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Abstract: We present an analysis related to the evaluation of Morison and transverse force coefficients
in the case of a submerged square barrier subject to the action of solitary waves. To this purpose,
two-dimensional experimental research was undertaken in the wave flume of the University of
Calabria, in which a rigid square barrier was provided by a discrete battery of pressure sensors to
determine the horizontal and vertical hydrodynamic forces. A total set of 18 laboratory tests was
carried out by varying the motion law of a piston-type paddle. Owing to the low Keulegan–Carpenter
numbers of the tests, the force regime of the physical tests was defined by the dominance of the
inertia loads in the horizontal direction and of the lift loads in the vertical one. Through the use of the
time series of wave forces and the undisturbed kinematics, drag, horizontal inertia, lift, and vertical
inertia coefficients in the Morison and transverse semi-empirical schemes were calculated using
time-domain approaches, adopting the WLS1 method for the minimization of the difference between
the maximum forces and the linked phase shifts by comparing laboratory and calculated wave
loads. Practical equations to calculate these coefficients as a function of the wave non-linearity were
introduced. The obtained results highlighted the prevalence of the horizontal forces in comparison
with the vertical ones which, however, prove to be fundamental for stability purposes of the barrier.
An overall good agreement between the experimental forces and those calculated by the calibrated
semi-empirical schemes was found, particularly for the positive horizontal and vertical loads. The
analysis of the hydrodynamic coefficients showed a decreasing trend for the drag, horizontal inertia,
and lift coefficients as a function of the wave non-linearity, while the vertical inertia coefficient
underlined an initial increasing trend and a successive slight decreasing trend.

Keywords: submerged rigid breakwater; solitary waves; physical tests; hydrodynamic forces; Mori-
son and transverse formulas; force coefficients

1. Introduction

Submerged rigid or rubble-mound breakwaters have recently been adopted to defend
coastal areas by the wave motion. The advantages of submerged breakwaters include the
lower environmental impact and cost constructions with respect to the traditional emerged
ones.

The literature regarding the interaction between solitary waves and submerged rigid
breakwaters is wide. Indeed, a relevant amount of studies paid attention to different hydro-
dynamic aspects of the above physical phenomenon. The major part of the research was
concentrated on the flow field near the roof and lee side of the barriers with a consequent
formation of vortical structures [1–8]. Another aspect well-investigated referred to the
evaluation of reflection, transmission, and dissipation (RTD) coefficients [1,4,7,9–14]. Less
studies were instead addressed to investigate the solitary wave-induced forces at sub-
merged barriers. With reference to only horizontal loads, Huang and Dong [2] highlighted,
through the use of unsteady Navier–Stokes equations, the occurrence of higher positive
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peaks and lower negative peaks, while Wu et al. [4] experimentally observed an overall
linear tendency of the maximum values vs. the wave non-linearity A/d, with A being
the wave amplitude and d the water depth. More recently, Tripepi et al. [15] calibrated a
semi-analytical method depending on the speed drop factor, preliminarily investigated by
Filianoti and Di Risio [16], to determine the horizontal loads on the basis of an experimen-
tal investigation coupled with δ-LES-SPH simulations. However, the nature of the above
semi-analytical approach is inertial and, for high values of amplitudes of the incoming
solitary waves at the barrier, the drag force component plays a relevant role in modeling
the horizontal forces (e.g., [17]). Although the calibration of four hydrodynamic coefficients
is required, the use of the Morison [18] and transverse (e.g., [19]) semi-analytical schemes
proves to be a good method to calculate both the horizontal and vertical hydrodynamic
loads in a practical way.

In this context, 2D physical modeling was carried out in the wave channel of the
University of Calabria in order to determine the horizontal and vertical hydrodynamic
forces at a submerged rigid breakwater under the action of solitary waves. The importance
of the present research is addressed to investigate the stability of a coastal defence structure
with a low environmental impact, such as a submerged barrier. The correct understanding
of the time series of the hydrodynamic forces proves to be fundamental for the stability
purposes of this structure, such as the determination of the critical conditions against the
sliding and the overturning which are commonly retained as the most frequent modes
of failure of vertical structures, such as caisson breakwaters (see, e.g., [20,21]). In the
experiments, a value of a/d equal to 0.5 was adopted, where a is the height of the barrier.
A battery of pressure sensors installed along the external surface of the barrier was used to
deduce the wave loads, and two wave gauges installed before and after the breakwater
were also adopted to model the incident flow field, that is, surface elevation and flow
kinematics. The force regime at the barrier was characterized by the prevalence of the
inertia force component along the horizontal direction, and of the lift force component
along the vertical one [22,23]. On the basis of the time variation of the hydrodynamic loads
and the free stream kinematic field at the barrier, the force coefficients (drag, horizontal
inertia, lift, and vertical inertia) in the Morison and transverse semi-analytical methods
were calibrated by means of ordinary and weighted least square approaches [24]. The
choice of a/d = 0.5 is due to the fact that the adopted semi-empirical equations prove to be
effective when the surface elevation is not substantially deformed by the presence of the
submerged barrier, as in the present case. Then, this work could be useful for engineering
purposes due to the practical way of determining the hydrodynamic loads by simple semi-
empirical formulas, where the calculated hydrodynamic coefficients can be determined by
the knowledge of practical quantities, such as the wave amplitude and the water depth.

