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Abstract: Rainfall runoff modeling has been a subject of interest for decades due to a need to
understand a catchment system for management, for example regarding extreme event occurrences
such as flooding. Tropical catchments are particularly prone to the hazards of extreme precipitation
and the internal drivers of change in the system, such as deforestation and land use change. A model
framework of dynamic TOPMODEL, DECIPHeR v1—considering the flexibility, modularity, and
portability—and Generalized Likelihood Uncertainty Estimation (GLUE) method are both used in
this study. They reveal model performance for the streamflow simulation in a tropical catchment,
i.e., the Kelantan River in Malaysia, that is prone to flooding and experiences high rates of land
use change. Thirty-two years’ continuous simulation at a daily time scale simulation along with
uncertainty analysis resulted in a Nash Sutcliffe Efficiency (NSE) score of 0.42 from the highest
ranked parameter set, while 25.35% of the measurement falls within the uncertainty boundary based
on a behavioral threshold NSE 0.3. The performance and behavior of the model in the continuous
simulation suggests a limited ability of the model to represent the system, particularly along the low
flow regime. In contrast, the simulation of eight peak flow events achieves moderate to good fit, with
the four peak flow events simulation returning an NSE > 0.5. Nonetheless, the parameter scatter plot
from both the continuous simulation and analyses of peak flow events indicate unidentifiability of all
model parameters. This may be attributable to the catchment modeling scale. The results demand
further investigation regarding the heterogeneity of parameters and calibration at multiple scales.

Keywords: streamflow; dynamic TOPMODEL; DECIPHeR; GLUE analysis

1. Introduction

A work of hydrological modeling research is an interactive learning of data and the
knowledge—i.e., process understanding, theory, and a model structure [1]. Modeling
has greatly improved by increases in computing power and sophistication within the last
20 years, not only in reference to the computing capability but also the availability of remote
sensing data [2] that supplement field measurement data. These developments result in an
evolution of hydrological models into more sophisticated forms, particularly in terms of
model complexity and spatial scale such as in a physically based distributed model [3,4].
However, the higher the complexity of a model structure may be, the more data is required
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and the greater number of parameters needed to be calibrated and validated [2]. For a
large catchment with data scarcity issues [5,6], a model with less structural complexity, for
example that in the form of a distributed conceptual model, may be a better alternative.

A conceptual model is built based on a perception of a complex system that is de-
scribed into mathematical equations and coded for a computer simulation [7]. The physical
process is simplified into components of storage and transfer between them that are con-
trolled by the water balance equation [5,6]. Conceptual rainfall runoff models such as HBV,
PDM, and TOPMODEL are commonly used due to their simplicity and practicality yet
at the same time having a sound scientific basis [8,9]. Nevertheless, all models have their
own limitations and, furthermore, they may not produce comparable results. TOPMODEL,
for example, was developed for a hillslope and found to underperform in simulations
of groundwater levels and the distribution of saturated areas [10]. Nevertheless, further
improvements to the original model were made by adding a groundwater term as a local
storage deficit based on a field survey produced good model performance [11]. Later, a
dynamic version of the model introduced the kinematic wave solution aiming to remove
the rigid assumption required for the original version that the water table is defined as
a succession of steady states, neglecting the groundwater temporal response [12]. TOP-
MODEL, intentionally introduced as a concept [7], was made publicly available by the
recent works of the Dynamic TOPMODEL (DynaTOPMODEL) framework development in
R [13] and Dynamic fluxEs and ConnectIvity for Predictions of Hydrology (DECIPHeR v1)
coded in FORTRAN [14].

