landslides in the period 2001–2019, Monsieurs and co-authors [29] applied the
modified antecedent rainfall–susceptibility threshold approach (previously proposed by
the same authors [30]) to calculate and validate regional rainfall thresholds in a data-scarce
region: the western branch of the East African Rift. The method was here tested and
improved by means of newly available regional-scale susceptibility data: a regional model
and a continental model. The main methodological novelty is the stratified selection of data
linked to the lowest landslide-triggering antecedent rainfall values. A statistical analysis
on the effect of outliers in small datasets on the estimation of parameter uncertainties with
bootstrapping statistical technique is a valid methodological corollary to this work.
− The contraposition between empirical and physically-based thresholds includes different
methods (the first ones are defined using past rainfall and landslide data, the latter integrate
stability analyses and hydrogeological modeling) and applications (the first ones are mostly
applied at a regional scale, while the second ones are mainly used at a local scale). Bordoni
and co-authors [31] present a comparison between thresholds defined with the two methods
using landslide and rainfall data collected in the period 2000–2018 in the Oltrepò Pavese,
in Northern Italy. They used the CTRL-T tool [17] to define the empirical thresholds and
the TRIGRS model [32] to calculate the physically-based thresholds. After validating both



Water 2021, 13, 323 3 of 5

thresholds against an independent dataset, the authors observed that the physically-based
thresholds discriminate better than empirical thresholds the landslide triggering and non-
triggering rainfall events. This is due mostly to the fact that the adopted physically-based
model considers the antecedent soil hydrological conditions, which are known to have a
primary role in slope instability.
− Lin and co-authors [33] presented the definition of SWI-D (soil water index-duration)
thresholds to define the condition of landslide triggering in Taiwan. In this paper, besides
the classical rainfall thresholds, the authors proposed an approach based on the definition
of soil water content, calculated by the use of a 3-layers tank model, where each tank
represents a soil layer, from ground surface to the bedrock. Results of the work highlighted
that the water content of the deeper layer is more relevant in the triggering of large
landslides and therefore that their initiation is more related to long rainfall events rather
than shorter ones.
− This study proposed by Dikshit and co-authors [34] presents a landslide hazard assess-
ment in a 180 km long road corridor in Bhutan, combining (i) rainfall thresholds based on
daily rainfall amount and 30-days antecedent rainfall; (ii) temporal probability analysis
of landslide triggering using a Poisson probability model; (iii) landslide susceptibility
map developed with the AHP (Analytical Hierarchy Process) method. The study gains
relevant knowledge for the strategic infrastructure analyzed, and poses the basis for further
developments of the research towards an operational landslide warning system in the area.
− He and co-authors [35] defined four groups of national rainfall thresholds for landslide
occurrence in China based on 771 landslide events occurred in the period 1998–2017. In
particular, they used the satellite precipitation product produced by the NOAA’s (National
Oceanic and Atmospheric Administration) Climate Prediction Center Morphing technique
(CMORPH) and calculated both rainfall event–duration (E–D) and normalized (by mean
annual precipitation) (EMAP–D) rainfall thresholds. Moreover, they defined thresholds
for rainy season and non-rainy season, and thresholds for short (<48 h) and long (≥48 h)
durations. The main findings retrieved from the results are that: (i) the slope of the
thresholds for long durations is larger than that for short durations, and (ii) the thresholds
in the non-rainy season are generally lower than those in the rainy season.
− The study proposed by Abraham and co-authors [36] faces the operational difficulties
encountered when trying to establish a regional scale I-D threshold in an area monitored
by a sparse rain gauge network at daily temporal resolution. The paper investigates the
sensitivity of the results to different model configurations adopted in selection of the rain
gauges, in defining the rainfall intensity and in dividing the area into smaller sub-zones.
After a comparative validation, the authors conclude that in their case of study, selecting
the rain gauge based on maximum average intensity performs better than choosing the
nearest rain gauge.
− Abraham and co-authors [37] applied in a sub-Himalayan test site in India a state-of-the-
art rainfall threshold model called SIGMA [38,39], which is based on statistical anomalies
observed in varying time-windows of antecedent rainfall to account for both shallow and
deep-seated landslides. The application is interesting because SIGMA was purposely
developed for an Italian test site affected by both kinds of landslides and was conceived
to be operated using rainfall measurements at daily temporal resolution: this is the first
reported attempt to apply it in other geographical climatic settings. Results are encouraging
since a quantitative and comparative validation shows that the effectiveness of the model
is higher than other approaches based on I-D and E-D thresholds.
− Given that a recent validation of the prototype landslide early warning system in
Slovenia highlighted the need to define new reliable rainfall thresholds, Jordanova and
co-authors [40] addressed this task taking advantage of a consolidated tool [17] that allows
the automated calculation and validation of empirical, frequentist thresholds at different
non-exceedance probabilities. Other than new national thresholds (compared with other
regional, national, and global thresholds), the authors determined additional thresholds
for two different environmental classifications: the first based on three classes of mean
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annual rainfall and the second based on four lithological units. Through these additional
analyses, two findings are observed: (i) the area with the highest mean annual rainfall has
the highest thresholds, which indicates the landscape adaptation to higher average rainfall;
(ii) the areas characterized by rocks prone to weathering have the lowest thresholds signal
that the lithology influences landslide occurrence conditions.

The contributions collected in the special issue "Rainfall Thresholds and Other Ap-
proaches for Landslide Prediction and Early Warning" provide interesting understanding
and new perspectives on the very wide topic of rainfall thresholds for landslide predic-
tion. The different aspects covered in this special issue demonstrate that the definition,
validation, and application of rainfall thresholds are complex tasks which require detailed
data and rigorous methods. The research contributions deal with both empirical and
physically-based approaches, use different sources for landslide and rainfall data and are
implemented in different study areas with diverse temporal scales.

Some important aspects were not covered in this special issue: the topic of landslide
initiation is still open for new ideas and innovations. However, we think that this collection
of manuscripts could be useful for the community involved in operational prediction of
landslides and landslide early warning at all levels [41], from the academic sector to the
practitioners and end-users.
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