The current paper is organized as follows. Section 2 recalls some basic equations to
model a solitary wave. The experimental tests are described in the successive Section 3.
The Morison and transverse semi-empirical schemes are illustrated in Section 4. Section 5
shows the obtained laboratory results in terms of surface elevation before the barrier and
related undisturbed kinematics (horizontal velocity, and horizontal and vertical acceler-
ation), horizontal and vertical wave forces (time series and peaks), calibration of force
coefficients, and application of semi-analytical formulas to reproduce the time variation of
the hydrodynamic forces, paying attention to the maximum values and the related phase
shifts.

2. The Solitary Wave

The solitary wave is given by a unique gravity wave which proves to be totally above
the sea water level. Its shape can be assimilated to certain characteristics of the leading
wave of a tsunami wave train, storm surges, and other types of long waves [2]. The
representation of a solitary wave is easy and robust, and has been analyzed by different
theoretical methods (e.g., [25–28]) and applied experimentally and numerically for different
purposes.
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Following the first approximation order introduced by Laitone [27] and Grimshaw [28]
in the limit d/L → 0 where L is the wave length, the surface displacement of a solitary
wave is due to

η(x, t) =
A

cosh2[k(x− ct)]
, (1)

where x is the direction of the wave motion, t is the time, k is the wave number, and c is the
wave celerity.

The value of k is dependent on A and d, and calculated as

k =

√
3A
4d3 . (2)

The value of c is calculated by the following relationship:

c =
√

gd
(

1 +
A
2d

)
(3)

with g being the acceleration gravity.
For the successive calculation of the hydrodynamic coefficients, it is useful to deter-

mine the horizontal velocity u and acceleration aH , and the vertical acceleration aV . These
quantities are calculated, in the first approximation order, as follows [27,28]:

u(x, t) =
√

gd
d

η(x, t) (4)

aH(x, t) =
√

gd
d

2cksinh[k(x− ct)]
cosh[k(x− ct)]

η(x, t) (5)

aV(x, t) = 2ck2
√

gdη(x, t)−
6ck2sinh2[k(x− ct)]

√
gd

cosh2[k(x− ct)]
η(x, t). (6)

Theoretically, the value of L and the wave period T of a solitary wave are infinite.
However, for practical calculations, an apparent wave length and period can be determined.
In this context, a finite wave length L = 2π/k and a finite wave period T = L/c are defined.
In this way, at a distance x = L/2 from the wave crest, the surface elevation is 0.74% of A
(e.g., [29]).

In this work, the generation of the solitary wave due to a piston-type paddle is due to
the following equation, to determine its horizontal movement [30]:

X(t) =
A
kd

tanh{k[ct− X(t)]}. (7)

3. Laboratory Tests

The experimental tests were undertaken in the wave channel of the Department of
Civil Engineering of the University of Calabria (Italy). The adopted flume is 41 m long, of
1 m width, and 1.2 m depth, and characterized by a piston-type wavemaker, loading and
unloading tanks, and a final rubble-mound breakwater to partially dissipate the waves.
The wave flume is made by 15 modules, suitably joined and waterproofed, with a length
of about 2.7 m. Its skeleton is made by steel, while the walls and the bottom are made of
glass. Regarding the piston-type wavemaker, it is moved by a servo-controller hydraulic
actuator with a maximum stroke of 0.5 m. In particular, the paddle movement is controlled
indirectly by the rotation of a joint of the mechanical chain, that is connected to the paddle.
The rotation angle is measured with a resistive encoder that provides a proportion analog
voltage signal. This signal is processed, as well as the set-point signal, by a properly tuned
Proportional Integral Derivative (PID) controller. The PID acts in order to minimize the
error, that is, the difference between the set-point and the feedback signals. The output
of the PID is connected to the kinematic chain through a hydro-pneumatic actuator. The
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set-point signal is generated by a Data AcQuision Board (DAQ), thanks to a Digital-to-
Analog Converter (DAC) (see, for more details, [31]). Note that this device is similar to the
wave generation system available at the University of Louisiana at Lafayette [32,33]. The
longitudinal profile of the adopted experimental set-up is highlighted in Figure 1.

Figure 1. Longitudinal profile of the adopted experimental set-up.

The rigid submerged barrier was made of iron and covered by a thin layer of an
electrolytic zinc plating to avoid corrosion by water. Its shape was square, with a height of
a = 0.127 m and length b = 0.127 m, and its installation was at 9.08 m from the wavemaker,
that is, more than one wave-length. The lower parts of the barrier were fixed at the bed
through a special silicone. To deduce the hydrodynamic forces acting on the barrier, four
pressure transducers were arranged at its beaten side, four at the roof of the structure, and
four at its lee side (Figure 2a). Owing to the constructional constraints, the pressure sensors
at the beaten and lee sides were transversally staggered with a mutual distance of a few
cm, as performed in similar experiments on circular cylinders by Aristodemo et al. [22,34].
This trick was possible because of the 2D nature of the wave fronts of the solitary waves. A
detail of the installation of the pressure transducers at the barrier from the beaten side is
shown in Figure 2b.

Figure 2. (a) Representative cross-section of the pressure transducers at the barrier; (b) Detail of the installation in the wave
flume of the pressure transducers at the barrier from the beaten side.