Both frameworks offer the advantages of accessibility, modularity, and portability [15].
These allow the needed interactive learning previously mentioned for an individual catch-
ment. This is achieved by taking into account the issue of the uniqueness of a catchment [7],
data availability, and model structure adaptation to a certain application in practice [9].
Just released in 2018, DECIPHeR version 1, which is used in this study, is a flexible model
framework available as an open source via github. The distributed concept in the model is
explained ranging from the Hydrological Response Unit (HRU) definition being lumped—
whereby a single HRU covers the entire catchment—to fully distributed where an HRU is
assigned for every grid cell [14]. DECIPHeR, which was on purpose developed for a wide
range of spatial and temporal scales [14], allows simulation on multiple catchments and
the experimentation of new concepts to capture the complexity and the heterogeneity in a
catchment system through additional model structure and related parameters [14]. A single
structure is introduced in the model with a built-in option of Monte Carlo sampling to
generate the random parameter sets distribution used for uncertainty analysis.

The Generalized Likelihood Uncertainty Estimation (GLUE) methodology of the
uncertainty analysis frameworks in hydrological modeling [16] can be used to analyze
model parameter uncertainty and understand model behavior. There have been arguments
that the method is subjective mainly for the threshold assumption [16,17] and suggestions
to value the method as a weighted sensitivity analysis instead of a probabilistic method [18].
The threshold assumption is intended as a boundary of acceptability, where values above
the threshold are considered to be behavioral [19] and are further used in the uncertainty
analysis. The method where many sets of parameters provides acceptable simulation
results—a concept known as equifinality [19,20]—is common [21,22] for assessing the
model’s behavior toward the observed behavior of the system.

There have been few applications of the TOPMODEL based model such as DECIPHeR
to a tropical forested catchment. The original TOPMODEL was reportedly used in a variety
of small sized tropical catchments [23,24]. It has been also applied in Peninsular Malaysia,
Malaysian Borneo and Thailand for short periods of observed data [25–27]. The model was
mostly applied on small catchments [13,28,29], some are due to field measurement and
used in the model analysis [11,26,27,30]. The implementation on a large scale catchment
has also been attempted [31] with modification of block-wise [32], multiple catchment [14]
and global scale applications [33].
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The study area, Kelantan catchment (12,142 Km2) Peninsular Malaysia, is a large
catchment with a tendency to experience extreme flooding [34] and significant land use
change. Recent flood events were in 2014 and 2017 [35,36]. The highest water level recorded
in the Kelantan catchment was in 2014, which highlights the important work of hydrological
research [34]. A land use classification study for 20 years, from 1994 to 2014, revealed
a 13.7% decrease in forest land and a 6.2% increase in oil palm plantations [37] in the
catchment. These spurred many hydrological and modeling studies to be conducted in the
area [38,39]. Some modeling studies on the Kelantan catchment adopted semidistributed
approaches like HEC-HMS in modeling runoff using the Soil Conservation Service Curve
Number (SCS-CN) method [39–41]. There have been studies that reported good model
performance using the method [37,39]. Other methods such as the Integrated Flood
Analysis System (IFAS) [38] have also been applied. However, the CN method, which
imposes an empirical approach, has been developed based on humid rain-fed agricultural
areas and is noted to performing poorly for a forested catchment [42]. Other model
applications in the Kelantan catchment are either lumped conceptual models [43,44] where
the performance varied with poor validation (R2 < 0.5), or based on machine learning
approaches [45], where the performance is better (NSE > 0.9). Unlike in the lumped model
where the processes were not made explicit, the machine learning is able to “learn” the
surface-subsurface complexity from the data but is not spatially identified.

However, uncertainty analysis is a significant missing aspect of these existing works,
which treated models as robust prediction tools rather than a means of improving system
understanding. It is obvious that the entire process of modeling either the simplified or the
complex assumption does inherit uncertainty due to data or/and a model assumption [16].
The common practice in a model calibration has been accepting a set of parameters based
on performance measure values. On the other hand, in the uncertainty approach, the
confidence interval is built based on the numbers of parameter sets considered to be
behavioral toward the observed value of the system [19]. The range of parameters, instead
of exact values, offers a wider scope of understanding the system.