On the basis of the geometrical disposition of the pressure sensors at the barrier and
considering a piecewise linear variation of pressure along each side of the barrier [15], the
horizontal and vertical hydrodynamic loads are evaluated as{

FH(t) = A1[∆p1(t) + ∆p2(t) + ∆p3(t) + ∆p4(t)− ∆p9(t)− ∆p10(t)− ∆p11(t)− ∆p12(t)]
FV(t) = A2[∆p1(t) + ∆p12(t)]− A1[∆p5(t) + ∆p6(t) + ∆p7(t) + ∆p8(t)]

}
, (8)

where A1 and A2 are the influence areas and equal to a/4 and a/2, respectively. It is
worth noting that in the calculation of the vertical loads, a trapezoidal pressure distribution



Water 2021, 13, 315 5 of 18

at the base of the barrier was taken into account. This approach represents a widely adopted
method to deduce the above forces for stability purposes (see, e.g., [21]). Regarding the
number of the pressure gauges used in the analysis to determine the hydrodynamic forces,
a very small difference was observed, about the use of 12 pressure sensors or a higher
number because of the presence of long waves, such as the solitary waves which were of
slow impact since the adopted barrier showed relevant submergence. The aspect related
to the number of the pressure gauges was highlighted through numerical simulations in
a previous work [15]. Indeed, the use of a high number of pressure gauges around the
external contour of the barrier, that is, 150, showed very similar results with those obtained
using 12 pressure sensors in the calculation of the hydrodynamic forces, particularly in
correspondence with the peaks.

The surface elevations were measured by two resistive wave gauges (wg1 and wg2)
placed respectively at a distance of 1.2 m before the rigid breakwater, and of 3.66 m after
the rigid breakwater (see Figure 1). The sampling frequency f of the pressure transducers
and the wave gauges was set at 100 Hz.

A total number of 18 laboratory experiments was carried out. The still water level was
equal to d = 0.254 m so that the ratio a/d was 0.5. Table 1 highlights the laboratory values
of A, T, A/d, KC = umT/a, and Re = uma/ν, respectively, where um is the maximum
horizontal velocity and ν is the kinematic viscosity of water. The experimental range of
A/d was between 0.135 and 0.326, while that related to the Keulegan–Carpenter number
KC and Reynolds number Re ranged from 5.00 to 7.19, respectively, and from 2.71 × 104 to
6.53 × 104. The size of the experimental set-up refers to small-scale laboratory tests with
an approximate Froude scale of 1:40. On the basis of the generated waves for the present
experiments, this leads to realistic conditions characterized by solitary waves with wave
amplitudes up to 3.3 m and wave periods up to 18.8 s interacting with a submerged barrier
with a height of 5.08 m and length of 5.08 m on a water depth of 10.2 m.

Table 1. Main characteristics of the experimental tests.

Test Number A (m) T (s) A/d KC Re

1 0.034 2.98 0.135 5.00 2.71 × 104

2 0.036 2.91 0.141 5.10 2.83 × 104

3 0.041 2.69 0.162 5.42 3.25 × 104

4 0.046 2.52 0.181 5.69 3.64 × 104

5 0.050 2.39 0.198 5.90 3.98 × 104

6 0.054 2.30 0.212 6.07 4.25 × 104

7 0.055 2.29 0.215 6.10 4.30 × 104

8 0.060 2.17 0.235 6.33 4.71 × 104

9 0.063 2.10 0.248 6.47 4.97 × 104

10 0.064 2.08 0.252 6.51 5.06 × 104

11 0.068 2.01 0.267 6.66 5.36 × 104

12 0.070 1.96 0.277 6.76 5.55 × 104

13 0.071 1.95 0.280 6.79 5.61 × 104

14 0.075 1.89 0.295 6.93 5.92 × 104

15 0.077 1.86 0.302 6.98 6.04 × 104

16 0.080 1.81 0.315 7.10 6.31 × 104

17 0.081 1.80 0.319 7.14 6.40 × 104

18 0.083 1.78 0.326 7.19 6.53 × 104

4. Morison and Transverse Semi-Empirical Schemes

A widespread method to easily evaluate the horizontal forces on a structure in a
marine environment is given by the Morison scheme [18]. This formulation is usually
applied for slender bodies as in the present case, that is, when KC is generally greater than 4
and the vortex shedding regime around the body arises [35]. Following Morison et al. [18],
the horizontal force, FH , is given by the superimposition of a drag component, FD, and a
horizontal inertia one, FHI . The former component occurs for the resistance of a solid body
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to the incoming external motion, while the latter one is generated by the presence of an
external horizontal acceleration field in correspondence with the solid body. In its general
form, the total in-line force, FH , is then equal to [18]

FH(t) = FD(t) + FHI(t) =
1
2

ρCD Acu(t)|u(t)|+ ρCMHVaH(t), (9)

where CD is the drag coefficient and CMH is the horizontal inertia coefficient, while u and
aH are the undisturbed values of horizontal velocity and acceleration, respectively. For a
square barrier, Ac (cross-sectional area) = a and V (volume) = a2.

Regarding the vertical load, the transverse force, FV , is given by the sum of the lift
component, FL, and the vertical inertia one, FVI . The former component is due to the rise of
velocity field across a structure induced by the blocking of the flow, while the latter one is
related to the occurrence of an undisturbed vertical acceleration field at the body. Similarly
to the Morison equation, this load is calculated to the following relationship (e.g., [17])

FV(t) = FL(t) + FVI(t) =
1
2

ρCL Acu2(t) + ρCMVVaV(t), (10)

with CL being the lift coefficient and CMV being the vertical inertia coefficient, while aV is
the free stream vertical acceleration.

The free stream horizontal velocity and horizontal and vertical acceleration in the
Morison and transverse formulas were evaluated by Equations (4)–(6), respectively, from
the experimental values of η recorded by the wave gauge installed before the barrier.

5. Experimental Results
5.1. Incident Flow Field

In this Section, the flow field induced by the propagation of the solitary wave along the
channel is analyzed. In particular, the surface elevation and the kinematic field (horizontal
velocity, horizontal acceleration, and vertical acceleration) before the barrier and related
to wg1 are taken into account. In this context, the suitable evaluation of the solitary
wave loads at the barrier through the use of semi-empirical equations, that is, Morison
and transverse, is dependent on the above-mentioned flow variables. Considering tests
no. 8 and 18 characterized by a lower amplitude and a wider period and by a higher
amplitude and a shorter period, respectively, Figure 3 describes the time variation of the
experimental surface elevation η recorded by wg1 and its comparison with the analytical
solution expressed by Equation (1). The reference time twg1 = 0 refers to the passage of
the solitary wave crest at wg1. For both cases, an overall good agreement between the
experimental η and the reference analytical solution can be noticed. This is particularly
evident for the peak values and for the increasing part of the solitary wave. Regarding
the decreasing part of the solitary waves, a certain discrepancy between laboratory tests
and analytical formula is linked to the instantaneous truncation in the time law of the
piston-type paddle. This drawback leads to the occurrence of spurious trailing waves
represented by an irregular wave packet of small entity (e.g., [30]). Owing to the specific
placement of wg1, that is, 1.2 m before the barrier, it is also possible to observe that the
first trailing wave is incidentally superimposed to the reflected wave component due to
the wave–structure interaction [14]. Although these observed surface fluctuations induced
spurious wave forces, the current analysis was not influenced, since the attention was
focused on the forces’ peaks, which occurred before these unwanted oscillations.
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Figure 3. Comparison between experimental and analytical time series of surface elevation η at wg1.
(a) Test no. 8; (b) test no. 18.

Regarding the free stream kinematic field, Figure 4 shows, for the same experimental
tests adopted for the surface elevation, that is, tests no. 8 and 18, the comparison between
experimental and analytical time series of horizontal velocity u, horizontal acceleration
aH , and vertical acceleration aV at wg1. The experimental values of u, aH , and aV were
deduced from the recorded η by applying Equations (4)–(6). As for the comparison of η,
the agreement between experiments and analytical formulas is satisfactory, unless their
final part for the reasons was previously highlighted. Concerning the horizontal velocity
(see Figure 4a,b), its shape is the same as that observed for η. As shown in Figure 4c,d, the
horizontal acceleration instead exhibits a positive peak before the occurrence of the wave
crest and a negative peak of the same magnitude after it. Lastly, the vertical acceleration
highlights two positive peaks and one higher negative peak between them, corresponding
to the maximum surface elevation (see Figure 4e,f). The importance of the above kinematic
components arises from its shape similarity if compared to the wave load components
modeled by the Morison and transverse semi-empirical schemes. Indeed, the horizontal
velocity is proportional to the drag and lift force components, the horizontal inertia load
follows the shape of the horizontal acceleration, and the vertical acceleration is similar to
the vertical inertia force.

Figure 4. Comparison between experimental and analytical time series of kinematic field at wg1.
(a) u (test no. 8); (b) u (test no. 18); (c) aH (test no. 8); (d) aH (test no. 18); (e) aV (test no. 8); (f) aV

(test no. 18).

5.2. Wave Loads

The time variation and the peaks of horizontal FH and vertical FV forces at a submerged
square barrier under the action of solitary waves will be examined in this Section.
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For the reference tests no. 8 and 18, the time series of the hydrodynamic loads will be
successively illustrated. In this analysis, the reference time t = 0 is linked to the appearing
of the solitary wave crest at the middle of the barrier. Due to the lack of a laboratory wave
gauge at this specific location because of the impossibility to install it because of the bulky
presence of the barrier, a virtual measurement of surface elevation and kinematic field
was determined from the recorded surface elevations at wg1 and wg2. Firstly, the wave
celerity c was deduced as the ratio between the distance between the two wave gauges
and the time interval related to the occurrence of the maximum surface elevations at wg1
and wg2. To support this analysis, the experimental wave celerity was compared with the
theoretical one calculated by Equation (3) for all experimental tests, as shown in Figure 5. It
is possible to observe that the laboratory and theoretical values are quite close, with a small
underestimation given by the experimental ones. The mean relative difference is equal to
2.7%. Then, the surface elevation and the kinematic field were forward-shifted by the ratio
between the distance between the location of wg1 and the middle of the breakwater and
the experimental celerity.

Figure 5. Comparison between theoretical and experimental wave celerity for all experimental tests.