The objective of this paper is to test the DECIPHeR model framework in a typical
tropical forested catchment to assess the performance and the uncertainty of the model
toward the system. The model is applied for the continuous time period from 1985 to 2016;
an analysis on shorter segmented peak flow periods are also presented. The assumption
of homogeneous parameters is used, neglecting the spatial complexity of the system. The
model simulation is analyzed in terms of the uncertainty intervals to gain understanding
on the differences between performances during different events and towards identifying
the model parameters responsible for the deviations from the observations.

2. Materials and Methods
2.1. Study Area

The Kelantan catchment is located in the northern part of Malaysia Peninsular,
geographically bounded between 4◦30′ N to 6◦15′ N latitude and 101◦ E to 102◦45′ E.
The main tributaries are the Nenggiri, Galas, Lebir and Kelantan Rivers, Figure 1. The
mean annual precipitation of the peninsula is around 2300 mm [46]. Considering the length
of streamflow data availability, the catchment is delineated given the output at Station Sg.
Kelantan at Guillemard Bridge. The delineated area is calculated using the Digital Terrain
Analysis (DTA) in the DECIPHeR as 12,142 Km2. The population of Kelantan based on
2015 data is 1.718 million [47] with approximately one third of the population living in the
downstream area of the catchment [34], which is the most flood-prone.
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(a) (b)

Figure 1. (a) Kelantan River network and catchment with rainfall and streamflow stations, (b) The Kelantan catchment
location in Peninsular Malaysia.

2.2. Input Data

The main input data required by the model are: Digital Elevation Model (DEM),
rainfall data, discharge data and evapotranspiration data. The DEM used is the Shuttle
Radar Topography Mission (SRTM) 1 Arc-Second Global elevation data retrieved from
https://earthexplorer.usgs.gov provided by the United State Geological Survey (USGS).
The data set comes in tiles of 1 degree size, 30 m of spatial resolution and WGS84 Geo-
graphic (EPSG: 4326) [48]. The data set has been recognized by the hydrologic modeling
community for its near-global coverage and high-resolution [49]. It is also reported that the
quality of the SRTM data of the X-SAR band, after being validated with the reference DEM
data set of two sites in Southern Germany, is sufficient for the TOPMODEL application on a
medium scale catchment [49]. Hence, no further validation process was taken in this study.

The historical daily data of rainfall and discharge are acquired from The Department of
Irrigation and Drainage (DID) of Malaysia. Ten rainfall gauge stations within the catchment
and the streamflow station at the Guillemard Bridge of 32 years period from 1 January 1985–
31 December 2016 are used for the model driving data. The gauges’ spatial distribution is
shown in Figure 1. The gauged rainfall is converted to gridded rainfall after applying the
Thiessen Polygon method for the gauges’ areal coverage. The polygon is aggregated into
the grid size of the DEM, with every grid assigned to hold the value of the related gauges.
The gauges were selected considering the least missing data record.

Global Land Evaporation Amsterdam Model (GLEAM) datasets, which provide dif-
ferent components of evapotranspiration separately based on satellite data [50,51], is also
used in this study. A global validation was already applied to the provided data set using
a large database from 2325 in situ sensors and 91 Eddy-covariance towers which returns
correlation between 0.78 and 0.81 for evaporation fluxes [50]. The data retrieved is the
potential evaporation in unit mm/day from GLEAM v3 which is stored in 3D array, on a
0.25◦ × 0.25◦ latitude-longitude grid and in a daily temporal resolution. The grid is also
converted into the projection of the DEM and aggregated into the similar grid size. The
data value is resampled into the new grid using bilinear interpolation.

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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2.3. The Concept and the Framework of the Rainfall Runoff Model

The original conceptual rainfall-runoff TOPMODEL has been known for the hydro-
logical similarity points theory based on the topographic index ln(a tan β), assuming the
saturated zone as a result of the successive steady state of the upslope area [7,52]. The
dynamic version has been introduced by replacing the assumption of quasi steady state
with the kinematic wave routing, while keeping the exponential transmissivity assumption,
controlled by parameter SZM, and truncated by parameter Smax [12–14].