The time variation of the hydrodynamic forces is shown in Figure 6 for the two
mentioned tests. It can be noticed that the horizontal force is higher than the vertical
one for both wave conditions. Furthermore, the horizontal force shows a greater positive
peak and lower negative one, while the vertical one exhibits just one positive force peak.
The occurrence of higher positive peaks and lower negative ones in the time series of the
horizontal force is observed for all experimental tests, and also by other similar literature
studies [2,4]. This feature can be explained by the fact that the wave forcing is characterized
by a solitary wave, which has just a crest and then the barrier is substantially subject to the
action of a forward motion. In the case of regular and irregular waves where crests and
troughs are present, the difference between higher positive peaks and lower negative ones
is generally reduced (e.g., [22]). It can also be observed that the in-line force is back-shifted
with respect to the reference time t = 0, because of the relevant contribution of the horizontal
inertia force proportional to aH if compared to the drag one. This effect is more pronounced
for test no. 8 with respect to test no. 18 because of its low KC number [22,35]. Regarding
the vertical loads, the peak appears very close to the reference time t = 0 for both the test
cases and, in particular, the maximum values of FV are slightly back-shifted. The overall
shape of the vertical forces resembles that of the lift component which is proportional to u
and then to η. However, a significant broadening over the time of FV with respect to u can
be noticed.
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Figure 6. Time variation of horizontal FH and vertical FV wave forces vs. A/d. (a) Test no. 8; (b) test
no. 18.

Considering all 18 laboratory tests, Figure 7 describes the maximum positive and
negative wave forces as a function of the wave non-linearity A/d. The peak values are here
respectively normalized with respect to the maximum peak of the horizontal force, FHmax∗,
and the maximum peak of the vertical force, FVmax∗, occurring in the present experimental
dataset. Specifically, Figure 7a refers to the peaks of positive, FHmax,p, and negative, FHmax,n,
horizontal loads. The values of FHmax,p exhibit an overall linear increasing trend, as also
observed by Wu et al. [4]. The values of FHmax,n show an initial increasing tendency,
followed by a substantial stabilization for A/d > 0.25. Paying attention to the positive
peaks of the vertical force, FVmax (see Figure 7b), their trend is similar to that observed for
FHmax,p. In order to highlight the importance of the vertical loads for stability purposes,
the weight of the vertical force with respect to the horizontal one in terms of peak values is
plotted in Figure 7c. It can be noticed that the weight of the vertical load oscillates between
45% for low A/d and 64% for high A/d.

Figure 7. Maximum positive and negative wave forces vs. A/d. (a) Horizontal force; (b) vertical force; (c) weight of the
vertical force with respect to the horizontal one.

5.3. Calibration of Morison and Transverse Formulas

The suitable use of the Morison and transverse semi-empirical schemes to respectively
evaluate the horizontal and vertical loads induced by solitary waves at the submerged
rigid breakwater requires the calibration of the hydrodynamic coefficients. Owing to the
simple structure of these equations in which the kinematic field refers to undisturbed
conditions, the hydrodynamic coefficients are representative parameters of the complex
flow field given by this wave–structure interaction process. The determination of CD, CMH ,
CL, and CMV is dependent on the experimental values of the free stream kinematic field,
that is, u, aH , and aV , and of the horizontal and vertical hydrodynamic forces. The analysis
was performed within the wave period, and ordinary and weighted least square methods
were applied to deduce the hydrodynamic coefficients in order to minimize the differences
between measured and calculated forces (see, for more details, [24]). The application of the
weighted least square method is due to the fact of furnishing more emphasis to the force
peaks, which are useful for stability aims of the involved marine structure.
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Considering the Morison formula, the horizontal hydrodynamic coefficients CD and
CMH are given by

CD =
∑N

i=1 F2j+1
H u|u|∑N

i=1 F2j
H a2

H−∑N
i=1 F2j+1

H aH ∑N
i=1 F2j

Heu|u|aH

KD

[
∑N

i=1 F2j
H u4 ∑N

i=1 F2j
H aH−

(
∑N

i=1 F2j
H u|u|aH

)2
]

CMH =
∑N

i=1 F2j+1
H aH ∑N

i=1 F2j
H u4−∑N

i=1 F2j+1
H u|u|∑N

i=1 F2j
HeaHu|u|

KMH

[
∑N

i=1 F2j
H a2

H ∑N
i=1 F2j

H u4−
(

∑N
i=1 F2j

HeaHu|u|
)2
]


, (11)

where KD = 1
2 ρa and KMH = ρa2. The value of N represents the total number of force and

kinematic values within the wave period, while j is a positive index.
Taking into account the transverse equation, the vertical hydrodynamic coefficients

CL and CMV are due to

CL =
∑N

i=1 F2j+1
V u2 ∑N

i=1 F2j
V a2

V−∑N
i=1 F2j+1

V aV ∑N
i=1 F2j

V u2aV

KL

[
∑N

i=1 F2j
V u4 ∑N

i=1 F2j
V aV−

(
∑N

i=1 F2j
V u2aV

)2
]

CMV =
∑N

i=1 F2j+1
V aV ∑N

i=1 F2j
V u4−∑N

i=1 F2j+1
V u2 ∑N

i=1 F2j
V u2aV

KMV

[
∑N

i=1 F2j
V a2

V ∑N
i=1 F2j

V u4−
(

∑N
i=1 F2j

V u2aV

)2
]


, (12)

where KL = KD and KMV = KMH . The case with j = 0 refers to the use of the ordinary least
square approach.

The capabilities of the above time-domain methods to determine the various hydrody-
namic coefficients were tested through the calculation of the Percentage Error (PE) obtained
by the comparison between experimental and calculated hydrodynamic loads, as follows:

PE =

∣∣∣∣ Fe − Fc

Fe

∣∣∣∣ ∗ 100, (13)

where Fe and Fc represent the generic experimental and semi-empirical hydrodynamic
forces, respectively.

In the present analysis, the attention was turned to the maximum forces and, in
particular, to the positive and negative peaks of the horizontal load and to the positive
peak of the vertical load, and the linked time shifts, φ, calculated as

φ =
2πtmax

T
, (14)

with tmax being the appearing time of the peaks of horizontal or vertical loads within the
wave period.

The results obtained by the calculation of PE involving the ordinary least square
method, namely OLS (j = 0) and the weighted least square methods, namely WLS1 (j = 1),
WLS2 (j = 2), WLS3 (j = 3), WLS4 (j = 4), WLS5 (j = 5), and WLS6 (j = 6), are plotted in
Figure 8. The use of the weighted least square approaches up to j = 6 is due to the
possibility to well-catch the peaks of the wave loads. Note that the values of PE are
averaged considering all laboratory tests. Regarding the obtained results on PE, it is
possible to observe that the values of PE related to FHmax,p decrease when j increases with
2.8% < PE < 9.2%. By contrast, the values of PE linked to FHmax,n show a strong increasing
trend proportional to j, starting from PE about or equal to 29% for j = 0 to a PE about or
equal to 111% for j = 6. In the case of FVmax, it can be noticed that the maximum PE refers
to the OLS approach with a value equal 12.9%, while the minimum PE of 4.4% is related to
WLS1. Paying attention to the values of φ, a decreasing trend for PE linked to FHmax,p, as in
the case of the peak values, can be observed with values of PE oscillating between 1.5%
(for j = 6) and 9% (for j = 0). For φFHmax,n, the rise of j leads to a corresponding increase of
PE with values ranging from 10.1% to 13.5%. Considering φFVmax, the trend of PE tends
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to increase from OLS to WLS2, followed by a stabilization of the values of PE. In this last
case, 2.6% < PE < 3.9%. In order to choose the best calibration method to be adopted for
the force coefficients in the Morison and transverse semi-empirical schemes for the suitable
reproduction of the laboratory forces, a mean value of PE among the above six PE related
to the force peaks and the related phase shift was determined. Comparing all approaches,
WLS1, that is, the weighted least square method with j = 1, gives the lowest mean value of
PE and, specifically, is equal to 11.7%. As a result, this specific method will be taken into
account for the successive analyses related to the evaluation of the force coefficients and
the application of the Morison and transverse formulas.

Figure 8. Experimental PE through OLS, WLS1, WLS2, WLS3, WLS4, WLS5, and WLS6 methods. (a) Maximum positive
horizontal force, FHmax,p; (b) maximum negative horizontal force, FHmax,n; (c) maximum vertical force, FVmax; (d) phase
shift, φ, related to FHmax,p; (e) phase shift, φ, related to FHmax,n; (f) phase shift, φ, related to FVmax.

The horizontal and vertical hydrodynamic loads obtained by the Morison and trans-
verse semi-empirical schemes through the calibration of the force coefficients using the
WLS1 method are compared with the laboratory results in terms of force peaks and phase
shifts linked to the peak values. In particular, Figure 9 shows the comparison between
experimental and calculated maximum positive and negative wave forces as a function of
the wave non-linearity. Positive and negative horizontal loads, and positive vertical loads
are considered. On the basis of that obtained by PE analysis, the agreement between labo-
ratory forces and those determined by the use of semi-empirical approaches is generally
good. This is evident for the positive peaks of the horizontal, FHmax,p, and vertical, FVmax,
loads. In these cases, the trend given by the peaks increases linearly vs. A/d, as with the
experimental data. The application of WLS1 approach gives a slight overestimation of both
experimental values of the positive peaks, and it can be viewed as conservative from the
viewpoint of the stability of the submerged barrier. For what concerns the negative peaks
of the horizontal force, FHmax,n, the comparison between experiments and the Morison
model is fairly good until A/d = 0.22, with a successive overall overestimation given by
the semi-empirical scheme. However, this discrepancy has no significant impact for the
stability purposes of the involved structure, because of the low magnitude of these loads.
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Figure 9. Comparison between experimental and calculated maximum positive and negative wave
forces vs. A/d. (a) Horizontal force; (b) vertical force.