The model, which was introduced as a concept rather than a tool [53], has not been
publicly available until recently via the Dynamic TOPMODEL in R [13] and the DECIPHeR
model framework which is coded in FORTRAN [14]. The DECIPHeR framework used in
this study offers more advantages compared to the R version, which is applicable only for
a single catchment. The framework was developed with the flexibility allowing users to
explore a wider system from a single catchment up to multicatchments at a continental
scale to modify the model structure by embedding a different conceptualization and to vary
parameters recognizing a site specific issue by adding variability of spatial data layers such
as land cover. The model is run in two steps, the DTA and Rainfall-Runoff Model. Using
DEM, gauges’ coordinates, rainfall data grid, and the potential evapotranspiration data
grid, the DTA is run to produce: (1) HRUs and the connectivity in the landscape, (2) river
network and the routing properties, and (3) the extent and the simulated output location.

The assumption of the model is that the lateral fluxes in the saturated zone of an each
elemental effective upslope contributing area a in the topographic index is numerically
solved using the kinematic solution [12]. The flow is proportionally distributed between
HRU and a river reach using a matrix, Equation (1), weighed by accumulated area and
slope. Each HRU contains information of topographic information, inputs, the model
structure, and the parameters set [14]. A wide range of parameters is used for the Monte
Carlo sampling, as introduced in the DECIPHeR and presented in Table 1.

W =

w11 · · · w1n
...

. . .
...

wn1 · · · wnn

 (1)

where ∑n
i=1 wij = 1.

Table 1. The dynamic TOPMODEL parameters range.

Parameter Description Lower Limit Upper Limit

SZM [m] Form of exponential decline in conductivity 0.001 0.07
ln(T0) ln[m2 h−1] Effective lateral saturated transmissivity −7 5

Srmax [m] Maximum root zone storage 0.005 0.15
SRinit [m] Initial root zone deficit 0 0.01
Td [m h−1] Unsaturated zone time delay 0.1 40

CHV [m h−1] Channel routing velocity 250 4000
Smax [m] Maximum effective deficit of subsurface saturated zone 0.2 3

RR is run based on the HRU and routing files from the DTA’s result, time series data of
rainfall, and potential evapotranspiration. At the initialization stage, a mean area weighted
discharge calculated from the mean of the data is applied as the initial flow, which is
assumed to only occur due to the subsurface flow. The structure of the model defines
into three stores, root zone, unsaturated zone, and saturated zone. Precipitation (P) and
Evapotranspiration (ET) are directly added to and removed from the root zone. The ET is
calculated based on the potential evapotranspiration data (PET) and is controlled by the
Srmax parameter, as shown in Equation (2).

ET = PET × (Srz/Srmax) (2)
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where Srz is the maximum specific storage.
The excess of rainfall from the root zone storage is either added into the unsaturated

zone to the full capacity or stored into saturation excess storage. The unsaturated flux is
calculated using Equation (3), controlled by the time delay parameter Td.

quz = Suz/(Sd × Td) (3)

where Suz is the unsaturated zone storage and Sd is the storage deficit.
The changes of storage deficit over time of each HRU, Equation (4), are defined by the

input fluxes from upslope HRU qin, recharge fluxes from unsaturated zone quz, and output
fluxes from downslope HRU qsat.

dSd
dt

= qsat − qin − quz (4)

The qsat, given the exponential transmissivity profile SZM, can be written as
Equation (5) [13].

dq
dt

= − q
SZM

dSd
dt

(5)

where q is fluxes per unit area. The equation is derived from the kinematic formulation
iteratively solved and applied proportionally using Equation (1) for the entire HRU and
river reach. The flux value is added to subsurface store constrained by the Smax parameter
before the excess is stored into the excess storage. The headwaters produced at the river
network are then routed to the outlet [14].

In this study, the default model structure of the framework is applied homogeneously
for each HRU. The model structure modification—excluded from the current study scope—
is required for adding the complexity of the system, along with additional parameters
related to the modified concept. However, a different parameter set can be assigned for
an HRU based on a particular spatial layer such as land use. In this case the output fluxes
may better represent the heterogeneity of rainfall runoff response of a catchment.