An additional comparison related to the performances of the Morison and transverse
models using the hydrodynamic coefficients obtained by WLS1 is performed. In particular,
it refers to the comparison between experimental and calculated phase shifts related
to maximum positive and negative wave forces as a function of wave non-linearity, as
illustrated in Figure 10. The different phase shifts are determined within the phase related
to the wave period (0, 2π). The plots are here shown in the order of occurrence of the time
linked to the wave peaks, namely, FHmax,p, FVmax, and FHmax,n. Regarding φ FHmax,p, it is
possible to notice that the values related to the Morison scheme tend to slightly forward-
shift the positive horizontal peaks if compared to the experimental ones. Moreover, they
occur before the half-period, that is, for φ < π. Concerning φ FVmax, the transverse scheme
leads to a small backward shift of the experimental vertical force peaks for A/d < 0.16
and a successive small forward shift for A/d > 0.16. This phase shift appears across the
half-period or, in other words, is very close to the wave crest at the middle of the breakwater
roof. Regarding φ FHmax,n, the Morison equation shows a backward shift of the negative
peak of the horizontal load, occurring between π and 3π/2 within the wave period, in
comparison with the laboratory tests. This difference is particularly evident for the central
values of the studied range of A/d. As shown in the previous Figure 9, the result on this
force peak does not affect the good results obtained for the horizontal and vertical positive
peaks, which are usually adopted for the verifications of the stability of the barrier.

Figure 10. Comparison between experimental and calculated phase shifts related to maximum positive and negative wave
forces vs. A/d. (a) Phase shift, φ, related to FHmax,p; (b) phase shift, φ, related to FVmax; (c) phase shift, φ, related to FHmax,n.
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Figure 11 shows the features of the hydrodynamic coefficients CD, CMH , CL, and
CMV obtained by the WLS1 approach as a function of the wave non-linearity. In order
to assess the uncertainty in the evaluation of the hydrodynamic coefficients, the 95%
prediction intervals are also plotted. The values of CD show a decreasing trend vs. A/d,
starting from values of an order of 3 for low A/d to values greater than 1 for high A/d. A
restricted range of variability was instead observed by the results on the drag coefficients
obtained by Tripepi et al. [23] in the case of solitary wave loads at a bottom-mounted
cylinder with a diameter equal to the present height and length of the barrier and a
different range of A/d. Similarly to CD, the values of CMH decrease when A/d increases.
Specifically, 2.1 < CM < 2.6. These coefficients prove to be lower than that calculated by
Tripepi et al. [23]. Paying attention to CL, also in this case, the trend vs. A/d is decreasing.
The lift coefficients range from 4.4 for small A/d, to 3.3 for high A/d. As in the case
of CMH , the values of CL are generally smaller than those observed by Tripepi et al. [23].
Regarding the last hydrodynamic coefficient, that is, CMV , its behaviour vs. A/d is different
that the other coefficients. Indeed, a rise for low A/d is noticed until about A/d = 0.2,
and a successive slight decrease when A/d > 0.2. The values of CMV oscillate between
about 0.6 and 1.2. The magnitude of these coefficients is different if compared to the
experiments by Tripepi et al. [23], but it proves to be comparable with the results obtained
by Aristodemo et al. [36] for a solitary wave interacting with a horizontal cylinder close
to the bed. Regarding the uncertainty in the assessment of the hydrodynamic coefficients,
the highest is linked to the calculation of CMV , although the weight of the vertical inertia
component, FVI , for calculating the total vertical force, FV , is small if compared to the lift
one, FL, as successively analyzed in Section 5.4.

(a) (b)

(c) (d)

Figure 11. Hydrodynamic coefficients vs. A/d. (a) CD; (b) CMH ; (c) CL; (d) CMV .

For engineering aims, empirical equations were deduced to determine, in a practical
way, the hydrodynamic coefficients on the basis of the wave non-linearity. With reference
to Figure 11, the fitting formulas related to CD, CMH , CL, and CMV are highlighted through
dashed red curves. The trend related to CD was well-modeled by a power law

CD = 0.41
(

A
d

)−0.98
, (15)

being R2 (correlation coefficient) = 0.953.
Linear laws were instead adopted to fit the experimental values of CMH and CL

CMH = −2.51
A
d
+ 2.96 (16)
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CL = −5.22
A
d
+ 5.06, (17)

where R2 is equal to 0.906 and 0.908, respectively.
A more complex law with respect to other coefficients was used to model the particular

behaviour of CMV vs. A/d. Specifically, a second-order Gaussian function was adopted as
follows:

CMV = 0.65 exp

−( A
d − 0.18

0.08

)2
+ 1.02 exp

−( A
d − 0.32

0.16

)2
, (18)

where R2 = 0.847.