2.4. GLUE Analysis

GLUE method was introduced based on the concept of finding a global optimum
acceptable parameter sets of behavioral model in the model space known as the equifinality
concept [7,20,54]. Simulations applied based on Monte Carlo sets of parameter samples,
which are required in the thousands, to produce the range of likelihood weighted prediction.
The prediction quantiles at any time step t is represented by Equation (6)

P(Q̂t < q) =
N

∑
i=1

L[M(Θi)|(Q̂i,t < q)] (6)

where M(Θi) is the ith Monte Carlo sample, that the likelihood ∑ L[M(Θi)] = 1, while Q̂i,t
is the variable of interest, and N is the number of behavioral samples [7].

The most common performance measure used either in optimization or GLUE is the
Nash–Sutcliffe Efficiency (NSE), [19,22,55], Equation (7).

NSE = 1− ∑N
i=1[Qobs(i)−Qsim(i)]2

∑N
i=1[Qobs(i)− Q̄obs]2

(7)

where Qobs is the observed discharge, and Qsim is the model simulated discharge. The
efficiency which determines the relative value of error variance to the observed data
variance, may range from −∞ to 1. The values close to 1 indicate higher model accuracy.
Aside from NSE as the relative indicator, RMSE and R2 are used as the absolute and the
graphical indicator consecutively and ideally to be included in a model evaluation [56].
To get the average tendency of the simulated result toward the observed, PBIAS is also
calculated in the evaluation.
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The uncertainty assessment in GLUE implicitly accounts all sources of uncertainty of
the model structure or data input [19], regardless of the opinion of the subjective definition
on the cut-off threshold [16]. This suggests that the method is not to be used for future
interval predictions [17]. In this study, the uncertainty boundary is weighted to the NSE
threshold value 0.3 [8,57].

3. Results and Discussion

The DTA delineates 12,142 Km2 catchment based on the given output station at Jam
Guillemard Bridge. It returns 2415 HRUs which is an area ranging from 0.0009 Km2 to
56.50 Km2, classified based on:

• Topographic classifier: three slope classes, three area classes, and five elevation classes
• 10 Rainfall grid classes—gauges data gridded after Thiessen polygon applied
• 29 Potential evapotranspiration grid classes

The spatial variability applied for the computational efficiency are subjected to the
catchment and the input data grid scale. Adding more classes may return a higher number
of HRUs, which is not important for the current study purpose. The model is run for 5000
simulations to produce the Monte Carlo sampling of the parameter sets.

3.1. Streamflow Simulation and Model Performance

The 32 years of data simulated are presented in Figure 2 in terms of the Flow Duration
Curve (FDC). The simulated line is from the highest ranked parameter, which returns
NSE = 0.42. The 90% upper and lower boundary are weighted based on the rejection
threshold NSE = 0.3. Low flows up to the 48% percentile exceedence are underestimated
by the simulation while flows higher than 35% percentile exceedence is overestimated
even by the lower 90% boundary. Overall, 25% of the measurement falls within the GLUE
uncertainty boundary. The model FDC lines decline steeper than the observed one, which
indicates the model produces higher surface flow than subsurface flow—the slope defines
the characteristic- [58]. The model suggests that the flow is overestimating high flow and
underestimating low flow. It maintains water balance—of precipitation, evaporation and
discharge—in producing the surface runoff while the subsurface flow and storage are
defined by the parameters. The underestimating of the subsurface flow in this case is the
result of applying homogeneous parameters to the catchment. However, the variability of
soil permeability represented by T0 and SZM in terms of nonmonotic exponential decline
is difficult to define in the TOPMODEL structure and in parameterisation [26].

The flatter FDC of the observed streamflow compared to the simulation suggests the
stream to be heavily dominated by subsurface flow which is not well captured by the
model. This result corroborates the poorer model performance in groundwater-dominated
catchments in the application across Great Britain [14]. Groundwater layers are observed
to occur in the catchment affecting the subsurface flow. Based on the simplified hydro-
geological map of the Peninsular Malaysia [59,60], sandstone and volcanic rock aquifers
surrounded by igneous rock aquifers underlie the Kelantan catchment. These groundwater
layers, particularly from upstream areas, play a vital role in controlling the low flow [61]
derived from subsurface flow, which is addressed in the model as saturated fluxes de-
fined by the parameters SZM and the saturated transmissivity T0 constraint to Smax value.
The homogeneous parameter applied in the current work does not consider the spatial
variability of the groundwater layer. The ranged values assigned to the parameters do
not represent the layer variability but instead are for the uncertainty computation. This
suggests that better representation of groundwater recharge within the model is needed to
improve the subsurface flow and supports the previous argument for the improvement of
the groundwater dynamics [14].
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10,000

1,000

Figure 2. Flow Duration Curve plot of the 32 years observed data, simulation result of the highest rank parameter, and the
GLUE uncertainty boundary.

The simulation result of the highest ranked parameter set is plotted for one peak
of year 1986–1987, presented in Figure 3. Graphically the simulated streamflow is able
to locate the fluctuations of the observed peaks. Along the 32-year simulation, 11 of the
highest peak events are underestimated while the rest are overestimated. In both cases,
the model simulation overestimates low flow before the peak but fall below the observed
line after the peak recession. Since the stormflow strongly depends on the antecedent
moisture [62], the low flow overestimation before the peaks are suspected to be due to the
initial soil moisture value during dry period subjected to parameters Srmax, SRinit, Smax.
The deep recession after the peak is due to the transmissivity exponential function, where
the parameter Szm controls the fall of the line. Meanwhile, the underestimation after the
peaks is due to the soil state of the wet period.

The model performance evaluation returns NSE = 0.42, R2 = 0.47, RMSE = 508.15 m3/s
and PBIAS =−8.8. The NSE and the R2 below 0.5 are considered as not satisfactory for
daily streamflow simulation [63,64]. The magnitude of the RMSE is also evidence of the
poor model performance. However, PBIAS being less than 10% is considered to be a good
rating [64], whereas the negative value indicates the model overestimation bias [64,65].
In many modeling practices, these measures could justify a model be rejected. However,
since the model here is aimed as a tool to gain a better understanding of the hydrological
processes in the system, these patterns in the result help identify the need for the most
relevant data and for the model to be further investigated.

It is inevitable that the driving data contains errors to which the uncertainty analysis
is applied and parameter identification can only compensate to some level. The precipi-
tation data from the 10 stations contain missing data of up to 15% while the streamflow
observation data for the 32-year period contains 7% missing data, which may be affecting
the analysis. Analysis of the water balance in the observation data set reveals that runoff
constitutes 45% of the rainfall, whereas evapotranspiration makes up 49%, leaving the
remaining 6% to be in storage. This suggests underestimation of rainfall within the input,
which may be contributing to the modeling accuracy. Furthermore, the point rainfall is
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interpolated over the catchment area which may introduce additional uncertainty. The
simulated fluxes indicate 50% runoff, 5% higher than that of the observed, leaving only 1%
stored. Additionally, there is also a possibility of error in the GLEAM product of evapo-
transpiration used. It has been globally validated, but not locally corrected, for Peninsular
Malaysia. Past work looking into bias and correlation with the in situ measurements of the
GLEAM products in temperate countries has shown a bias of 10–30% in Switzerland [66]
and correlation of 0.76 in The Netherlands [67].

a

b
8,000

6,000

4,000

2,000

Figure 3. (a) The mean areal precipitation, (b) The observed and the simulated streamflow of the highest rank parameter set.