5.4. Application of Morison and Transverse Formulas

In this Section, the Morison and transverse formulas (see Equations (9) and (10)) were
applied in order to show the contribution of each force component to model the experimen-
tal horizontal and vertical loads, respectively. The calculated forces are determined through
the hydrodynamic coefficients deduced from the WLS1 approach. Figure 12 describes the
experimental and calculated time series of horizontal and vertical hydrodynamic forces
for tests no. 8 and 18. The Morison and transverse force components are mentioned with
the subscripts M and T, respectively. In particular, Figures 12a and b show the comparison
between experimental FH and Morison FDM, FHIM, and FHM for tests no. 8 and 18. It can be
observed that the maximum experimental horizontal force is well-modeled by the Morison
scheme with a small overestimation and forward shift. Regarding the negative peak of
the horizontal load, the Morison equation gives a significant overestimation, particularly
for test no. 18. As previously stressed, this peak is fairly lower than the positive one, and
then is not involved for stability purposes. Concerning the horizontal force components,
the inertia load is greater than the drag one. As a consequence, the peak of the laboratory
horizontal force is very close and quite in phase to that related to the inertia one. Indeed,
the shape of the experimental horizontal force resembles that linked to the horizontal
acceleration (see Figure 4c,d), which is proportional to the horizontal inertia component.
The effect of the drag force, proportional to the horizontal velocity (see Figure 4a,b), is
to forward-shift the calculated horizontal load. Figure 12c,d illustrates the comparison
between experimental FV and transverse FLT , FVIT and FVT for tests no. 8 and 18. Except
for a small phase shift and overestimation, the transverse scheme well-predicts the maxi-
mum value of the observed vertical force. It is possible to observe that the experimental
vertical load shows a large broadening, which is not well-caught by the transverse model,
particularly for test no. 18. However, this broadening effect in the transverse equation is
modeled by the contribution of the vertical inertia component, which is proportional to the
vertical acceleration (see Figure 4e,f). The peak of the laboratory vertical force proves to be
in phase with the lift component, which is proportional to the horizontal velocity. However,
the peak of the lift load is larger than the experimental vertical one and, to well-model
this load, the contribution of the vertical inertia component is fundamental, since it acts to
reduce the peak of the transverse model through its negative part. This effect is particularly
emphasized for test no. 18.
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Figure 12. Experimental and calculated time series of hydrodynamic forces. (a) Comparison between
experimental FH and Morison FDM, FHIM and FHM (test no. 8); (b) comparison between experimental
FH and Morison FDM, FHIM and FHM (test no. 18); (c) comparison between experimental FV and
transverse FLT , FVIT and FVT (test no. 8); (d) comparison between experimental FV and transverse
FLT , FVIT and FVT (test no. 18).

As shown in Figure 13, the various force components adopted to model the Morison
and transverse semi-empirical approaches, namely FD, FHI , FL and FVI , were analyzed in
terms of positive and negative peaks. In order to highlight their specific contribution, the
load components are weighted with respect to the corresponding maximum horizontal
and vertical forces and plotted as a function of the wave non-linearity for all 18 experi-
mental tests. Paying attention to the horizontal force (see Figure 13a), the positive inertia
components generally present with a larger weight if compared to the drag and negative
inertia ones because of the low KC numbers of the laboratory investigation. Specifically,
their weight proves to be ranging between 76% and 82% of the horizontal force and quite
constant for the considered range of A/d. The weight of the drag component oscillates
from 35% to 44% of the horizontal load, while that related to the negative inertia compo-
nent shows a weight slightly greater than the positive inertia one, due to the non-perfect
symmetry of the horizontal acceleration deduced from the experimental surface elevation.
Regarding the vertical force contributions (see Figure 13b), it is possible to notice that the
lift component shows a small increasing trend vs. A/d, and gives the greatest contribution
in reproducing the transverse load with respect to the vertical inertia components. More-
over, the ratio between the maximum lift force and the maximum vertical one is about
1.5. The weight related to the positive inertia component is fairly small and constant vs.
A/d. Indeed, it oscillates between 13% and 22% of the vertical load. A more significant
contribution is given by the negative inertia component with peak values ranging from 32%
to 59% of the vertical force. Its trend increases proportionally to the wave non-linearity.
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Figure 13. (a) Maximum Morison force components vs. A/d: positive drag FDmax, positive horizontal
inertia FHImax,p and negative horizontal inertia FHImax,n; (b) maximum transverse force components
vs. A/d: positive lift FLmax, positive vertical inertia FVImax,p and negative vertical inertia FVImax,n.

6. Conclusions

A 2D laboratory investigation aimed at calibrating the Morison and transverse semi-
empirical models to determine, in a practical way, the horizontal and vertical hydrodynamic
forces acting on a submerged rigid breakwater under the action of solitary waves has been
carried out. A total number of 18 laboratory tests has been undertaken in the wave flume
of the University of Calabria, where 12 pressure sensors were mounted along the external
contour of a rigid square barrier to deduce the wave loads.

After a preliminary validation of incoming flow field, that is, surface elevation and
kinematic field, the analysis of the force regime has underlined the prevalence of the
horizontal loads in comparison with the vertical ones which, however, prove to be relevant
for stability purposes. Indeed, the weight of the vertical loads with respect to the horizontal
ones ranged between 45% and 64%. Ordinary and weighted least square methods have
been used to determine the hydrodynamic coefficients as a function of the experimental
values of u, aH , and aV , and of FH and FV . The WLS1 method has proved to be the best
approach for the minimization of the difference between the force peaks and the related
phase shifts by comparing experimental and calculated wave loads. A good agreement
has been found for the positive horizontal and vertical forces which are fundamental for
the stability analyses of the barrier. The analysis of the force coefficients has underlined
a decreasing trend for CD, CMH , and CL vs. A/d, while CMV has highlighted an initial
increasing trend and successive slight decreasing trend vs. A/d. For engineering aims, the
hydrodynamic coefficients have been fitted by linear and non-linear laws by the knowledge
of the wave non-linearity. The application of Morison and transverse formulas has paid
attention to the single force components, highlighting an inertia-dominated regime in the
wave direction and a lift-dominated regime in the transverse direction.

On the basis of experimental activities conducted by the Authors with a/d = 0.7 and
0.9, further investigations will be addressed to calibrate semi-empirical formulas, taking
into account the breaking effects for the calculation of the solitary wave loads at submerged
barriers having low submergence.
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