The result of segmented simulation for wet periods having peaks over 6000 m3/s
within the 32 years time length is tabulated in Table 2. The length of the simulation range
varies based on data quality considerations. The eight (8) peaks of data are numbered
based on the sequential year. Similar rejection criteria of NSE 0.3 is applied. Of the eight
peaks, only two are rejected as being nonbehavioral, that is, none of the measurements fall
inside the GLUE uncertainty limits. Meanwhile four peaks, Peak 1, 3, 6, 8, perform with a
satisfying result, producing NSE > 0.6, R2 > 0.7. However, the measurement to fall inside
the uncertainty limit is still below 50%. Although it is behavioral and the NSE being over
the rejection criteria, the model still poorly captures the system behavior. Lastly, for the
remaining two peaks, though considered as behavioral, the performance results are very
poor being NSE 0.4 and 0.32, while R2 0.64 and 0.48, consecutively. The magnitude of the
RMSE also indicates the poor performance of the model. Meanwhile, the PBIAS returns a
varied result of positive and negative values that is underestimating and overestimating.
Peak two and peak four having the lowest and the highest rainfall-runoff ratios, 0.36 and
0.67 consecutively, are rejected because the model is non behavioral. The other 6 peaks, with
4 peaks returning NSE > 0.5 and 2 peaks returning NSE < 0.5, are accepted as behavioral.

The six segmented behavioral model simulation plots are presented in Figure 4.
Of special note for Peak 1, Figure 4a, it includes the year 2014 characterized by a big
flood event reported [34,68] as the highest peak since year 1967 [69]. The recorded data,
however, contains missing data at the peak event, which captured the highest amount of
only 7613.5 m3/s. A study of flood risk in the Kelantan catchment between 1992 to 2014
showed that the maximum discharge at the Guillemard station is 12,900 m3/s [70]. That
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is, should the missing record of the peak value approximate 12,900 m3/s the simulation
does indeed come close to representing the peak. Referring to the segmented simulation
presented in Figure 4, the model prediction returning NSE below 0.5 are for peak events 5
and 7, Figure 4c,e, while the better simulations returning NSE above 0.5 are Peak 1, 3,
6, 8 as presented in Figure 4a,b,d,f. Simulation (c) fails to predict the magnitude of the
two highest peaks. The deviation before the peak is also high but the recession does fit
the observed. Meanwhile, simulation (e) overpredicts the first highest peak and fails to
capture the second one completely. The deviation before the peak is small but the recession
is simulated more quickly than the observed. In both events, the performance measures
are similar but the indications of model underperformance are different. Hence, the reason
why the model is able to predict some peaks but not others could not be inferred.

Table 2. The segmented simulation result of peaks over 32 years.

Peak Simulation Range (Year-Month) Rainfall-Runoff
Ratio (Q/P)

Highest Recorded
Peak (m3/s)

Numerical Goodness of Fit for the
Highest Rank of Parameter Set Measurement to Fall inside

the GLUE Uncertainty Limits (%)NSE R2 RMSE PBIAS

1 2014-06/2015-05 0.40 7613.5 0.68 0.74 448.18 −21.0 14.52
2 2012-06/2013-03 0.36 6215.5 0.17 0.34 826.43 −49.6 NA
3 2009-06/2010-05 0.50 7786.0 0.70 0.75 423.43 −18.5 28.76
4 2007-06/2008-05 0.67 8028.4 0.25 0.62 638.94 6.4 NA
5 2001-06/2002-05 0.50 6111.8 0.40 0.64 392.20 −14.1 13.97
6 1993-08/1994-03 0.57 8533.7 0.72 0.75 478.00 −12.8 38.68
7 1988-07/1989-04 0.64 9775.1 0.32 0.48 772.83 30.5 17.10
8 1986-06/1987-05 0.45 6680.5 0.78 0.81 434.26 −16.0 23.83

b

c

a

e f

d

Figure 4. The observed and the GLUE uncertainty boundary. (a) Peak 1, (b) Peak 3, (c) Peak 5, (d) Peak 6, (e) Peak 7,
(f) Peak 8.
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3.2. Analysis of Model Parameters

In spite of general model poor performance, there are sets of behavioral parameters
that indicate the equifinality of the model toward the system. The behavioral parameter
distribution are plotted using a scatterplot, presented in Figure 5 for the 32 year period
simulated. It can be seen that the scatterplots do not appear to have any pattern; instead,
the efficiency appear random across the parameter values. This supports the prior FDC
discussion that the model parameters do not represent the system well because they are
applied homogeneously throughout the catchment.

a b c

d e f

Figure 5. Scatter plot of efficiency versus behavioral parameters values (a) Form of exponential
decline in conductivity, (b) Effective lateral saturated transmissivity, (c) Maximum root zone storage,
(d) Channel routing velocity, (e) Unsaturated zone time delay, (f) Maximum effective deficit of
subsurface saturated zone, for 32 years’ simulation.

As for the segmented simulations, all the behavioral peaks addressed show similar
nonidentifiablity of the parameters. Only Peak 1’s plot is presented in Figure 6. Previous
studies of TOPMODEL and dynamic TOPMODEL application have suggested that the most
sensitive parameters are SZM, T0, and Srmax [12,13,71], which is not the case here even
though the set of parameters are being behavioral given the acceptable model threshold of
NSE 0.3. It is important to note, however, that some of the segmented simulations do return
a better performance of NSE, which indicates better parameter sets. A higher number
(i.e., 10,000 sets) is also represented in the scatterplot Figure 6b, which also shows that it
does not affect the scatter pattern.

The nonidentifiability of parameters is suspected due to the large scale of the catch-
ment where heterogeneity is inevitable. A semidistributed HRU approach could represent
a better spatial process of the system compared to a lumped or a black box model. However,
actual improvement in process understanding can only be achieved when the parameters
can be identified at more local scales. In the Kelantan catchment, more significant ground-
water recharge could be expected in the upstream forested areas. However, given that the
model is calibrated at a single point, it generalizes all infiltration processes across the entire
catchment and is unable to accurately represent the spatial variability of the hydrological
processes. This requires a modification of the model structure and additional parameters
definition. Extensive field measurements may be required to support calibration of spatial
varying parameters, otherwise the parameter space becomes too large. The effort is more
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applicable to small catchment study such as the TOPMODEL application in small Baru
River Catchment in Malaysian Borneo [27] and the field based local scale calibration of
HEC-HMS in Aspio river Italy [72].

a

b

Figure 6. Scatter plot of efficiency versus behavioral parameters values for Peak 1 (a) 5000 simulations,
(b) 10,000 simulations.

4. Conclusions

In this work, the DECIPHeR framework was tested in a representative tropical forested
catchment. In general the model’s ability to simulate the system is reasonable but limited
based on performance measures alone. However, as an interactive framework for under-
standing the hydrological processes and the modeling of the system, DECIPHeR enabled
identification of further advances to be made.
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Underperformance of the model to represent the system due to low flows can be
observed from both the continuous 32 years period and the segmented event simulations
after the peak recession. The FDC curve further confirms overall low flow estimation. The
simulation before and after the peaks suggests that soil controls on runoff may be responsi-
ble for the deviations from the observed streamflow. This is supported by the ability of
the model to correctly capture the timings of large and small peaks. The behavioral model
parameters being insensitive and unidentifiable may indicate the spatial heterogeneity of
the parameters, which is yet to be addressed by the model framework; instead a homoge-
neous parameter assumed to fit the entire catchment may only work for small catchments.
These are the considerations for further analysis of the model application introducing new
spatial layers for representing soil and landcover heterogeneity, modification in the model
structure to differentiate processes for different landcover and soils, and application of the
model at smaller subcatchments.

The conclusions of this study are nevertheless subjected to several limitations of the
study. Firstly, the 32 year period (1985–2016) of simulations based on data availability only
allows inspection of the model during the particular time period. Secondly, there may be
errors introduced due to interpolated rainfall, as well as the use of the satellite-based PET
from GLEAM, which is a global dataset without local bias correction.
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